Apoptosis and Tumor Cell Death in Response to HAMLET (Human α-Lactalbumin Made Lethal to Tumor Cells)

  • Oskar Hallgren
  • Sonja Aits
  • Patrick Brest
  • Lotta Gustafsson
  • Ann-Kristin Mossberg
  • Björn Wullt
  • Catharina Svanborg
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 606)


HAMLET (human a-lactalbumin made lethal to tumor cells) is a molecular complex derived from human milk that kills tumor cells by a process resembling programmed cell death. The complex consists of partially unfolded a-lactalbumin and oleic acid, and both the protein and the fatty acid are required for cell death. HAMLET has broad antitumor activity in vitro, and its therapeutic effect has been confirmed in vivo in a human glioblastoma rat xenograft model, in patients with skin papillomas and in patients with bladder cancer. The mechanisms of tumor cell death remain unclear, however. Immediately after the encounter with tumor cells, HAMLET invades the cells and causes mitochondrial membrane depolarization, cytochrome c release, phosphatidyl serine exposure, and a low caspase response. A fraction of the cells undergoes morphological changes characteristic of apoptosis, but caspase inhibition does not rescue the cells and Bcl-2 overexpression or altered p53 status does not influence the sensitivity of tumor cells toHAMLET. HAMLET also creates a state of unfolded protein overload and activates 20S proteasomes, which contributes to cell death. In parallel, HAMLET translocates to tumor cell nuclei, where high-affinity interactions with histones cause chromatin disruption, loss of transcription, and nuclear condensation. The dying cells also show morphological changes compatible with macroautophagy, and recent studies indicate that macroautophagy is involved in the cell death response to HAMLET. The results suggest that HAMLET, like a hydra with many heads, may interact with several crucial cellular organelles, thereby activating several forms of cell death, in parallel. This complexity might underlie the rapid death response of tumor cells and the broad antitumor activity of HAMLET.


HAMLET lactalbumin cancer programmed cell death apoptosis macroautophagy Bcl-2 p53 caspase 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aas, T., Borresen, A. L., Geisler, S., Smith-Sorensen, B., Johnsen, H., Varhaug, J. E., Akslen, L. A., & Lonning, P. E. (1996) Specific P53 mutations are associated with de novo resistance to doxorubicin in breast cancer patients. Nature Medicine, 2, 811–814.CrossRefGoogle Scholar
  2. Ahmad, M., Srinivasula, S. M., Wang, L., Talanian, R. V., Litwack, G., Fernandes-Alnemri, T., & Alnemri, E. S. (1997) CRADD, a novel human apoptotic adaptor molecule for caspase-2, and FasL/tumor necrosis factor receptor-interacting protein RIP. Cancer Research, 57, 615–619.Google Scholar
  3. Andersson, B., Dahmén, J., Freijd, T., Leffler, H., Magnusson, G., Noori, G., & Svanborg-Edén, C. (1983) Identification of a disaccharide unit of a glycoconjugate receptor for pneumocci attaching to human pharyngeal epithelial cells. Journal of Experimental Medicine, 158, 559–570.CrossRefGoogle Scholar
  4. Andersson, B., Porras, O., Hanson, L. A., Svanborg-Eden, C., & Leffler, H. (1985) Non-antibody-containing fractions of breast milk inhibit epithelial attachment of Streptococcus pneumoniae and Haemophilus influenzae. Lancet, 1, 643.CrossRefGoogle Scholar
  5. Andersson, B., Porras, O., Hanson, L. A., Lagergard, T., & Svanborg-Eden, C. (1986) Inhibition of attachment of Streptococcus pneumoniae and Haemophilus influenzae by human milk and receptor oligosaccharides. Journal of Infectious Diseases, 153, 232–237.Google Scholar
  6. Ashe, P. C., & Berry, M. D. (2003) Apoptotic signaling cascades. Progress in Neuropsychopharmacology Biological Psychiatry, 27, 199–214.CrossRefGoogle Scholar
  7. Bakhshi, A., Jensen, J. P., Goldman, P., Wright, J. J., McBride, O. W., Epstein, A. L., & Korsmeyer, S. J. (1985) Cloning the chromosomal breakpoint of t (14;18) human lymphomas: Clustering around JH on chromosome 14 and near a transcriptional unit on 18. Cell, 41, 899–906.CrossRefGoogle Scholar
  8. Beresford, P. J., Zhang, D., Oh, D. Y., Fan, Z., Greer, E. L., Russo, M. L., Jaju, M., & Lieberman, J. (2001) Granzyme A activates an endoplasmic reticulum-associated caspase-independent nuclease to induce single-stranded DNA nicks. Journal of Biological Chemistry, 276, 43285–43293.CrossRefGoogle Scholar
  9. Bouillet, P., & Strasser, A. (2002) BH3-only proteins—Evolutionarily conserved proapoptotic Bcl-2 family members essential for initiating programmed cell death. Journal of Cell Science, 115, 1567–1574.Google Scholar
  10. Boya, P., Gonzalez-Polo, R. A., Casares, N., Perfettini, J. L., Dessen, P., Larochette, N., Metivier, D., Meley, D., Souquere, S., Yoshimori, T., Pierron, G., Codogno, P., & Kroemer, G. (2005) Inhibition of macroautophagy triggers apoptosis. Molecular and Cell Biology, 25, 1025–1040.CrossRefGoogle Scholar
  11. Brown, S. B., Bailey, K., & Savill, J. (1997) Actin is cleaved during constitutive apoptosis. Biochemistry Journal, 323, 233–237.Google Scholar
  12. Browne, K. A., Johnstone, R. W., Jans, D. A., & Trapani, J. A. (2000) Filamin (280-kDa actin-binding protein) is a caspase substrate and is also cleaved directly by the cytotoxic T lymphocyte protease granzyme B during apoptosis. Journal of Biological Chemistry, 275, 39262–39266.CrossRefGoogle Scholar
  13. Bursch, W. (2004) Multiple cell death programs: Charon's lifts to Hades. FEMS Yeast Research, 5, 101–110.CrossRefGoogle Scholar
  14. Bykov, V. J., Issaeva, N., Shilov, A., Hultcrantz, M., Pugacheva, E., Chumakov, P., Bergman, J., Wiman, K. G., & Selivanova, G. (2002) Restoration of the tumor suppressor function to mutant p53 by a low-molecular-weight compound. Nature Medicine, 8, 282–288.CrossRefGoogle Scholar
  15. Carr, A. M. (2000) Cell cycle. Piecing together the p53 puzzle. Science, 287, 1765–1766.CrossRefGoogle Scholar
  16. Chiba, I., Takahashi, T., Nau, M. M., D'Amico, D., Curiel, D. T., Mitsudomi, T., Buchhagen, D. L., Carbone, D., Piantadosi, S., Koga, H., et al. (1990) Mutations in the p53 gene are frequent in primary, resected non-small cell lung cancer. Lung Cancer Study Group. Oncogene, 5, 1603–1610.Google Scholar
  17. Chinnaiyan, A. M., O'Rourke, K., Tewari, M., & Dixit, V. M. (1995) FADD, a novel death domain-containing protein, interacts with the death domain of Fas and initiates apoptosis. Cell, 81, 505–512.CrossRefGoogle Scholar
  18. Choi, W. S., Lee, E. H., Chung, C. W., Jung, Y. K., Jin, B. K., Kim, S. U., Oh, T. H., Saido, T. C., & Oh, Y. J. (2001) Cleavage of Bax is mediated by caspase-dependent or -independent calpain activation in dopaminergic neuronal cells: Protective role of Bcl-2. Journal of Neurochemistry, 77, 1531–1541.CrossRefGoogle Scholar
  19. Creagh, E. M., Conroy, H., & Martin, S. J. (2003) Caspase-activation pathways in apoptosis and immunity. Immunology Reviews, 193, 10–21.CrossRefGoogle Scholar
  20. Cunningham, A. S., Jelliffe, D. B., & Jelliffe, E. F. (1991) Breast-feeding and health in the 1980s: A global epidemiologic review [see comments]. Journal of Pediatrics, 118, 659–666.CrossRefGoogle Scholar
  21. Davis, M. K., Savitz, D. A., & Graubard, B. I. (1988) Infant feeding and childhood cancer. Lancet, 2, 365–368.CrossRefGoogle Scholar
  22. Deveraux, Q. L., Roy, N., Stennicke, H. R., Van Arsdale, T., Zhou, Q., Srinivasula, S. M., Alnemri, E. S., Salvesen, G. S., & Reed, J. C. (1998) IAPs block apoptotic events induced by caspase-8 and cytochrome c by direct inhibition of distinct caspases. EMBO Journal, 17, 2215–2223.CrossRefGoogle Scholar
  23. Du, C., Fang, M., Li, Y., Li, L., & Wang, X. (2000) Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell, 102, 33–42.CrossRefGoogle Scholar
  24. Duan, H., & Dixit, V. M. (1997) Raidd is a new death adaptor molecule. Nature, 385, 86–89.CrossRefGoogle Scholar
  25. Duringer, C., Hamiche, A., Gustafsson, L., Kimura, H., & Svanborg, C. (2003) HAMLET interacts with histones and chromatin in tumor cell nuclei. Journal of Biological Chemistry, 278, 42131–42135.CrossRefGoogle Scholar
  26. Dyche, W. J. (1979) A comparative study of the differentiation and involution of the Mullerian duct and Wolffian duct in the male and female fetal mouse. Journal of Morphology, 162, 175–209.CrossRefGoogle Scholar
  27. Edinger, A. L., & Thompson, C. B. (2004) Death by design: Apoptosis, necrosis and autophagy. Current Opinion in Cell Biology, 16, 663–669.CrossRefGoogle Scholar
  28. Enari, M., Sakahira, H., Yokoyama, H., Okawa, K., Iwamatsu, A., & Nagata, S. (1998) A caspase-activated DNase that degrades DNA during apoptosis, and its inhibitor ICAD [see comments] [published erratum appears in Nature, May 28, 1998; 393 (6683): 396]. Nature, 391, 43–50.CrossRefGoogle Scholar
  29. Fischer, W., Gustafsson, L., Mossberg, A. K., Gronli, J., Mork, S., Bjerkvig, R., & Svanborg, C. (2004) Human α-lactalbumin made lethal to tumor cells (HAMLET) kills human glioblastoma cells in brain xenografts by an apoptosis-like mechanism and prolongs survival. Cancer Research, 64, 2105–2112.CrossRefGoogle Scholar
  30. Foghsgaard, L., Wissing, D., Mauch, D., Lademann, U., Bastholm, L., Boes, M., Elling, F., Leist, M., & Jaattela, M. (2001) Cathepsin B acts as a dominant execution protease in tumor cell apoptosis induced by tumor necrosis factor. Journal of Cell Biology, 153, 999–1010.CrossRefGoogle Scholar
  31. Foster, B. A., Coffey, H. A., Morin, M. J., & Rastinejad, F. (1999) Pharmacological rescue of mutant p53 conformation and function. Science, 286, 2507–2510.CrossRefGoogle Scholar
  32. Garcia-Calvo, M., Peterson, E. P., Leiting, B., Ruel, R., Nicholson, D. W., & Thornberry, N. A. (1998) Inhibition of human caspases by peptide-based and macromolecular inhibitors. Journal of Biological Chemistry, 273, 32608–32613.CrossRefGoogle Scholar
  33. Gobeil, S., Boucher, C. C., Nadeau, D., & Poirier, G. G. (2001) Characterization of the necrotic cleavage of poly (ADP-ribose) polymerase (PARP-1): Implication of lysosomal proteases. Cell Death and Differentiation, 8, 588–594.CrossRefGoogle Scholar
  34. Golding, J., Emmett, P. M., & Rogers, I. S. (1997a). Does breast feeding protect against non-gastric infections? Early Human Development, 49 (Suppl), S105–120.CrossRefGoogle Scholar
  35. Golding, J., Emmett, P. M., & Rogers, I. S. (1997b). Gastroenteritis, diarrhoea and breast feeding. Early Human Development, 49 (Suppl), S83–103.CrossRefGoogle Scholar
  36. Gonzalez-Polo, R. A., Boya, P., Pauleau, A. L., Jalil, A., Larochette, N., Souquere, S., Eskelinen, E. L., Pierron, G., Saftig, P., & Kroemer, G. (2005) The apoptosis/autophagy paradox: Autophagic vacuolization before apoptotic death. Journal of Cell Science, 118, 3091–3102.CrossRefGoogle Scholar
  37. Green, D. R., & Kroemer, G. (2004) The pathophysiology of mitochondrial cell death. Science, 305, 626–629.CrossRefGoogle Scholar
  38. Greenblatt, M. S., Bennett, W. P., Hollstein, M., & Harris, C. C. (1994) Mutations in the p53 tumor suppressor gene: Clues to cancer etiology and molecular pathogenesis. Cancer Research, 54, 4855–4878.Google Scholar
  39. Gueth-Hallonet, C., Weber, K., & Osborn, M. (1997) Cleavage of the nuclear matrix protein NuMA during apoptosis. Experiments in Cell Research, 233, 21–24.CrossRefGoogle Scholar
  40. Gustafsson, L., Leijonhufvud, I., Aronsson, A., Mossberg, A. K., & Svanborg, C. (2004) Treatment of skin papillomas with topical α-lactalbumin-oleic acid. New England Journal of Medicine, 350, 2663–2672.CrossRefGoogle Scholar
  41. Håkansson, A., Zhivotovsky, B., Orrenius, S., Sabharwal, H., & Svanborg, C. (1995) Apoptosis induced by a human milk protein. Proceedings of the National Academy of Sciences USA, 92, 8064–8068.CrossRefGoogle Scholar
  42. Håkansson, A., Andreasson, J., Zhivotovsky, B., Karpman, D., Orrenius, S., & Svanborg, C. (1999) Multimeric α-lactalbumin from human milk induces apoptosis through a direct effect on cell nuclei. Experiments in Cell Research, 246, 451–460.CrossRefGoogle Scholar
  43. Hallgren, O., Gustafsson, L., Irjala, H., Selivanova, G., Orrenius, S., & Svanborg, C. (2006) HAMLET triggers apoptosis but tumor cell death is independent of caspases, Bcl-2 and p53. Apoptosis, 11, 221–233.CrossRefGoogle Scholar
  44. Hanson, L. A. (1998) Breastfeeding provides passive and likely long-lasting active immunity. Annals in Allergy and Asthma Immunology, 81, 523–533; quiz 533–534, 537.CrossRefGoogle Scholar
  45. Helminen, H. J., & Ericsson, J. L. (1971) Ultrastructural studies on prostatic involution in the rat. Mechanism of autophagy in epithelial cells, with special reference to the rough-surfaced endoplasmic reticulum. Journal of Ultrastructured Research, 36, 708–724.CrossRefGoogle Scholar
  46. Holler, N., Zaru, R., Micheau, O., Thome, M., Attinger, A., Valitutti, S., Bodmer, J. L., Schneider, P., Seed, B., & Tschopp, J. (2000) Fas triggers an alternative, caspase-8-independent cell death pathway using the kinase RIP as effector molecule. Nature Immunology, 1, 489–495.CrossRefGoogle Scholar
  47. Hollstein, M., Sidransky, D., Vogelstein, B., & Harris, C. C. (1991) p53 Mutations in human cancers. Science, 253, 49–53.CrossRefGoogle Scholar
  48. Hollstein, M., Shomer, B., Greenblatt, M., Soussi, T., Hovig, E., Montesano, R., & Harris, C. C. (1996) Somatic point mutations in the p53 gene of human tumors and cell lines: Updated compilation. Nucleic Acids Research, 24, 141–146.CrossRefGoogle Scholar
  49. Horvitz, H. R., Shaham, S., & Hengartner, M. O. (1994) The genetics of programmed cell death in the nematode Caenorhabditis elegans. Cold Spring Harbor Symposia on Quantitative Biology, 59, 377–385.Google Scholar
  50. Hsu, H., Xiong, J., & Goeddel, D. V. (1995) The TNF receptor 1-associated protein TRADD signals cell death and NF-κB activation. Cell, 81, 495–504.CrossRefGoogle Scholar
  51. Jaattela, M. (2002) Programmed cell death: Many ways for cells to die decently. Annals in Medicine, 34, 480–488.CrossRefGoogle Scholar
  52. Jaattela, M., & Tschopp, J. (2003) Caspase-independent cell death in T lymphocytes. Nature Immunology, 4, 416–423.CrossRefGoogle Scholar
  53. Janicke, R. U., Ng, P., Sprengart, M. L., & Porter, A. G. (1998) Caspase-3 is required for α-fodrin cleavage but dispensable for cleavage of other death substrates in apoptosis. Journal of Biological Chemistry, 273, 15540–15545.CrossRefGoogle Scholar
  54. Johnson, D. E. (2000) Noncaspase proteases in apoptosis. Leukemia, 14, 1695–1703.CrossRefGoogle Scholar
  55. Kabeya, Y., Mizushima, N., Ueno, T., Yamamoto, A., Kirisako, T., Noda, T., Kominami, E., Ohsumi, Y., & Yoshimori, T. (2000) LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO Journal, 19, 5720–5728.CrossRefGoogle Scholar
  56. Kerr, J. F. (1972) Shrinkage necrosis of adrenal cortical cells. Journal of Pathology, 107, 217–219.CrossRefGoogle Scholar
  57. Kihara, A., Kabeya, Y., Ohsumi, Y., & Yoshimori, T. (2001) Beclin-phosphatidylinositol 3-kinase complex functions at the trans-Golgi network. EMBO Reports, 2, 330–335.CrossRefGoogle Scholar
  58. Klionsky, D. J., Cregg, J. M., Dunn, W. A., Jr., Emr, S. D., Sakai, Y., Sandoval, I. V., Sibirny, A., Subramani, S., Thumm, M., Veenhuis, M., & Ohsumi, Y. (2003) A unified nomenclature for yeast autophagy-related genes. Developmental Cell, 5, 539–545.CrossRefGoogle Scholar
  59. Kohler, C., Gahm, A., Noma, T., Nakazawa, A., Orrenius, S., & Zhivotovsky, B. (1999a). Release of adenylate kinase 2 from the mitochondrial intermembrane space during apoptosis. FEBS Letters, 447, 10–12.CrossRefGoogle Scholar
  60. Kohler, C., Håkansson, A., Svanborg, C., Orrenius, S., & Zhivotovsky, B. (1999b). Protease activation in apoptosis induced by MAL. Experiments in Cell Research, 249, 260–268.CrossRefGoogle Scholar
  61. Kubbutat, M. H., Jones, S. N., & Vousden, K. H. (1997) Regulation of p53 stability by Mdm2. Nature, 387, 299–303.CrossRefGoogle Scholar
  62. Lane, D. P. (1993) Cancer. A death in the life of p53 [news; comment]. Nature, 362, 786–787.CrossRefGoogle Scholar
  63. Lane, D. P., & Crawford, L. V. (1979) T antigen is bound to a host protein in SV40-transformed cells. Nature, 278, 261–263.CrossRefGoogle Scholar
  64. Leist, M., & Jaattela, M. (2001) Four deaths and a funeral: From caspases to alternative mechanisms. Nature Reviews of Molecular and Cell Biology, 2, 589–598.CrossRefGoogle Scholar
  65. Lemasters, J. J., Qian, T., Elmore, S. P., Trost, L. C., Nishimura, Y., Herman, B., Bradham, C. A., Brenner, D. A., & Nieminen, A. L. (1998) Confocal microscopy of the mitochondrial permeability transition in necrotic cell killing, apoptosis and autophagy. Biofactors, 8, 283–285.Google Scholar
  66. Levine, B., & Klionsky, D. J. (2004) Development by self-digestion: Molecular mechanisms and biological functions of autophagy. Developmental Cell, 6, 463–477.CrossRefGoogle Scholar
  67. Linzer, D. I., & Levine, A. J. (1979) Characterization of a 54K Dalton cellular SV40 tumor antigen present in SV40-transformed cells and uninfected embryonal carcinoma cells. Cell, 17, 43–52.CrossRefGoogle Scholar
  68. Lockshin, R. A., & Williams, C. M. (1965) Journal of Insect Physiology, 11, 123–133.Google Scholar
  69. Lockshin, R. A., & Zakeri, Z. (2001) Programmed cell death and apoptosis: Origins of the theory. Nature Reviews of Molecular and Cell Biology, 2, 545–550.CrossRefGoogle Scholar
  70. Lockshin, R. A., & Zakeri, Z. (2004) Apoptosis, autophagy, and more. International Journal of Biochemistry and Cell Biology, 36, 2405–2419.CrossRefGoogle Scholar
  71. Lowe, S. W., & Lin, A. W. (2000) Apoptosis in cancer. Carcinogenesis, 21, 485–495.CrossRefGoogle Scholar
  72. Lowe, S. W., Bodis, S., McClatchey, A., Remington, L., Ruley, H. E., Fisher, D. E., Housman, D. E., & Jacks, T. (1994) p53 Status and the efficacy of cancer therapy in vivo. Science, 266, 807–810.CrossRefGoogle Scholar
  73. Lozanon, J., Berra, E. M., Diaz-Meco, M. T., Dominguez, I., Sanz, L., & Moscat, J. (1994) Protein kinase C isoform is critical for kB-dependent promoter activation by sphingomyelinase. Biological Chemistry, 269, 19200–19202.Google Scholar
  74. Madeo, F., Frohlich, E., & Frohlich, K. U. (1997) A yeast mutant showing diagnostic markers of early and late apoptosis. Journal of Cellular Biology, 139, 729–734.CrossRefGoogle Scholar
  75. Martin, S. J., O'Brien, G. A., Nishioka, W. K., McGahon, A. J., Mahboubi, A., Saido, T. C., & Green, D. R. (1995) Proteolysis of fodrin (non-erythroid spectrin) during apoptosis. Journal of Biological Chemistry, 270, 6425–6428.CrossRefGoogle Scholar
  76. Mathiasen, I. S., Lademann, U., & Jaattela, M. (1999) poptosis induced by vitamin D compounds in breast cancer cells is inhibited by Bcl-2 but does not involve known caspases or p53. Cancer Research, 59, 4848–4856.Google Scholar
  77. Meek, D. W. (1999) Mechanisms of switching on p53: A role for covalent modification? Oncogene, 18, 7666–7675.CrossRefGoogle Scholar
  78. Meier, T., Arni, S., Malarkannan, S., Poincelet, M., & Hoessli, D. (1992) Immunodetection of biotinylated lymphocyte-surface proteins by enhanced chemiluminescence: A nonradioactive method for cell-surface protein analysis. Analytical Biochemistry, 204, 220–226.CrossRefGoogle Scholar
  79. Mihara, M., Erster, S., Zaika, A., Petrenko, O., Chittenden, T., Pancoska, P., & Moll, U. M. (2003) p53 Has a direct apoptogenic role at the mitochondria. Molecular Cell, 11, 577–590.CrossRefGoogle Scholar
  80. Miura, M., Zhu, H., Rotello, R., Hartwieg, E. A., & Yuan, J. (1993) Induction of apoptosis in fibroblasts by IL-1 beta-converting enzyme, a mammalian homolog of the C. elegans cell death gene ced-3. Cell, 75, 653–660.CrossRefGoogle Scholar
  81. Miura, M., Friedlander, R. M., & Yuan, J. (1995) umor necrosis factor-induced apoptosis is mediated by a CrmA-sensitive cell death pathway. Proceedings of the National Academy of Sciences USA, 92, 8318–8322.CrossRefGoogle Scholar
  82. Muller, M., Wilder, S., Bannasch, D., Israeli, D., Lehlbach, K., Li-Weber, M., Friedman, S. L., Galle, P. R., Stremmel, W., Oren, M., & Krammer, P. H. (1998) p53 Activates the CD95 (APO-1/Fas) gene in response to DNA damage by anticancer drugs. Journal of Experimental Medicine, 188, 2033–2045.CrossRefGoogle Scholar
  83. Muzio, M., Chinnaiyan, A. M., Kischkel, F. C., O'Rourke, K., Shevchenko, A., Ni, J., Scaffidi, C., Bretz, J. D., Zhang, M., Gentz, R., Mann, M., Krammer, P. H., Peter, M. E., & Dixit, V. M. (1996) FLICE, a novel FADD-homologous ICE/CED-3-like protease, is recruited to the CD95 (Fas/APO-1) death-inducing signaling complex. Cell, 85, 817–827.CrossRefGoogle Scholar
  84. Nagata, S. (1997) Apoptosis by death factor. Cell, 88, 355–365.CrossRefGoogle Scholar
  85. Nakagawa, T., & Yuan, J. (2000) Cross-talk between two cysteine protease families. Activation of caspase-12 by calpain in apoptosis. Journal of Cellular Biology, 150, 887–894.CrossRefGoogle Scholar
  86. Nakano, K., & Vousden, K. H. (2001) PUMA, a novel proapoptotic gene, is induced by p53. Molecular C0ell, 7, 683–694.CrossRefGoogle Scholar
  87. Noda, T., Suzuki, K., & Ohsumi, Y. (2002) Yeast autophagosomes: De novo formation of a membrane structure. Trends in Cellular Biology, 12, 231–235.CrossRefGoogle Scholar
  88. Oda, E., Ohki, R., Murasawa, H., Nemoto, J., Shibue, T., Yamashita, T., Tokino, T., Taniguchi, T., & Tanaka, N. (2000) Noxa, a BH3-only member of the Bcl-2 family and candidate mediator of p53-induced apoptosis. Science, 288, 1053–1058.CrossRefGoogle Scholar
  89. Paavola, L. G. (1978) The corpus luteum of the guinea pig. III. Cytochemical studies on the Golgi complex and GERL during normal postpartum regression of luteal cells, emphasizing the origin of lysosomes and autophagic vacuoles. Journal of Cell Biology, 79, 59–73.CrossRefGoogle Scholar
  90. Petiot, A., Ogier-Denis, E., Blommaart, E. F., Meijer, A. J., & Codogno, P. (2000) Distinct classes of phosphatidylinositol 3'-kinases are involved in signaling pathways that control macroautophagy in HT-29 cells. Journal of Biological Chemistry, 275, 992–998.CrossRefGoogle Scholar
  91. Roberg, K., Kagedal, K., & Ollinger, K. (2002) Microinjection of cathepsin D induces caspase-dependent apoptosis in fibroblasts. American Journal of Pathology, 161, 89–96.Google Scholar
  92. Roberts, L. R., Kurosawa, H., Bronk, S. F., Fesmier, P. J., Agellon, L. B., Leung, W. Y., Mao, F., & Gores, G. J. (1997) Cathepsin B contributes to bile salt-induced apoptosis of rat hepatocytes. Gastroenterology, 113, 1714–1726.CrossRefGoogle Scholar
  93. Robles, A. I., Bemmels, N. A., Foraker, A. B., & Harris, C. C. (2001) APAF-1 is a transcriptional target of p53 in DNA damage-induced apoptosis. Cancer Research, 61, 6660–6664.Google Scholar
  94. Samuels-Lev, Y., O'Connor, D. J., Bergamaschi, D., Trigiante, G., Hsieh, J. K., Zhong, S., Campargue, I., Naumovski, L., Crook, T., & Lu, X. (2001) ASPP proteins specifically stimulate the apoptotic function of p53. Molecular Cell, 8, 781–794.CrossRefGoogle Scholar
  95. Scaffidi, C., Fulda, S., Srinivasan, A., Friesen, C., Li, F., Tomaselli, K. J., Debatin, K. M., Krammer, P. H., & Peter, M. E. (1998) Two CD95 (APO-1/Fas) signaling pathways. EMBO Journal, 17, 1675–1687.CrossRefGoogle Scholar
  96. Schlumpberger, M., Schaeffeler, E., Straub, M., Bredschneider, M., Wolf, D. H., & Thumm, M. (1997) AUT1, a gene essential for autophagocytosis in the yeast Saccharomyces cerevisiae. Journal of Bacteriology, 179, 1068–1076.Google Scholar
  97. Schulte-Hermann, R., Bursch, W., Grasl-Kraupp, B., Marian, B., Torok, L., Kahl-Rainer, P., & Ellinger, A. (1997) Concepts of cell death and application to carcinogenesis. Toxicologic Pathology, 25, 89–93.Google Scholar
  98. Schweichel, J. U., & Merker, H. J. (1973) The morphology of various types of cell death in prenatal tissues. Teratology, 7, 253–266.CrossRefGoogle Scholar
  99. Sensibar, J. A., Griswold, M. D., Sylvester, S. R., Buttyan, R., Bardin, C. W., Cheng, C. Y., Dudek, S., & Lee, C. (1991) Prostatic ductal system in rats: regional variation in localization of an androgen-repressed gene product, sulfated glycoprotein-2. Endocrinology, 128, 2091–2102.CrossRefGoogle Scholar
  100. Sherr, C. J., & Weber, J. D. (2000) The ARF/p53 pathway. Current Opinion in Genetics and Development, 10, 94–99.CrossRefGoogle Scholar
  101. Shimizu, S., Narita, M., & Tsujimoto, Y. (1999) Bcl-2 family proteins regulate the release of apoptogenic cytochrome c by the mitochondrial channel VDAC [see comments]. Nature, 399, 483–487.CrossRefGoogle Scholar
  102. Shimizu, S., Kanaseki, T., Mizushima, N., Mizuta, T., Arakawa-Kobayashi, S., Thompson, C. B., & Tsujimoto, Y. (2004) Role of Bcl-2 family proteins in a non-apoptotic programmed cell death dependent on autophagy genes. Nature Cell Biology, 6, 1221–1228.CrossRefGoogle Scholar
  103. Stoka, V., Turk, B., Schendel, S. L., Kim, T. H., Cirman, T., Snipas, S. J., Ellerby, L. M., Bredesen, D., Freeze, H., Abrahamson, M., Bromme, D., Krajewski, S., Reed, J. C., Yin, X. M., Turk, V., & Salvesen, G. S. (2001) Lysosomal protease pathways to apoptosis. Cleavage of bid, not pro-caspases, is the most likely route. Journal of Biological Chemistry, 276, 3149–3157.CrossRefGoogle Scholar
  104. Susin, S. A., Lorenzo, H. K., Zamzami, N., Marzo, I., Snow, B. E., Brothers, G. M., Mangion, J., Jacotot, E., Costantini, P., Loeffler, M., Larochette, N., Goodlett, D. R., Aebersold, R., Siderovski, D. P., Penninger, J. M., & Kroemer, G. (1999) Molecular characterization of mitochondrial apoptosis-inducing factor. Nature, 397, 441–446.CrossRefGoogle Scholar
  105. Suzuki, Y., Imai, Y., Nakayama, H., Takahashi, K., Takio, K., & Takahashi, R. (2001) A serine protease, HtrA2, is released from the mitochondria and interacts with XIAP, inducing cell death. Molecular Cell, 8, 613–621.CrossRefGoogle Scholar
  106. Svanborg, C., Agerstam, H., Aronson, A., Bjerkvig, R., Duringer, C., Fischer, W., Gustafsson, L., Hallgren, O., Leijonhuvud, I., Linse, S., Mossberg, A. K., Nilsson, H., Pettersson, J., & Svensson, M. (2003) HAMLET kills tumor cells by an apoptosis-like mechanism—Cellular, molecular, and therapeutic aspects. Advances in Cancer Research, 88, 1–29.CrossRefGoogle Scholar
  107. Svensson, M. (1999) Studies on an apoptosis-inducing folding variant of human α-lactalbumin. In Institute og Laboratory Medicine (p. 33). Lund, Sweden: Lund University.Google Scholar
  108. Svensson, M., Fast, J., Mossberg, A. K., Duringer, C., Gustafsson, L., Hallgren, O., Brooks, C. L., Berliner, L., Linse, S., & Svanborg, C. (2003a). Alpha-lactalbumin unfolding is not sufficient to cause apoptosis, but is required for the conversion to HAMLET (human α-lactalbumin made lethal to tumor cells). Protein Science, 12, 2794–2804.CrossRefGoogle Scholar
  109. Svensson, M., Mossberg, A. K., Pettersson, J., Linse, S., & Svanborg, C. (2003b). Lipids as cofactors in protein folding: Stereo-specific lipid-protein interactions are required to form HAMLET (human α-lactalbumin made lethal to tumor cells). Protein Science, 12, 2805–2814.CrossRefGoogle Scholar
  110. Tanida, I., Nishitani, T., Nemoto, T., Ueno, T., & Kominami, E. (2002) Mammalian Apg12p, but not the Apg12p.Apg5p conjugate, facilitates LC3 processing. Biochemistry and Biophysics Research Community, 296, 1164–1170.CrossRefGoogle Scholar
  111. Tanida, I., Tanida-Miyake, E., Ueno, T., & Kominami, E. (2001) The human homolog of Saccharomyces cerevisiae Apg7p is a protein-activating enzyme for multiple substrates including human Apg12p, GATE-16, GABARAP, and MAP-LC3. Journal of Biological Chemistry, 276, 1701–1706.Google Scholar
  112. Tartaglia, L. A., Ayres, T. M., Wong, G. H., & Goeddel, D. V. (1993) A novel domain within the 55 kd TNF receptor signals cell death. Cell, 74, 845–853.CrossRefGoogle Scholar
  113. Thorlacius, S., Thorgilsson, B., Bjornsson, J., Tryggvadottir, L., Borresen, A. L., Ogmundsdottir, H. M., & Eyfjord, J. E. (1995) TP53 mutations and abnormal p53 protein staining in breast carcinomas related to prognosis. European Journal of Cancer, 31A, 1856–1861.Google Scholar
  114. Thornberry, N. A., & Lazebnik, Y. (1998) Caspases: Enemies within. Science, 281, 1312–1316.CrossRefGoogle Scholar
  115. Tsujimoto, Y. (2003) Cell death regulation by the Bcl-2 protein family in the mitochondria. Journal of Cellular Physiology, 195, 158–167.CrossRefGoogle Scholar
  116. Tsujimoto, Y., Cossman, J., Jaffe, E., & Croce, C. M. (1985) Involvement of the bcl-2 gene in human follicular lymphoma. Science, 228, 1440–1443.CrossRefGoogle Scholar
  117. Tsukada, M., & Ohsumi, Y. (1993) Isolation and characterization of autophagy-defective mutants of Saccharomyces cerevisiae. FEBS Letters, 333, 169–174.CrossRefGoogle Scholar
  118. Turk, B., Turk, D., & Turk, V. (2000) Lysosomal cysteine proteases: More than scavengers. Biochimica et Biophysica Acta, 1477, 98–111.Google Scholar
  119. Verhagen, A. M., Silke, J., Ekert, P. G., Pakusch, M., Kaufmann, H., Connolly, L. M., Day, C. L., Tikoo, A., Burke, R., Wrobel, C., Moritz, R. L., Simpson, R. J., & Vaux, D. L. (2002) HtrA2 promotes cell death through its serine protease activity and its ability to antagonize inhibitor of apoptosis proteins. Journal of Biological Chemistry, 277, 445–454.CrossRefGoogle Scholar
  120. Vogelstein, B., Lane, D., & Levine, A. J. (2000) Surfing the p53 network. Nature, 408, 307–310.CrossRefGoogle Scholar
  121. Wu, H. Y., Nahm, M. H., Guo, Y., Russell, M. W., & Briles, D. E. (1997) Intranasal immunization of mice with PspA (pneumococcal surface protein A) can prevent intranasal carriage, pulmonary infection, and sepsis with Streptococcus pneumoniae. Journal of Infectious Diseases, 175, 839–846.CrossRefGoogle Scholar
  122. Yuan, J., Shaham, S., Ledoux, S., Ellis, H. M., & Horvitz, H. R. (1993) The C. elegans cell death gene ced-3 encodes a protein similar to mammalian interleukin-1 beta-converting enzyme. Cell, 75, 641–652.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Oskar Hallgren
  • Sonja Aits
  • Patrick Brest
  • Lotta Gustafsson
  • Ann-Kristin Mossberg
  • Björn Wullt
  • Catharina Svanborg
    • 1
  1. 1.Institute of Laboratory Medicine, Section for Microbiology, Immunology and Glycobiology22362 LundSweden

Personalised recommendations