Adaptive Localization in Wireless Networks

  • Henning Lenz
  • Bruno Betoni Parodi
  • Hui Wang
  • Andrei Szabo
  • Joachim Bamberger
  • Dragan Obradovic
  • Joachim Horn
  • Uwe D. Hanebeck

Indoor positioning approaches based on communication systems typically use the received signal strength (RSS) as measurements. To work properly, such a system often requires many calibration points before its start. Based on theoretical-propagation models (RF planning) and on self-organizing maps (SOM) an adaptive approach for Simultaneous Localization and Learning (SLL) has been developed. The algorithm extracts out of online measurements the true model of the RF propagation. Applying SLL, a self-calibrating RSS-based positioning system with high accuracies can be realized without the need of cost intensive calibration measurements during system installation or maintenance. The main aspects of SLL are addressed as well as convergence and statistical properties. Results for real-world DECT and WLAN setups are given, showing that the localization starts with a basic performance slightly better than Cell-ID, finally reaching the accuracy of pattern matching using calibration points.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bahl, P., Padmanabhan, V.N.: RADAR: An in-building RF-based user location and tracking system. In: IEEE InfoCom’00, pp. 775–784. Tel Aviv, Israel (2000)Google Scholar
  2. 2.
    Battiti, R., Brunato, M., Villani, A.: Statistical learning theory for location fingerprinting in wireless LANs. Technical Report, Universitá di Trento (2002)Google Scholar
  3. 3.
    Betoni Parodi, B., Lenz, H., Szabo, A., Bamberger, J., Horn, J.: Algebraic and statistical conditions for the use of SLL. In: ECC’07. Kos, Greece (2007)Google Scholar
  4. 4.
    Betoni Parodi, B., Lenz, H., Szabo, A., Bamberger, J., Horn, J.: SLL: Statistical conditions and algebraic properties. In: IEEE 4\text{th} WPNC’07, pp. 113–120. Hannover, Germany (2007)Google Scholar
  5. 5.
    Betoni Parodi, B., Lenz, H., Szabo, A., Wang, H., Horn, J., Bamberger, J., Obradovic, D.: Initialization and online-learning of RSS maps for indoor/campus localization. In: PLANS 2006, pp. 164–172. San Diego, CA, USA (2006)Google Scholar
  6. 6.
    Correia, L.M.: Wireless Flexible Personalized Communications. Wiley, New York, NY, USA (2001)Google Scholar
  7. 7.
    Cottrell, M., Fort, J.C., Pagés, G.: Two or three things that we know about the Kohonen algorithm. In: ESANN’94, pp. 235–244. Brussels, Belgium (1994)Google Scholar
  8. 8.
    Goldsmith, A.: Wireless Communications. Cambridge University Press (2005)Google Scholar
  9. 9.
    Günther, A., Hoene, C.: Measuring round trip times to determine the distance between WLAN nodes. In: Networking 2005. Waterloo, Canada (2005)Google Scholar
  10. 10.
    Harter, A., Hopper, A., Steggles, P., Ward, A., Webster, P.: The anatomy of a context-aware application. In: MobiCom, pp. 59–68. Seattle, WA, USA (1999)Google Scholar
  11. 11.
    Haykin, S.: Neural Networks: A Comprehensive Foundation. Prentice-Hall, Upper Saddle River, NJ, USA (1998)Google Scholar
  12. 12.
    Horn, J., Hanebeck, U.D., Riegel, K., Heesche, K., Hauptmann, W.: Nonlinear set-theoretic position estimation of cellular phones. In: ECC’03. Cambridge, UK (2003)Google Scholar
  13. 13.
    Kohonen, T.: The self-organizing map. Proceedings of the IEEE 78, 1464–1480 (1990)CrossRefGoogle Scholar
  14. 14.
    Liberti, J.C., Rappaport, T.S.: Smart Antennas for Wireless Communications: IS-95 and Third Generation CDMA Applications. Prentice-Hall, Upper Saddle River, NJ, USA (1999)Google Scholar
  15. 15.
    Lott, M., Forkel, I.: A multi-wall-and-floor model for indoor radio propagation. In: IEEE 53\text{rd} VTS’01 Spring, Berlin Heidelberg, New York, vol. 1, pp. 464–468. Rhodes, Greece (2001)Google Scholar
  16. 16.
    Ni, L.M., Liu, Y., Lau, Y.C., Patil, A.P.: LANDMARC: Indoor location sensing using active RFID. Wireless Networks 10, 701–710 (2004)CrossRefGoogle Scholar
  17. 17.
    Obradovic, D., Lenz, H., Schupfner, M.: Sensor fusion in Siemens car navigation system. In: 14\text{th} IEEE Machine Learning for Signal Processing, pp. 655–664. São Luiz, MA, Brazil (2004)Google Scholar
  18. 18.
    Oppermann, I., Karlsson, A., Linderbäck, H.: Novel phase based, cross-correlation position estimation technique. In: IEEE ISSSTA’04, pp. 340–345 (2004)Google Scholar
  19. 19.
    Pahlavan, K., Li, X., Makela, J.P.: Indoor geolocation science and technology. IEEE Communications Magazine 40(2), 112–118 (2002)CrossRefGoogle Scholar
  20. 20.
    Priyantha, N.B., Chakraborty, A., Balakrishnan, H.: The Cricket location-support system. In: 6\text{th} MobiCom, pp. 32–43. Boston, MA, USA (2000)Google Scholar
  21. 21.
    Rappaport, T.S.: Wireless communications principles and practice, 2\text{nd} edn. Prentice-Hall, Englewood Cliffs, NJ (2002)Google Scholar
  22. 22.
    Roos, T., Myllymäki, P., Tirri, H., Misikangas, P., Sievänen, J.: A probabilistic approach to WLAN user location estimation. International Journal of Wireless Information Networks 9(3), 155–164 (2002)CrossRefGoogle Scholar
  23. 23.
    Tila, F., Shepherd, P.R., Pennock, S.R.: 2 GHz propagation and diversity evaluation for in-building communications up to 4 MHz using high altitude platforms (HAP). In: IEEE 54\text{th} VTS’01 Fall, vol. 1, pp. 121–125 (2001)Google Scholar
  24. 24.
    Wang, H.: Fusion of information sources for indoor positioning with field strength measurements. Master’s thesis, TU-München (2005)Google Scholar
  25. 25.
    Wang, H., Lenz, H., Szabo, A., Bamberger, J., Hanebeck, U.D.: WLAN-based pedestrian tracking using particle filters and low-cost MEMS sensors. In: IEEE 4\text{th} WPNC’07, pp. 1–7. Hannover, Germany (2007)Google Scholar
  26. 26.
    Wang, H., Lenz, H., Szabo, A., Hanebeck, U.D., Bamberger, J.: Fusion of barometric sensors, WLAN signals and building information for 3-D indoor/campus localization. In: IEEE MFI’06, pp. 426–432. Heidelberg, Germany (2006)Google Scholar
  27. 27.
    Want, R., Hopper, A., Falcão, V., Gibbons, J.: The Active Badge location system. ACM Transactions on Informatic Systems 10(1), 91–102 (1992)CrossRefGoogle Scholar
  28. 28.
    Wölfle, G., Wahl, R., Wertz, P., Wildbolz, P., Landstorfer, F.: Dominant path prediction model for indoor scenarios. In: GeMIC’05, pp. 176–179. Ulm, Germany (2005)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Henning Lenz
    • 1
  • Bruno Betoni Parodi
    • 1
  • Hui Wang
    • 1
  • Andrei Szabo
    • 1
  • Joachim Bamberger
    • 1
  • Dragan Obradovic
    • 1
  • Joachim Horn
    • 2
  • Uwe D. Hanebeck
    • 3
  1. 1.Siemens AGGermany
  2. 2.University of the Federal Armed ForcesGermany
  3. 3.Universitt KarlsruheGermany

Personalised recommendations