Planetary Magnetic Dynamo Effect on Atmospheric Protection of Early Earth and Mars

  • V. Dehant
  • H. Lammer
  • Y. N. Kulikov
  • J. -M. Grießmeier
  • D. Breuer
  • O. Verhoeven
  • Ö. Karatekin
  • T. Van Hoolst
  • O. Korablev
  • P. Lognonné
Part of the Space Sciences Series of ISSI book series (SSSI, volume 24)

Abstract

In light of assessing the habitability of Mars, we examine the impact of the magnetic field on the atmosphere. When there is a magnetic field, the atmosphere is protected from erosion by solar wind. The magnetic field ensures the maintenance of a dense atmosphere, necessary for liquid water to exist on the surface of Mars. We also examine the impact of the rotation of Mars on the magnetic field. When the magnetic field of Mars ceased to exist (about 4 Gyr ago), atmospheric escape induced by solar wind began. We consider scenarios which could ultimately lead to a decrease of atmospheric pressure to the presently observed value of 7 mbar: a much weaker early martian magnetic field, a late onset of the dynamo, and high erosion rates of a denser early atmosphere.

Keywords

Habitability Rotation Magnetic field Atmospheric escape 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M.H. Acuña, J.E.P. Connerney, P. Wasilewski, R.P. Lin, K.A. Anderson, C.W. Carlson, J. McFadden, D.W. Curtis, D. Mitchell, H. Reme, C. Mazelle, J.A. Sauvaud, C. d’Uston, A. Cros, J.L. Medale, S.J. Bauer, P. Cloutier, M. Mayhew, D. Winterhalter, N.F. Ness, Science 279(5357), 1676–1680 (1998) ADSGoogle Scholar
  2. M.H. Acuña, J.E.P. Connerney, P. Wasilewski, R.P. Lin, D. Mitchell, K.A. Anderson, C.W. Carlson, J. McFadden, H. Reme, C. Mazelle, D. Vignes, S.J. Bauer, P. Cloutier, N.F. Ness, J. Geophys. Res. 106(E10), 23,403–23,418 (2001). doi:10.1029/2000JE001404 ADSGoogle Scholar
  3. J. Arkani-Hamed, J. Geophys. Res. 109(E9) (2004). CiteID:E09005, doi:10.1029/2004JE002265
  4. J. Arkani-Hamed, J. Dyment, J. Geophys. Res. 101, 11,401–11,425 (1996) ADSGoogle Scholar
  5. V. Baker, The early martian climate was episodically warm and wet, LPI meeting on Early Mars, extended abstract 3042 (1997) Google Scholar
  6. V. Baker, The MEGAOUTFLO hypothesis for long-term environmental change on Mars, invited talk. 31st meeting DPS/AAS, extended abstract 3901 (1999) Google Scholar
  7. V.R. Baker, R.G. Strom, J.M. Dohm, V.C. Gulick, J.S. Kargel, G. Komatsu, G.G. Ori, J.W. Rice Jr., Mars= oceanus borealis, ancient glaciers, and the MEGAOUTFLO hypothesis. LPSS 31st meeting, extended abstract 1863 (2000) Google Scholar
  8. G. Balmino, J. Duron, J.C. Marty, Ö. Karatekin, in: Proc. IAG-IAPSO-IABO General Assembly on ‘Dynamic planet’ (Cairns, 2006), pp. 895–902 Google Scholar
  9. Bertaux et al., Space Sci. Rev., this issue (2007). doi:10.1007/s11214-007-9193-3
  10. C.M. Bertka, Y. Fei, Earth Planet. Sci. Lett. 157(1–2), 79–88 (1998). doi:10.1016/S0012-821X(98)00030-2 ADSGoogle Scholar
  11. B.G. Bills, G.A. Neumann, D.E. Smith, M.T. Zuber, J. Geophys. Res. 110(E7) (2005) CiteID:E07004, doi:10.1029/2004JE002376
  12. U. Bleil, N. Petersen, Nature 301, 384–388 (1983) ADSGoogle Scholar
  13. S.I. Braginsky, P.H. Roberts, Geophys. Astrophys. Fluid Dyn. 79, 1–97 (1995) ADSGoogle Scholar
  14. D.A. Brain, B.M. Jakosky, J. Geophys. Res. 103, 22,689–22,694 (1998) ADSGoogle Scholar
  15. D. Breuer, T. Spohn, J. Geophys. Res. 108(E7), 8–11 (2003), CiteID:5072, doi:10.1029/2002JE001999 Google Scholar
  16. D. Breuer, T. Spohn, Planet. Space Sci. 54(2), 153–169 (2006) ADSGoogle Scholar
  17. F.H. Busse, Phys. Earth Planet. Interiors 12, 350–358 (1976) ADSGoogle Scholar
  18. J.C. Cain, P. Beaumont, W. Holter, Z. Wang, H. Nevanlinna, J. Geophys. Res. 100(E5), 9439–9454 (1995) ADSGoogle Scholar
  19. M.H. Carr, Nature 326, 30–35 (1987) ADSGoogle Scholar
  20. M.H. Carr, Water on Mars (Oxford University Press, Oxford, 1996) 229 pp. Google Scholar
  21. E. Chassefière, Icarus 124, 537–552 (1996) ADSGoogle Scholar
  22. E. Chassefière, F. Leblanc, Planet. Space Sci. 52, 1039–1058 (2004) ADSGoogle Scholar
  23. U.R. Christensen, J. Aubert, Geophys. J. Int. 166(1) 97–114 (2006) ADSGoogle Scholar
  24. C.F. Chyba, Nature 343, 129–133 (1990) ADSGoogle Scholar
  25. J.E.P. Connerney, M.H. Acuña, P.J. Wasilewski, N.F. Ness, H. Rème, C. Mazelle, D. Vignes, R.P. Lin, D.L. Mitchell, P.A. Cloutier, Science 284(5415), 794–798 (1999). doi:10.1126/science.284.5415.794 ADSGoogle Scholar
  26. J.E.P. Connerney, M.H. Acunã, N.F. Ness, T. Spoh, G. Schubert: Space Sci. Rev. 111(1), 1–32 (2004). doi:10.1023/B:SPAC.0000032719.40094.1d ADSGoogle Scholar
  27. J.O. Dickey, P.L. Bender, J.E. Faller, X.X. Newhall, R.L. Ricklefs, J.G. Ries, P.J. Shelus, C. Veillet, A.L. Whipple, J.R. Wiant, J.G. Williams, C.F. Yoder, Science 265(5171) 482–490 (1994) ADSGoogle Scholar
  28. T.M. Donahue, Nature 374, 432–434 (1995) ADSGoogle Scholar
  29. T.M. Donahue, Icarus 167, 225–227 (2004) ADSGoogle Scholar
  30. G. Dreibus, H. Wänke, Meteoritics 20, 367–381 (1985) ADSGoogle Scholar
  31. J. Duron, G. Balmino, J.C. Marty, P. Rosenblatt, S. Le Maistre, V. Dehant, Icarus (2007, in preparation) Google Scholar
  32. D.A. Evans, N.J. Beukes, J.L. Kirschvink, Nature 386, 262–266 (1997) ADSGoogle Scholar
  33. W.M. Folkner, C.F. Yoder, D.N. Yuan, E.M. Standish, R.A. Preston, Science 278(5344), 1749 (1997) ADSGoogle Scholar
  34. F. Forget, R.M. Haberle, F. Montmessin, B. Levrard, J.W. Head, Science 311, 368–371 (2006) ADSGoogle Scholar
  35. M. Greff-Lefftz, H. Legros, Science 286(5445), 1707–1709 (1999) Google Scholar
  36. J.M. Grießmeier, A. Stadelmann, U. Motschmann, N.K. Belisheva, H. Lammer, H.K. Biernat, Astrobiology 5(5), 587–603 (2005) ADSGoogle Scholar
  37. J.M. Grießmeier, A. Stadelmann, T. Penz, H. Lammer, F. Selsis, I. Ribas, E.F. Guinan, U. Motschmann, H.K. Biernat, W.W. Weiss, Astron. Astrophys. 425, 753–762 (2004) ADSGoogle Scholar
  38. E.F. Guinan, M. Güdel, M. Audard, Astrophys. J. 622, 680–694 (2005) ADSGoogle Scholar
  39. R.B. Hargraves, D.W. Collinson, R.E. Arvidson, P.M. Cates, J. Geophys. Res. 84, 8379–8384 (1979) ADSGoogle Scholar
  40. R.B. Hargraves, D.W. Collinson, R.E. Arvidson, C.R. Spitzer, J. Geophys. Res. 82, 4547–4558 (1977) ADSGoogle Scholar
  41. S.A. Hauck, R.J. Phillips, J. Geophys. Res. 107(E7) (2002). doi:10.1029/2001JE001801
  42. J.W. Head, D.R. Marchant, M.C. Agnew, C.I. Fassett, M.A. Kreslavsky, Earth Planet. Sci. Lett. 241, 663–671 (2006) ADSGoogle Scholar
  43. J.W. Head, J.F. Mustard, M.A. Kreslavsky, R.E. Milliken, D.R. Marchant, Nature 426, 797–802 (2003) ADSGoogle Scholar
  44. J.W. Head, G. Neukum, R. Jaumann, H. Hiesinger, E. Hauber, M. Carr, P. Masson, B. Foing, H. Hoffmann, M. Kreslavsky, S. Werner, S. Milkovich, S. van Gasselt, Nature 434, 346–351 (2005) ADSGoogle Scholar
  45. W.B. Hubbard, Planetary Interiors (Van Nostrand Reinhold Co., New York, 1984) Google Scholar
  46. K.S. Hutchins, B.M. Jakosky, J. Geophys. Res. 102, 9183–9189 (1997) ADSGoogle Scholar
  47. R.E. Johnson, F. Leblanc, Planet. Space Sci. 49, 645–656 (2001) ADSGoogle Scholar
  48. D.M. Jurdy, M. Stefanick, J. Geophys. Res. 109(E10) (2004). CiteID:E10005, doi:10.1029/2004JE002277
  49. J. Kar, Geophys. Res. Lett. 17(2), 113–115 (1990) ADSMathSciNetGoogle Scholar
  50. D.M. Kass, Y.L. Yung, Science 274, 1932–1933 (1996) ADSGoogle Scholar
  51. R.R. Kerswell, J. Fluid Mech. 321, 335–370 (1996) MATHADSMathSciNetGoogle Scholar
  52. J.L. Kirschvink, E.J. Gaidos, L.E. Bertani, N.J. Beukes, J. Gutzmer, L.N. Maepa, R.E. Steinberger, Proc. Natl. Acad. Sci. USA 97, 1400–1405 (2000) ADSGoogle Scholar
  53. A.S. Konopliv, C.F. Yoder, E.M. Standish, Y. Dah-Ning, W.L. Sjogren, Icarus 182, 23–50 (2006) ADSGoogle Scholar
  54. Z. Kopal, Astrophys. Space Sci. 16, 3–51 (1972) MATHADSGoogle Scholar
  55. Yu.N. Kulikov, H. Lammer, H.I.M. Lichtenegger, T. Penz, D. Breuer, T. Spohn, R. Lundin, H.K. Biernat, Space Sci. Rev., this issue (2007). doi:10.1007/s11214-007-9192-4
  56. Yu.N. Kulikov, H. Lammer, H.I.M. Lichtenegger, N. Terada, I. Ribas, C. Kolb, D. Langmayr, R. Lundin, E.F. Guinan, S. Barabash, H.K. Biernat, Planet. Space Sci. 54(13–14), 1425–1444 (2006) ADSGoogle Scholar
  57. E.P. Kvale, H.W. Johnson, C.P. Sonett, A.W. Archer, A. Zawistoski, J. Sediment. Res. 69, 1154–1168 (1999) Google Scholar
  58. V. Lainey, V. Dehant, M. Paetzold, Astron. Astrophys. 465(3), 1075–1084 (2007). doi:10.1051/0004-6361:20065466 ADSGoogle Scholar
  59. H. Lammer, S.J. Bauer, J. Geophys. Res. 97(E12), 20,925–20,928 (1992) ADSGoogle Scholar
  60. H. Lammer, H.I.M. Lichtenegger, C. Kolb, I. Ribas, E.F. Guinan, R. Abart, S.J. Bauer, Icarus 106, 9–25 (2003) ADSGoogle Scholar
  61. H. Lammer, W. Stumptner, S.J. Bauer, Geophys. Res. Lett. 23, 3353–3356 (1996) ADSGoogle Scholar
  62. J. Laskar, Astron. Astrophys. 287(1), L9–L12 (1994) ADSGoogle Scholar
  63. J. Laskar, Celest. Mech. Dyn. Astron 64(1/2), 115–162 (1996) MATHADSMathSciNetGoogle Scholar
  64. J. Laskar, Astron. Astrophys. 317, L75–L78 (1997) ADSGoogle Scholar
  65. J. Laskar, A.C.M. Correia, M. Gastineau, F. Joutel, B. Levrard, P. Robutel, Icarus 170, 343–364 (2004a) ADSGoogle Scholar
  66. J. Laskar, F. Joutel, Celest. Mech. 57, 293–294 (1993) ADSGoogle Scholar
  67. J. Laskar, F. Joutel, F. Boudin, Astron. Astrophys. 270, 522–533 (1993b) ADSGoogle Scholar
  68. J. Laskar, F. Joutel, P. Robutel, Nature 361, 615–617 (1993a) ADSGoogle Scholar
  69. J. Laskar, B. Levrard, J.F. Mustard, Nature 419(6905), 375–377 (2002) ADSGoogle Scholar
  70. J. Laskar, P. Robutel, Nature 361, 608–612 (1993) ADSGoogle Scholar
  71. J. Laskar, P. Robutel, F. Joutel, M. Gastineau, A.C.M. Correia, B. Levrard, Astron. Astrophys. 428, 261–285 (2004b) ADSGoogle Scholar
  72. B. Levrard, F. Forget, F. Montmessin, J. Laskar, Nature 431(7012), 1072–1075 (2004). doi:10.1038/nature03055 ADSGoogle Scholar
  73. J.J. Lissauer, E.V. Quintana, E.J. Rivera, M.J. Duncan, Icarus 154(2), 449–458 (2001) ADSGoogle Scholar
  74. P. Lognonné, B. Mosser, Surv. Geophys. 14, 239–302 (1993) ADSGoogle Scholar
  75. D.E. Loper, Phys. Earth Planet. Interiors 11(1), 43–60 (1975) ADSGoogle Scholar
  76. J.G. Luhmann, J. Geophys. Res. 102, 1637 (1997) ADSGoogle Scholar
  77. J.G. Luhmann, R.E. Johnson, M.H.G. Zhang, Geophys. Res. Lett. 19(21), 2151–2154 (1992) ADSGoogle Scholar
  78. R. Lundin, H. Lammer, I. Ribas, Space Sci. Rev. this issue (2007). doi:10.1007/s11214-007-9176-4
  79. J.I. Lunine, J. Chambers, A. Morbidelli, L.A. Leshin, Icarus 165, 1–8 (2003) ADSGoogle Scholar
  80. G.J.F. MacDonald, Rev. Geophys. 2, 467–541 (1964) ADSGoogle Scholar
  81. W.V.R. Malkus, Science 160(3825), 259–264 (1968) ADSGoogle Scholar
  82. H.Y. McSween Jr., Rev. Geophys. Space Phys. 23, 391–416 (1985) ADSGoogle Scholar
  83. V.A. Melezhik, M.M. Filippov, A.E. Romashkin, Geochimica Cosmochimica Acta 67S, 286 (2003) ADSGoogle Scholar
  84. H.J. Melosh, A.M. Vickery, Nature 338, 487–489 (1989) ADSGoogle Scholar
  85. D.L. Mitchell, R.P. Lin, C. Mazelle, H. Rème, P.A. Cloutier, J.E.P. Connerney, M.H. Acuña, N.F. Ness, J. Geophys. Res. 106(E10), 23,419–23,428 (2001) ADSGoogle Scholar
  86. D.L. Mitchell, R.P. Lin, H. Rème, M.H. Acuña, P.A. Cloutier, N.F. Ness, Bull. Am. Astron. Soc. 31, 1584 (1999) ADSGoogle Scholar
  87. H. Mizutani, T. Yamamoto, A. Fujimura, Adv. Space Res. 12, 265–279 (1992) ADSGoogle Scholar
  88. G.J. Molina-Cuberos, W. Stumptner, H. Lammer, N.I. Koemle, K. O’Brien, Icarus 154, 216–222 (2001) ADSGoogle Scholar
  89. C.D. Murray, S.F. Dermott, Solar System Dynamics (Cambridge Univ. Press, New York, 2000) Google Scholar
  90. O. Néron de Surgy, J. Laskar, Astron. Astrophys. 318, 975–989 (1997) ADSGoogle Scholar
  91. N.F. Ness, M.H. Acuña, J. Connerney, P. Wasilewski, C. Mazelle, J. Sauvaud, D. Vignes, C. D’Uston, H. Reme, R. Lin, D.L. Mitchell, J. McFadden, D. Curtis, P. Cloutier, S.J. Bauer, Adv. Space Res. 23(11), 1879–1886 (1999) ADSGoogle Scholar
  92. G. Neukum, R. Jaumann, H. Hoffmann, E. Hauber, J.W. Head, A.T. Basilevsky, B.A. Ivanov, S.C. Werner, S. van Gasselt, J.B. Murray, T. McCord, Nature 432, 971–979 (2004) ADSGoogle Scholar
  93. G. Newkirk Jr., Geochimica Cosmochimica Acta Suppl. 13, 293–301 (1980) Google Scholar
  94. F. Nimmo, Geology 28, 391–394 (2000) ADSGoogle Scholar
  95. P. Olson, U.R. Christensen, Earth Planet. Sci. Lett. 250(3–4), 561–571 (2007). doi:10.1016/j.epsl.2006.08.008 ADSGoogle Scholar
  96. R.O. Pepin, Icarus 111, 289–304 (1994) ADSGoogle Scholar
  97. M.J. Pruis, K.L. Tanaka, Abstr. Lunar Planet. Sci. 26, 1147 (1995) ADSGoogle Scholar
  98. M. Purucker, D. Ravat, H. Frey, C. Voorhies, T. Sabaka, M. Acuña, Geophys. Res. Lett. 27, 2449–2452 (2000) ADSGoogle Scholar
  99. I. Ribas, E.F. Guinan, M. Güdel, M. Audard, Astrophys. J. 622, 680–694 (2005) ADSGoogle Scholar
  100. A. Rivoldini, O. Verhoeven, T. Van Hoolst, A. Mocquet, V. Dehant, Mars interior structure models from tidal measurements. American Geophysical Union, Fall Meeting 2005, abstract #G51A-0801 Google Scholar
  101. M.G. Rochester, in: Proc. Second Int. Symp. ‘Geodesy and physics of the Earth’, Potsdam, East Germany, May 7–11, 1973. Part 1 (A75-18106 06-46) (Deutsche Akademie der Wissenschaften, Zentralinstitut fuer Physik der Erde, 1974) pp. 77–89 Google Scholar
  102. G. Rontó, A. Bercés, H. Lammer, C.S. Cockell, G.J. Molina-Cuberos, M.R. Patel, F. Selsis, Photochem. Photobiol. 77(1), 34–40 (2003) Google Scholar
  103. J. Rosenqvist, E. Chassefière, Planet. Space Sci. 43, 3–10 (1995) ADSGoogle Scholar
  104. C. Sanloup, A. Jambon, P. Gillet, Phys. Earth Planet. Interiors 112, 43–54 (1999) ADSGoogle Scholar
  105. Y. Sano, J. Geomagn. Geoelectr. 45, 65–77 (1993) Google Scholar
  106. G. Schubert, T. Spohn, J. Geophys. Res. 95, 14,095–14,104 (1990) ADSGoogle Scholar
  107. N.H. Sleep, K.L. Tanaka, Astron. Soc. Pac. Mercury 25(5), 10 (1995) Google Scholar
  108. D.E. Smith, M.T. Zuber, H.V. Frey, J.B. Garvin, J.W. Head, D.O. Muhlerman, G.H. Pettengill, R.J. Phillips, S.C. Solomon, H.J. Zwally, W.B. Banerdt, T.C. Duxbury, Science 279(5357), 1686 (1998) ADSGoogle Scholar
  109. F. Sohl, G. Schubert, T. Spohn, J. Geophys. Res. 110, E12008 (2005). doi:10.1029/2005JE002520 ADSGoogle Scholar
  110. F. Sohl, T. Spohn, J. Geophys. Res. 102, 1613–1635 (1997) ADSGoogle Scholar
  111. S.C. Solomon, Nature 369, 606 (1994) ADSGoogle Scholar
  112. T. Spohn, F. Sohl, D. Breuer, Astron. Astrophys. Rev. 8, 181–235 (1998) ADSGoogle Scholar
  113. F.D. Stacey, Geophys. J. Roy. Astron. Soc. 33, 47–55 (1973) Google Scholar
  114. S. Stanley, J. Bloxham, W.E. Hutchison, M.T. Zuber, Earth Planet. Sci. Lett. 234, 27–38 (2005). doi:10.1016/j.epsl.2005.02.040 Google Scholar
  115. F.R. Stephenson, L.V. Morrison, Phil. Trans. Roy. Soc. London, Ser. A 313, 47–70 (1984) ADSGoogle Scholar
  116. D.J. Stevenson, Rep. Prog. Phys. 46, 555–620 (1983) ADSGoogle Scholar
  117. D.J. Stevenson, Nature 412, 214–219 (2001) ADSGoogle Scholar
  118. D.J. Stevenson, Earth Planet. Sci. Lett. 208(1–2), 1–11 (2003) ADSGoogle Scholar
  119. D.J. Stevenson, T. Spohn, G. Schubert, Icarus 54, 466–489 (1983) ADSGoogle Scholar
  120. N. Terada, H. Lammer, T. Penz, H. Shinagawa, S. Machida, C. Kolb, H.I.M. Lichtenegger, H.K. Biernat, I. Ribas, Icarus (2007, submitted) Google Scholar
  121. P.B. Toft, J. Arkani-Hamed, J. Geophys. Res. 97, 4387–4406 (1992) ADSGoogle Scholar
  122. L. Tomasella, F. Marzari, V. Vanzani, Planet. Space Sci. 44(5), 427–430 (1996) ADSGoogle Scholar
  123. J.P. Vanyo, Geophys. Astrophys. Fluid Dyn. 59, 209–234 (1991) ADSGoogle Scholar
  124. P. Varga, K.R. Rybicki, C. Denis, Icarus 180(1), 274–276 (2006). doi:10.1016/j.icarus.2005.04.022 ADSGoogle Scholar
  125. O. Verhoeven, A. Rivoldini, P. Vacher, A. Mocquet, G. Choblet, M. Menvielle, V. Dehant, T. Van Hoolst, J. Sleewaegen, J.-P. Barriot, P. Lognonné, J. Geophys. Res. (Planets) 110(E4), E04009 (2005). doi:10.1029/2004JE002271 Google Scholar
  126. J.C.G. Walker, Icarus 68, 87–98 (1986) ADSGoogle Scholar
  127. W.R. Ward, Science 181(4096), 260–262 (1973) ADSGoogle Scholar
  128. W.R. Ward, Icarus 50, 444–448 (1982) ADSGoogle Scholar
  129. W.R. Ward, in Mars, ed. by H. Kieffer, B. Jakosky, C. Snyder (Univ. of Arizona, Tucson, 1991), pp. 298–320 Google Scholar
  130. W.R. Ward, J.A. Burns, O.B. Toon, J. Geophys. Res. 84, 243–259 (1979) ADSGoogle Scholar
  131. W.R. Ward, D.J. Rudy, Icarus 94, 160–164 (1991) ADSGoogle Scholar
  132. G.E. Williams, Rev. Geophys. 38, 37–59 (2000) ADSGoogle Scholar
  133. J.P. Williams, F. Nimmo, Geology 32(2), 97–100 (2004) ADSGoogle Scholar
  134. B.E. Wood, H.-R. Müller, G. Zank, J.L. Linsky, Astrophys. J. 574, 412–425 (2002) ADSGoogle Scholar
  135. B.E. Wood, H.-R. Müller, G.P. Zank, J.L. Linsky, S. Redfield, Astrophys. J. 628, L143–L146 (2005) ADSGoogle Scholar
  136. C.F. Yoder, A.S. Konopliv, D.N. Yuan, E.M. Standish, Folkner, W. M (2003). Science 300(5617), 299–303 (2003) ADSGoogle Scholar
  137. K. Zahnle, J.B. Pollack, J.F. Kasting, Icarus 84, 503–527 (1990) ADSGoogle Scholar
  138. K.J. Zahnle, J.C.G. Walker, Rev. Geophys. Space Phys. 20, 280–292 (1982) ADSGoogle Scholar
  139. V.N. Zharkov, T.V. Gudkova, Planet. Space Sci. 45, 401–407 (1997) ADSGoogle Scholar
  140. M.T. Zuber, M.D. Smith, Effect of Mars’ present-day north polar cap on the moment of inertia and planetary dynamics. 30th Annual Lunar and Planetary Science Conference, Houston, TX, 1999, abstract no. 1589 Google Scholar
  141. M.T. Zuber, D.E. Smith, S.C. Solomon, J.B. Abshire, R.S. Afzal, O. Aharonson, K. Fishbaugh, P.G. Ford, H.V. Frey, J.B. Garvin, J.W. Head, A.B. Ivanov, C.L. Johnson, D.O. Muhleman, G.A. Neumann, G.H. Pettengill, R.J. Phillips, X. Sun, H.J. Zwally, W.B. Banerdt, T.C. Duxbury, Science 282, 2053–2060 (1998) ADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • V. Dehant
    • 1
  • H. Lammer
    • 2
  • Y. N. Kulikov
    • 3
  • J. -M. Grießmeier
    • 4
  • D. Breuer
    • 5
  • O. Verhoeven
    • 1
  • Ö. Karatekin
    • 1
  • T. Van Hoolst
    • 1
  • O. Korablev
    • 6
  • P. Lognonné
    • 7
  1. 1.Royal Observatory of BelgiumBrusselBelgium
  2. 2.Space Research InstituteAustrian Academy of SciencesGrazAustria
  3. 3.Polar Geophysical Institute (PGI)Russian Academy of SciencesApatityRussia
  4. 4.Observatoire de ParisParisFrance
  5. 5.DLRBerlinGermany
  6. 6.Space Research InstituteMoscowRussia
  7. 7.Institut de Physique du Globe de ParisParisFrance

Personalised recommendations