Modeling Oxygenation and Selective Delivery of Drug Carriers Post-Myocardial Infarction

  • Bin Wang
  • Robert C. Scott
  • Christopher B. Pattillo
  • Balabhaskar PrabhakarPandian
  • Shankar Sundaram
  • Mohammad F. Kiani
Part of the Advances In Experimental Medicine And Biology book series (AEMB, volume 614)


An anatomically realistic mathematical model of oxygen transport in cardiac tissue was developed to help in deciding what angiogenic strategies should be used to rebuild the vasculature post myocardial infarction (MI). Model predictions closely match experimental measurements from a previous study, and can be used to predict distributions of oxygen concentration in normal and infarcted rat hearts. Furthermore, the model can accurately predict tissue oxygen levels in infarcted tissue treated with pro-angiogenic compounds.

Immunoliposome (IL) targeting to areas of inflammation after MI could provide the means by which pro-angiogenic compounds can be selectively targeted to the infarcted region. The adhesion of model drug carriers and immunoliposomes coatedwith antibody to P-selectin was quantified in a MI rat model. Anti-P-selectin coated model drug carriers showed a 140% and 180% increase in adhesion in the boarder zone of the MI 1 and 4 hours post-MI, respectively. Circulating for 24 hrs, radiolabeled anti-P-selectin immunoliposomes showed an 83% and 92% increase in targeting to infarcted myocardium when injected 0 and 4 hrs post-MI, respectively. Targeting to upregulated adhesion molecules on the endothelium provides a promising strategy for selectively delivering compounds to the infarct region of the myocardium using our liposomal based drug delivery vehicle.


Infarct Region Infarcted Tissue Endothelial Cell Adhesion Molecule Selective Delivery Target Drug Delivery System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B. Wang, R. Ansari, Y. Sun, A.E. Postlethwaite, K.T. Weber, and M.F. Kiani. The scar neovasculature after myocardial infarction in rats. Am. J. Physiol Heart Circ. Physiol. 289, H108 (2005).Google Scholar
  2. 2.
    Y. Sun, J.P. Cleutjens, A.A. Diaz-Arias, and K.T. Weber. Cardiac angiotensin converting enzyme and myocardial fibrosis in the rat. Cardiovasc. Res. 28, 1423 (1994).PubMedCrossRefGoogle Scholar
  3. 3.
    C.B. Pattillo, F. Sari-Sarraf, R. Nallamothu, B.M. Moore, G.C. Wood, and M.F. Kiani. Targeting of the antivascular drug combretastatin to irradiated tumors results in tumor growth delay. Pharm. Res. 22, 1117 (2005).PubMedCrossRefGoogle Scholar
  4. 4.
    B. Sun, H. Fan, T. Honda, R. Fujimaki, A. Lafond-Walker, Y. Masui, C.J. Lowenstein, and L.C. Becker. J. Activation of NF kappa B and expression of ICAM-1 in ischemic-reperfused canine myocardium. Mol. Cell Cardiol. 33, 109 (2001).CrossRefGoogle Scholar
  5. 5.
    Y. Sun, M.F. Kiani, A.E. Postlethwaite, and K.T. Weber. Infarct scar as living tissue. Basic Res. Cardiol. 97, 343 (2002).PubMedCrossRefGoogle Scholar
  6. 6.
    H. Yuan, M.W. Gaber, T. McColgan, M.D. Naimark, M.F. Kiani, and T.E. Merchant. Radiation-induced permeability and leukocyte adhesion in the rat blood-brain barrier: modulation with anti-ICAM-1 antibodies. Brain Res. 969, 59 (2003).PubMedCrossRefGoogle Scholar
  7. 7.
    K.T. Weber, I.C. Gerling, M.F. Kiani, R.V. Guntaka, Y. Sun, R.A. Ahokas, A.E. Postlethwaite, and K.J. Warrington. Aldosteronism in heart failure: a proinflammatory/fibrogenic cardiac phenotype. Search for biomarkers and potential drug targets. Curr. Drug Targets. 4, 505 (2003).PubMedCrossRefGoogle Scholar
  8. 8.
    M.F. Kiani, H. Yuan, L. Smith, M.W. Gaber, and D.J. Goetz. Targeting microparticles to select tissue via radiation-induced upregulation of endothelial cell adhesion molecules. Pharm. Res. 19, 1317 (2002).PubMedCrossRefGoogle Scholar
  9. 9.
    K. Suzuki, B. Murtuza, R.T. Smolenski, I.A. Sammut, N. Suzuki, Y. Kaneda, and M.H. Yacoub. Cell transplantation for the treatment of acute myocardial infarction using vascular endothelial growth factor-expressing skeletal myoblasts. Circulation 104, I207 (2001).PubMedCrossRefGoogle Scholar
  10. 10.
    S.B. Freedman and J.M. Isner. Therapeutic angiogenesis for coronary artery disease. Annals of Internal Medicine 136, 54 (2002).PubMedGoogle Scholar
  11. 11.
    D.A. Engler. Use of vascular endothelial growth factor for therapeutic angiogenesis. Circulation 94, 1496 (1996).PubMedGoogle Scholar
  12. 12.
    S.E. Epstein, R. Kornowski, S. Fuchs, and H.F. Dvorak. Angiogenesis therapy: amidst the hype, the neglected potential for serious side effects. Circulation 104, 115 (2001).Google Scholar
  13. 13.
    R.J. Lee, M.L. Springer, W.E. Blanco-Bose, R. Shaw, P.C. Ursell, and H.M. Blau. VEGF gene delivery to myocardium: deleterious effects of unregulated expression. Circulation 102, 898 (2000).Google Scholar
  14. 14.
    T.B. Bentley, H. Meng, and R.N. Pittman. Temperature dependence of oxygen diffusion and consumption in mammalian striated muscle. Am J Physiol 264, H1825 (1993).Google Scholar
  15. 15.
    H. Yuan, D.J. Goetz, M.W. Gaber, A.C. Issekutz, T.E. Merchant, and M.F. Kiani. Radiation-induced up-regulation of adhesion molecules in brain microvasculature and their modulation by dexamethasone. Radiat. Res. 163, 544 (2005).Google Scholar
  16. 16.
    E.E. Burch, P. Shinde, R.T. Camphausen, M.F. Kiani, and D.J. Goetz. The N-terminal peptide of PSGL-1 can mediate adhesion to trauma-activated endothelium via P-selectin in vivo. Blood 100, 531 (2002).PubMedCrossRefGoogle Scholar
  17. 17.
    M. Fleiner, P. Benzinger, T. Fichert, and U. Massing. Studies on protein-liposome coupling using novel thiol-reactive coupling lipids: influence of spacer length and polarity. Bioconjug. Chem. 12, 470 (2001).PubMedCrossRefGoogle Scholar
  18. 18.
    B. Prabhakarpandian, D.J. Goetz, R.A. Swerlick, X. Chen, and M.F. Kiani. Expression and functional significance of adhesion molecules on cultured endothelial cells in response to ionizing radiation. Microcirculation. 8, 355 (2001).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Bin Wang
    • 2
  • Robert C. Scott
    • 1
  • Christopher B. Pattillo
    • 1
  • Balabhaskar PrabhakarPandian
    • 2
  • Shankar Sundaram
    • 2
  • Mohammad F. Kiani
    • 1
    • 3
  1. 1.Department of Mechanical EngineeringTemple UniversityPhiladelphia
  2. 2.CFD Research Corporation, Biomedical Technology DivisionHuntsville
  3. 3.Department of Mechanical EngineeringPhiladelphia

Personalised recommendations