Precision Farming, Myth or Reality: Selected Case Studies from Mississippi Cotton Fields

  • Jeffrey L. Willers
  • Eric Jallas
  • James M. McKinion
  • Michael R. Seal
  • Sam Turner
Part of the Springer Optimization and Its Applications book series (SOIA, volume 25)


There is a lot of interest in the concept of precision farming, also called precision agriculture or site-specific management. Although the total acreage managed by these concepts is increasing worldwide each year, there are several limitations and constraints that must be resolved to sustain this increase. These include (1) collecting and managing the large amounts of information necessary to accomplish this micromanagement, (2) building and delivering geo-referenced fine-scale (i.e., change every few meters or less) prescriptions in a timely manner, (3) finding or developing agricultural machines capable of quickly and simultaneously altering the rates of one or more agri-chemicals applied to the crop according to a geo-referenced prescription, (4) the need to have personnel stay “current” with advancements in developing technologies and adapting them to agriculture, (5) refining existing and/or creating new analytical theories useful in agriculture within a multidisciplinary, multi-institutional, and multibusiness environment of cooperation, and (6) modification of agricultural practices that enhances environmental conservation and/or stewardship while complying with governmental regulations and facing difficult economic constraints to remain profitable. There are many myths that overshadow the realities and obscure the true possibilities of precision agriculture. Considerations to establish productive linkages between the diverse sources of information and equipment necessary to apply site-specific practices and geographically monitor yield are daunting. It is anticipated that simulation models and other decision support systems will play key roles in integrating tasks involved with precision agriculture. Discovering how to connect models or other software systems to the hardware technologies of precision agriculture, while demonstrating their reliability and managing the flows of information among components, is a major challenge. The close cooperation of the extension, industrial, production, and research sectors of agriculture will be required to resolve this constraint.


Geographical Information System Precision Agriculture Global Position System Receiver Geographical Information System Software Broadcast Treatment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We are thankful for the support of Kenneth Hood, Perthshire Farms, Gunnison, MS, and Paul Good, Good’s Longview Farm, Macon, MS, for permission to work in their fields. Thanks are also expressed to Mr. Dan Woodard for providing the variable-rate applicator and writing the final nitrogen prescription that were based on the simulation model recommendations described in the Case 1 scenario. Thanks are expressed to Mr. Ronald B. Britton and Dr. Martin Wubben, USDA-ARS, Mississippi State, MS, for their assistance during the preparation of the manuscript.


  1. 1.
    Adrian, A. M., Norwood, S. H., Mask, P. L. 2005. Producers’ perceptions and attitudes toward precision agriculture technologies. Computers and Electronics in Agriculture 48: 256–271.CrossRefGoogle Scholar
  2. 2.
    Baker, D. N., Lambert, J. R., McKinion, J. M. 1983. GOSSYM: A Simulator of Cotton Growth and Yield. South Carolina Experiment Station Technical Bulletin 1089.Google Scholar
  3. 3.
    Batte, M. T., Ehsani, M. R. 2006. The economics of precision guidance with auto-boom control for farmer-owned agricultural sprayers. Computers and Electronics in Agriculture 53: 28–44.CrossRefGoogle Scholar
  4. 4.
    Bongiovanni, R., Lowenberg-Deboer, J. 2004. Precision agriculture and sustainability. Precision Agriculture 5: 359–387.CrossRefGoogle Scholar
  5. 5.
    Bugayevskiy, L. M., Snyder, J. P. 1995. Map Projections. A Reference Manual. Taylor and Francis, Ltd., Philadelphia, PA.Google Scholar
  6. 6.
    Bullock, D. S., Kitchen, N., Bullock, D. G. 2007. Multidisciplinary teams: A necessity for research in precision agriculture systems. Crop Science 47: 1765–1769.CrossRefGoogle Scholar
  7. 7.
    Campenella, R. 2000. Testing components toward a remote-sensing-based decision support system for cotton production. Photogrammetric Engineering & Remote Sensing 66(10): 1219–1227.Google Scholar
  8. 8.
    Cox, S. 2002. Information technology: the global key to precision agriculture and sustainability. Computers and Electronics in Agriculture 36: 93–111.CrossRefGoogle Scholar
  9. 9.
    Daberkow, S. G., McBride, W. D. 2003. Farm and operator characteristics affecting the awareness and adoption of precision agriculture. Precision Agriculture 4: 163–177.CrossRefGoogle Scholar
  10. 10.
    Dupont, J. K., Campenella, R., Seal, M. R., Willers, J. L., Hood, K. B. 2000. Spatially variable insecticide applications through remote sensing. In: 2000 Proceedings of the Beltwide Cotton Conferences, edited by P. Duggar and D. Richter. National Cotton Council, Memphis, TN. Vol. 2: 426–429.Google Scholar
  11. 11.
    Fitzgerald, G. J., Lesch, S. M., Barnes, E. M., Luckett, W. E. 2006. Directed sampling using remote sensing with a response surface sampling design for site-specific agriculture. Computers and Electronics in Agriculture 53: 98–112.CrossRefGoogle Scholar
  12. 12.
    Fleischer, S. J., Blom, P. E., Weisz, R. 1999. Sampling in precision IPM: when the objective is a map. Phytopathology 89: 1112–1118.CrossRefGoogle Scholar
  13. 13.
    Fountas, S., Wulfsohn, D., Blackmore, B. S., Jacobsen, H. L., Pedersen, S. M. 2006. A model of decision-making and information flows for information-intensive agriculture. Agricultural Systems 87: 192–210.CrossRefGoogle Scholar
  14. 14.
    Gliessman, S. T. 2000. Agroecology: Ecological Processes in Sustainable Agriculture. Lewis Publishers, an imprint of CRC Press, Boca Raton, FL.Google Scholar
  15. 15.
    Heermann, D. F., Hoeting, J., Thompson, S. E., Duke, H. R., Westfall, D. G., Buchleiter, G. W., Westra, P., Peairs, F. B., Fleming, K. 2002. Interdisciplinary irrigated precision farming research. Precision Agriculture 3: 47–61.CrossRefGoogle Scholar
  16. 16.
    Hergert, G. W. 1998. A futuristic view of soil and plant analysis and nutrient recommendations. Communications in Soil Science and Plant Analysis 29: 1441–1454.CrossRefGoogle Scholar
  17. 17.
    Hodges, H. F., Whisler, F. D., Bridges, S. M., Reddy, K. R., McKinion, J. M. 1998. Simulation in crop management:GOSSYM/COMAX. In: R. M. Peart, R. B. Curry. Agricultural Systems Modeling and Simulation. Marcel Dekker, Inc, New York.Google Scholar
  18. 18.
    Jallas, E. 1998. Improved model-based decision support by modeling cotton variability and using evolutionary algorithms. Ph.D. Dissertation. Mississippi State University.Google Scholar
  19. 19.
    Jallas, E., Sequeira, R., Boggess, J. E. 1998. Evolutionary Algorithms for Knowledge and Model-based Decision Support. IFAC Artificial Intelligence in Agriculture. Chiba, Japan.Google Scholar
  20. 20.
    Jallas, E., Sequeira, R. A., Martin, P., Turner, S., Cretenet, M. 1998. COTONS, a Cotton Simulation Model for the Next Century. Second World Cotton Research Conference, Athens, September 1998.Google Scholar
  21. 21.
    Jaynes, D. B., Colvin, T. S. 1997. Spatiotemporal variability of corn and soybean yield. Agronomy Journal 89:30–37.CrossRefGoogle Scholar
  22. 22.
    Kennedy, M. 1996. The Global Positioning System and GIS: An Introduction. Ann Arbor Press, Chelsea, MI.Google Scholar
  23. 23.
    Kitchen, N. R., Snyder, C. J., Franzen, D. W., Wiebold, W. J. 2002. Educational needs of precision agriculture. Precision Agriculture 3: 341–351.CrossRefGoogle Scholar
  24. 24.
    Langley, R. B. 1998. The UTM Grid System. GPS World, February, pp. 46–50.Google Scholar
  25. 25.
    Lavergne, C. B. 2004. Factors determining adoption or non-adoption of precision agriculture by producers across the cotton belt. Master of Science Thesis. Texas A & M University.Google Scholar
  26. 26.
    Lesch, S. M. 2005. Sensor-directed response surface sampling designs for characterizing spatial variation in soil properties. Computers and Electronics in Agriculture 46: 153–179.CrossRefGoogle Scholar
  27. 27.
    Littell, R. C., Milliken, G. A., Stroup, W. W., Wolfinger, R. D., Schabenberger, O., Stepanski, E. 2006. SAS® System for Mixed Models, 2nd ed. SAS Institute Inc., Cary, NC.Google Scholar
  28. 28.
    Martin, S. W., Cooke, Jr., F. 2002. Summary of precision farming practices and perceptions of Mississippi Cotton Producers: Results from the 2001 Southern precision farming survey. In: 2002 Proceedings of the Beltwide Cotton Conferences, edited by P. Duggar and D. Richter. National Cotton Council, Memphis, TN [non-paginated CD].Google Scholar
  29. 29.
    McBratney, A., Whelan, B., Ancev, T., Bouma, J. 2005. Future directions of precision agriculture. Precision Agriculture 6: 7–23.CrossRefGoogle Scholar
  30. 30.
    McCauley, J. D. 1999. Simulation of cotton production for precision farming. Precision Agriculture 1: 81–94.CrossRefGoogle Scholar
  31. 31.
    Mckinion, J. M., Jenkins, J. N., Akins, D., Turner, S. B., Willers, J. L., Jallas, E., Whisler, F. D. 2001. Analysis of a precision agriculture approach to cotton production. Computers and Electronics in Agriculture 32: 213–228.CrossRefGoogle Scholar
  32. 32.
    McKinion, J. M., Jenkins, J. N., Willers, J. L. 2007. Wide area wireless network for supporting precision agriculture. In: 2007 Proceedings of the Beltwide Cotton Conferences, edited by P. Duggar and D. Richter. National Cotton Council, Memphis, TN [non-paginated CD].Google Scholar
  33. 33.
    McKinion, J. M., Lemmon, H. 1985. Expert systems for agriculture. Computers and Electronics in Agriculture 1(1): 31–40.CrossRefGoogle Scholar
  34. 34.
    McKinion, J. M., Turner, S. B., Willers, J. L., Read, J. J., Jenkins, J. N., McDade, J. 2004. Wireless technology and satellite internet access for high-speed whole farm connectivity in precision agriculture. Agricultural Systems 81: 201–212.CrossRefGoogle Scholar
  35. 35.
    Milliken, G. A. 2003. Multilevel designs and their analyses. Paper 263–228. Proceedings Twenty-Eighth Annual SAS® Users Group International Conference. SAS Institute, Inc., Cary, NC.Google Scholar
  36. 36.
    Milliken, G. A., Johnson, D. E., 1992. Analysis of Messy Data, Vol. 1. Designed Experiments. Chapman and Hall/CRC, New York.Google Scholar
  37. 37.
    Milliken, G. A., Johnson, D. E., 2002. Analysis of Messy Data, Vol. 3. Analysis of Covariance. Chapman and Hall/CRC, New York.Google Scholar
  38. 38.
    National Research Council. 1997. Precision Agriculture in the 21st Century: Geospatial and Information Technologies in Crop Management. Washington, DC, National Research Council, National Academy Press. Available at: (verified 22 December 2007).
  39. 39.
    Pierce, F. J., Anderson, N. W., Colvin, T. S., Schueller, J. K., Humburg, D. S., McLaughlin, N. B. 1997. Yield mapping. In: Pierce, F. J., Sadler, E. J. (Eds.), The State of Site-Specific Management for Agriculture. American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Publishers, Madision, WI.Google Scholar
  40. 40.
    Ping, J. L, Dobermann, A. 2003. Creating spatially contiguous yield classes for site-specific management. Agronomy Journal 95: 1121–1131.CrossRefGoogle Scholar
  41. 41.
    Ping, J. L., Dobermann, A., 2005. Processing of yield map data. Precision Agriculture 6: 193–212.CrossRefGoogle Scholar
  42. 42.
    Pinter, P. J., Jr., Hatfield, J. L., Schepers, J. S., Barnes, E. M., Moran, M. S., Daughtry, C. S. T., Upchurch, D. R. 2003. Remote sensing for crop management. Photogrammetric Engineering and Remote Sensing 69: 647–664.Google Scholar
  43. 43.
    Pioneer Hi-Bred International, Inc. 1998. Precision Farming Offers Opportunities and Challenges. Available at: /xweb/usa/technology/precise.htm (unverifiable 22 December 2007).
  44. 44.
    Plant, R. E. 2001. Site-specific management: the application of information technology to crop production. Computers and Electronics in Agriculture 30: 9–29.CrossRefGoogle Scholar
  45. 45.
    Pouncey, R., Swanson, K., Hart, K. (Ed.). 1999. ERDAS Field Guide, 5th ed. ERDAS, Atlanta, GA.Google Scholar
  46. 46.
    Reed, J. 2001a. Dollars in and dollars out, Part 1. Cotton Farming 45(7): 26–39.Google Scholar
  47. 47.
    Reed, J. 2001b. Dollars in and dollars out, Part 2. Cotton Farming 45(8): 27–29.Google Scholar
  48. 48.
    Reed, J. 2001c. Dollars in and dollars out, Part 3. Cotton Farming 45(9): 6–8.Google Scholar
  49. 49.
    Richards, J. A., Jia, X. 1999. Remote sensing Digital Image Analysis. An Introduction, 3rd ed. Springer-Verlag, Berlin, Germany.Google Scholar
  50. 50.
    Riley, J. R. 1989. Remote sensing in entomology. Annual Review of Entomology 34: 247–271.CrossRefGoogle Scholar
  51. 51.
    Robinson, E. 2007. GPS, GIS, VR, and remote sensing technologies continuing to evolve. Delta Farm Press 64(49): 12.Google Scholar
  52. 52.
    Rural Advancement Foundation International. 1997. Inch by inch, Row by Row ... What will precision farming sow. RAFI Communique. April/May 1997.Google Scholar
  53. 53.
    Rudnicki, M., Meyer, T. H. 2007. Methods to convert local sampling coordinates into Geographic Information System/Global Positioning Systems (GIS/GPS)-compatible coordinate systems. Northern Journal of Applied Forestry 24(3): 233–238.Google Scholar
  54. 54.
    Schnug, E., Panten, K. and Haneklaus, S. 1998. Soil sampling and nutrient recommendations – the future. Communications in Soil Science and Plant Analysis 29(11–14): 1455–1462.CrossRefGoogle Scholar
  55. 55.
    Sequeira, R. A., Olson, R. L., Willers, J. L., Mckinion, J. M. 1994. Automating the parameterization of mathematical models using genetic algorithms. Computers and Electronics in Agriculture 11: 265–290.CrossRefGoogle Scholar
  56. 56.
    Shaw, D. R., Willers, J. L. 2006. Improving pest management with remote sensing. Outlooks on Pest Management 17(5): 197–201.CrossRefGoogle Scholar
  57. 57.
    Sonka, S. T. 1985. Information management in farm production. Computers and Electronics in Agriculture 1: 75–85.CrossRefGoogle Scholar
  58. 58.
    Stern, V. M., Smith, R. F., van den Bosch, R., Hagen, K. S. 1959. The integrated control concept. Hilgardia 29(2):81–101.Google Scholar
  59. 59.
    Thomasson, J. A., Ge, Y., Sui, R. 2006. Integrating cotton quality information between gin and farm. In: 2006 Proceedings of the Beltwide Cotton Conferences, edited by P. Duggar and D. Richter. National Cotton Council, Memphis, TN [unpaginated CD].Google Scholar
  60. 60.
    Thompson, J. M., Varco, J. J., Seal, M. R. 1999. Formulating decision support factors for variable rate nitrogen fertilization. In: 1999 Proceedings of the Beltwide Cotton Conferences, edited by P. Duggar and D. Richter. National Cotton Council, Memphis, TN. Vol. 2: 1283–1285.Google Scholar
  61. 61.
    Wagner, T. L., Williams, M. R., Willers, J. L., Akins, D. C., Olson, R. L., McKinion, J. M. 1995. Knowledge Base for rbWHIMS: An Expert System for Managing Cotton Arthropod Pests in the Midsouth. Mississippi Agricultural and Forestry Experiment Station Technical Bulletin 205.Google Scholar
  62. 62.
    Wei, J., Zhang, N., Wang, N., Lenhert, D., Neilsen, Mizuno, M. 2005. Use of the “smart transducer” concept and IEEE 1451 standards in system integration for precision agriculture. Computers and Electronics in Agriculture 48: 245–255.CrossRefGoogle Scholar
  63. 63.
    Willers, J. L., Seal, M. R., Luttrell, R. G. 1999. Remote Sensing, line-intercept sampling for tarnished plant bugs (Heteroptera: Miridae) in Mid-south cotton. Journal of Cotton Science 3: 160–170.Google Scholar
  64. 64.
    Willers, J. L., Milliken, G. A., O’Hara, C. G., Jenkins, J. N. 2004. Information technologies and the design and analysis of site-specific experiments within commercial fields. In: G. Milliken (Ed.), 16th Applied Statistics in Agriculture Conference, 25–28 April, 2004, Manhattan, KS, pp. 41–73. [Available in PDF format from J.L.W.]Google Scholar
  65. 65.
    Willers, J. L., Jenkins, J. N., Ladner, W. L., Gerard, P. D., Boykin, D. L., Hood, K. B., McKibben, P. L., Samson, S. A., Bethel, M. M. 2005. Site-specific approaches to cotton insect control. Sampling and remote sensing analysis techniques. Precision Agriculture 6: 431–452.CrossRefGoogle Scholar
  66. 66.
    Willers, J. L., Milliken, G. A., Jenkins, J. N., O’Hara, C. G., Gerard, P. D., Reynolds, D. B., Boykin, D. L., Good, P. V., Hood, K. B. 2007. Defining the experimental unit for the design and analysis of site-specific experiments in commercial cotton fields. Agricultural Systems 96: 237–249.CrossRefGoogle Scholar
  67. 67.
    Vellidis, G., Garrick, V., Pocknee, S., Perry, C., Kvien, C., Tucker, M. How wireless will change agriculture. In: J. V. Stafford (Ed.), Precision agriculture ’07. Wageningen Academic Publishers, pp. 57–68.Google Scholar
  68. 68.
    Zhang, N., Wang, M., Wang, N. 2002. Precision agriculture-a world overview. Computers and Electronics in Agriculture 36: 113–13.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Jeffrey L. Willers
    • 1
  • Eric Jallas
  • James M. McKinion
  • Michael R. Seal
  • Sam Turner
  1. 1.USDA-ARS-Genetics and Precision Agriculture Research UnitMSUSA

Personalised recommendations