Bioactive Components of Milk pp 163-194

Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 606)

Lactoferrin Structure and Functions

  • Dominique Legrand
  • Annick Pierce
  • Elisabeth Elass
  • Mathieu Carpentier
  • Christophe Mariller
  • Joël Mazurier

Abstract

Lactoferrin (Lf) is an iron binding glycoprotein of the transferrin family that is expressed in most biological fluids and is a major component of mammals’ innate immune system. Its protective effect ranges from direct antimicrobial activities against a large panel of microorganisms, including bacteria, viruses, fungi, and parasites, to anti-inflammatory and anticancer activities. This plethora of activities is made possible by mechanisms of action implementing not only the capacity of Lf to bind iron but also interactions of Lf with molecular and cellular components of both host and pathogens. This chapter summarizes our current understanding of the Lf structure-function relationships that explain the roles of Lf in host defense.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, B. F., Baker, H. M., Dodson, E. J., Norris, G. E., Rumball, S. V., Waters, J. M., & Baker, E. N. (1987). Structure of human lactoferrin at 3.2-Å resolution. Proceedings of the National Academy of Sciences USA, 84, 1769–1773.CrossRefGoogle Scholar
  2. Appelmelk, B. J., An, Y. Q., Geerts, M., Thijs, B. G., de Boer, H. A., MacLaren, D. M., de Graaff, J., & Nuijens, J. H. (1994). Lactoferrin is a lipid A-binding protein. Infection and Immunity, 62, 2628–2632.Google Scholar
  3. Baker, E. N., & Baker, H. M. (2005). Molecular structure, binding properties and dynamics of lactoferrin. Cellular and Molecular Life Sciences, 62, 2531–2539.CrossRefGoogle Scholar
  4. Baumrucker, C. R., Schanbacher, F., Shang, Y., & Green, M. H. (2006). Lactoferrin interaction with retinoid signaling: Cell growth and apoptosis in mammary cells. Domestic Animal Endocrinology, 30, 289–303.CrossRefGoogle Scholar
  5. Baveye, S., Elass, E., Fernig, D. G., Blanquart, C., Mazurier, J., & Legrand, D. (2000). Human lactoferrin interacts with soluble CD14 and inhibits expression of endothelial adhesion molecules, E-selectin and ICAM-1, induced by the CD14-lipopolysaccharide complex. Infection and Immunity, 68, 6519–6525.CrossRefGoogle Scholar
  6. Bellamy, W., Takase, M., Yamauchi, K., Wakabayashi, H., Kawase, K., & Tomita, M. (1992). Identification of the bactericidal domain of lactoferrin. Biochimica et Biophysica Acta, 1121, 130–136.Google Scholar
  7. Benaïssa, M., Peyrat, J. P., Hornez, L., Mariller, C., Mazurier, J., & Pierce, A. (2005). Expression and prognostic value of lactoferrin mRNA isoforms in human breast cancer. International Journal of Cancer, 114, 299–306.CrossRefGoogle Scholar
  8. Bezault, J., Bhimani, R., Wiprovnick, J., & Furmanski, P. (1994). Human lactoferrin inhibits growth of solid tumors and development of experimental metastases in mice. Cancer Research, 54, 2310–2312.Google Scholar
  9. Breton, M., Mariller, C., Benaïssa, M., Caillaux, K., Browaeys, E., Masson, M., Vilain, J. P., Mazurier, J., & Pierce, A. (2004). Expression of delta-lactoferrin induces cell cycle arrest. Biometals, 17, 325–329.CrossRefGoogle Scholar
  10. Britigan, B. E., Lewis, T. S., Waldschmidt, M., McCormick, M. L., & Krieg, A. M. (2001). Lactoferrin binds CpG-containing oligonucleotides and inhibits their immunostimulatory effects on human B cells. Journal of Immunology, 167, 2921–2928.Google Scholar
  11. Buderus, S., Boone, J., Lyerly, D., & Lentze, M. J. (2004). Fecal lactoferrin: A new parameter to monitor infliximab therapy. Digestive Diseases and Sciences, 49, 1036–1039.CrossRefGoogle Scholar
  12. Callebaut, C., Blanco, J., Benkirane, N., Krust, B., Jacotot, E., Guichard, G., Seddiki, N., Svab, J., Dam, E., Muller, S., Briand, J. P., & Hovanessian, A. G. (1998). Identification of V3 loop-binding proteins as potential receptors implicated in the binding of HIV particles to CD4(+) cells. Journal of Biological Chemistry, 273, 21988–21997.CrossRefGoogle Scholar
  13. Chandra Mohan, K. V., Devaraj, H., Prathiba, D., Hara, Y., & Nagini, S. (2006a). Antiproliferative and apoptosis inducing effect of lactoferrin and black tea polyphenol combination on hamster buccal pouch carcinogenesis. Biochimica et Biophysica Acta, 1760, 1536–1544.Google Scholar
  14. Chandra Mohan, K. V., Kumaraguruparan, R., Prathiba, D., & Nagini, S. (2006b). Modulation of xenobiotic-metabolizing enzymes and redox status during chemoprevention of hamster buccal carcinogenesis by bovine lactoferrin. Nutrition, 22, 940–946.CrossRefGoogle Scholar
  15. Chodaczek, G., Zimecki, M., Lukasiewicz, J., & Lugowski, C. (2006). A complex of lactoferrin with monophosphoryl lipid A is an efficient adjuvant of the humoral and cellular immune response in mice. Medical Microbiology and Immunology, 195, 207–216.CrossRefGoogle Scholar
  16. Coddeville, B., Strecker, G., Wieruszeski, J. M., Vliegenthart, J. F., van Halbeek, H., Peter-Katalinic, J., Egge, H., & Spik, G. (1992). Heterogeneity of bovine lactotransferrin glycans. Characterization of α-D-Galp-(1–>3)-β-D-Gal- and α-NeuAc-(2–>6)-β-D-GalpNAc-(1–>4)-β-D-GlcNAc-substituted N-linked glycans. Carbohydrate Research, 236, 145–164.CrossRefGoogle Scholar
  17. Cornish, J., Palmano, K., Callon, K. E., Watson, M., Lin, J. M., Valenti, P., Naot, D., Grey, A. B., & Reid, I. R. (2006). Lactoferrin and bone; structure-activity relationships. Biochemistry and Cell Biology, 84, 297–302.CrossRefGoogle Scholar
  18. Cumberbatch, M., Bhushan, M., Dearman, R. J., Kimber, I., & Griffiths, C. E. (2003). IL-1β-induced Langerhans' cell migration and TNF-α production in human skin: Regulation by lactoferrin. Clinical and Experimental Immunology, 132, 352–359.CrossRefGoogle Scholar
  19. Curran, C. S., Demick, K. P., & Mansfield, J. M. (2006). Lactoferrin activates macrophages via TLR4-dependent and -independent signaling pathways. Cellular Immunology, 242, 23–30.CrossRefGoogle Scholar
  20. Damiens, E., El Yazidi, I., Mazurier, J., Elass-Rochard, E., Duthille, I., Spik, G., & Boilly-Marer, Y. (1998a). Role of heparan sulphate proteoglycans in the regulation of human lactoferrin binding and activity in the MDA-MB-231 breast cancer cell line. European Journal of Cell Biology, 77, 344–351.Google Scholar
  21. Damiens, E., Mazurier, J., El Yazidi, I., Masson, M., Duthille, I., Spik, G., & Boilly-Marer, Y. (1998b). Effects of human lactoferrin on NK cell cytotoxicity against haematopoietic and epithelial tumour cells. Biochimica et Biophysica Acta, 1402, 277–287.Google Scholar
  22. Damiens, E., El Yazidi, I., Mazurier, J., Duthille, I., Spik, G., & Boilly-Marer, Y. (1999). Lactoferrin inhibits G1 cyclin-dependent kinases during growth arrest of human breast carcinoma cells. Journal of Cellular Biochemistry, 74, 486–498.CrossRefGoogle Scholar
  23. Dhennin-Duthille, I., Masson, M., Damiens, E., Fillebeen, C., Spik, G., & Mazurier, J. (2000). Lactoferrin upregulates the expression of CD4 antigen through the stimulation of the mitogen-activated protein kinase in the human lymphoblastic T Jurkat cell line. Journal of Cellular Biochemistry, 79, 583–593.CrossRefGoogle Scholar
  24. Di Biase, A. M., Pietrantoni, A., Tinari, A., Siciliano, R., Valenti, P., Antonini, G., Seganti, L., & Superti, F. (2003). Heparin-interacting sites of bovine lactoferrin are involved in anti-adenovirus activity. Journal of Medical Virology, 69, 495–502.CrossRefGoogle Scholar
  25. Di Biase, A. M., Tinari, A., Pietrantoni, A., Antonini, G., Valenti, P., Conte, M. P., & Superti, F. (2004). Effect of bovine lactoferricin on enteropathogenic Yersinia adhesion and invasion in HEp-2 cells. Journal of Medical Microbiology, 53, 407–412.CrossRefGoogle Scholar
  26. Dial, E. J., & Lichtenberger, L. M. (2002). Effect of lactoferrin on Helicobacter felis induced gastritis. Biochemistry and Cell Biology, 80, 113–117.CrossRefGoogle Scholar
  27. Dial, E. J., Dohrman, A. J., Romero, J. J., & Lichtenberger, L. M. (2005). Recombinant human lactoferrin prevents NSAID-induced intestinal bleeding in rodents. Journal of Pharmacy and Pharmacology, 57, 93–99.CrossRefGoogle Scholar
  28. Diarra, M. S., Petitclerc, D., Deschenes, E., Lessard, N., Grondin, G., Talbot, B. G., & Lacasse, P. (2003). Lactoferrin against Staphylococcus aureus mastitis. Lactoferrin alone or in combination with penicillin G on bovine polymorphonuclear function and mammary epithelial cells colonisation by Staphylococcus aureus. Veterinary Immunology and Immunopathology, 95, 33–42.CrossRefGoogle Scholar
  29. Dziadek, B., Dziadek, J., & Dlugonska, H. (2007). Identification of Toxoplasma gondii proteins binding human lactoferrin: A new aspect of rhoptry proteins function. Experimental Parasitology, 115, 277–282.CrossRefGoogle Scholar
  30. Elass, E., Masson, M., Mazurier, J., & Legrand, D. (2002). Lactoferrin inhibits the lipopolysaccharide-induced expression and proteoglycan-binding ability of interleukin-8 in human endothelial cells. Infection and Immunity, 70, 1860–1866.CrossRefGoogle Scholar
  31. Elass-Rochard, E., Roseanu, A., Legrand, D., Trif, M., Salmon, V., Motas, C., Montreuil, J., & Spik, G. (1995). Lactoferrin-lipopolysaccharide interaction: Involvement of the 28-34 loop region of human lactoferrin in the high-affinity binding to Escherichia coli 055B5 lipopolysaccharide. Biochemical Journal, 312 (Pt 3), 839–845.Google Scholar
  32. Elass-Rochard, E., Legrand, D., Salmon, V., Roseanu, A., Trif, M., Tobias, P. S., Mazurier, J., & Spik, G. (1998). Lactoferrin inhibits the endotoxin interaction with CD14 by competition with the lipopolysaccharide-binding protein. Infection and Immunity, 66, 486–491.Google Scholar
  33. Ellison, R. T., III, LaForce, F. M., Giehl, T. J., Boose, D. S., & Dunn, B. E. (1990). Lactoferrin and transferrin damage of the Gram-negative outer membrane is modulated by Ca2+ and Mg2+. Journal of General Microbiology, 136, 1437–1446.Google Scholar
  34. Erdei, J., Forsgren, A., & Naidu, A. S. (1994). Lactoferrin binds to porins OmpF and OmpC in Escherichia coli. Infection and Immunity, 62, 1236–1240.Google Scholar
  35. Farley, J., Loup, D., Nelson, M., Mitchell, A., Esplund, G., Macri, C., Harrison, C., & Gray, K. (1997). Neoplastic transformation of the endocervix associated with downregulation of lactoferrin expression. Molecular Carcinogenesis, 20, 240–250.CrossRefGoogle Scholar
  36. Fillebeen, C., Descamps, L., Dehouck, M. P., Fenart, L., Benaïssa, M., Spik, G., Cecchelli, R., & Pierce, A. (1999). Receptor-mediated transcytosis of lactoferrin through the blood-brain barrier. Journal of Biological Chemistry, 274, 7011–7017.CrossRefGoogle Scholar
  37. Fischer, R., Debbabi, H., Dubarry, M., Boyaka, P., & Tomé, D. (2006). Regulation of physiological and pathological Th1 and Th2 responses by lactoferrin. Biochemistry and Cell Biology, 84, 303–311.CrossRefGoogle Scholar
  38. Fritsch, G., Sawatzki, G., Treumer, J., Jung, A., & Spira, D. T. (1987). Plasmodium falciparum: Inhibition in vitro with lactoferrin, desferriferrithiocin, and desferricrocin. Experimental Parasitology, 63, 1–9.CrossRefGoogle Scholar
  39. Fujita, K., Matsuda, E., Sekine, K., Iigo, M., & Tsuda, H. (2004a). Lactoferrin enhances Fas expression and apoptosis in the colon mucosa of azoxymethane-treated rats. Carcinogenesis, 25, 1961–1966.CrossRefGoogle Scholar
  40. Fujita, K., Matsuda, E., Sekine, K., Iigo, M., & Tsuda, H. (2004b). Lactoferrin modifies apoptosis-related gene expression in the colon of the azoxymethane-treated rat. Cancer Letters, 213, 21–29.CrossRefGoogle Scholar
  41. Gahr, M., Speer, C. P., Damerau, B., & Sawatzki, G. (1991). Influence of lactoferrin on the function of human polymorphonuclear leukocytes and monocytes. Journal of Leukocyte Biology, 49, 427–433.Google Scholar
  42. Gifford, J. L., Hunter, H. N., & Vogel, H. J. (2005). Lactoferricin: A lactoferrin-derived peptide with antimicrobial, antiviral, antitumor and immunological properties. Cellular and Molecular Life Sciences, 62, 2588–2598.CrossRefGoogle Scholar
  43. Goldman, A. S., Garza, C., Schanler, R. J., & Goldblum, R. M. (1990). Molecular forms of lactoferrin in stool and urine from infants fed human milk. Pediatric Research, 27, 252–255.CrossRefGoogle Scholar
  44. Gomez, H. F., Ochoa, T. J., Carlin, L. G., & Cleary, T. G. (2003). Human lactoferrin impairs virulence of Shigella flexneri. Journal of Infectious Diseases, 187, 87–95.CrossRefGoogle Scholar
  45. Greenberg, D. E., Jiang, Z. D., Steffen, R., Verenker, M. P., & DuPont, H. L. (2002). Markers of inflammation in bacterial diarrhea among travelers, with a focus on enteroaggregative Escherichia coli pathogenicity. Journal of Infectious Diseases, 185, 944–949.CrossRefGoogle Scholar
  46. Grey, A., Banovic, T., Zhu, Q., Watson, M., Callon, K., Palmano, K., Ross, J., Naot, D., Reid, I. R., & Cornish, J. (2004). The low-density lipoprotein receptor-related protein 1 is a mitogenic receptor for lactoferrin in osteoblastic cells. Molecular Endocrinology, 18, 2268–2278.CrossRefGoogle Scholar
  47. Griffiths, C. E., Cumberbatch, M., Tucker, S. C., Dearman, R. J., Andrew, S., Headon, D. R., & Kimber, I. (2001). Exogenous topical lactoferrin inhibits allergen-induced Langerhans cell migration and cutaneous inflammation in humans. British Journal of Dermatology, 144, 715–725.CrossRefGoogle Scholar
  48. Groot, F., Geijtenbeek, T. B., Sanders, R. W., Baldwin, C. E., Sanchez-Hernandez, M., Floris, R., van Kooyk, Y., de Jong, E. C., & Berkhout, B. (2005). Lactoferrin prevents dendritic cell-mediated human immunodeficiency virus type 1 transmission by blocking the DC-SIGN–gp120 interaction. Journal of Virology, 79, 3009–3015.CrossRefGoogle Scholar
  49. Guillen, C., McInnes, I. B., Vaughan, D., Speekenbrink, A. B., & Brock, J. H. (2000). The effects of local administration of lactoferrin on inflammation in murine autoimmune and infectious arthritis. Arthritis and Rheumatism, 43, 2073–2080.CrossRefGoogle Scholar
  50. Guillen, C., McInnes, I. B., Vaughan, D. M., Kommajosyula, S., van Berkel, P. H., Leung, B. P., Aguila, A., & Brock, J. H. (2002). Enhanced Th1 response to Staphylococcus aureus infection in human lactoferrin-transgenic mice. Journal of Immunology, 168, 3950–3957.Google Scholar
  51. Hara, K., Ikeda, M., Saito, S., Matsumoto, S., Numata, K., Kato, N., Tanaka, K., & Sekihara, H. (2002). Lactoferrin inhibits hepatitis B virus infection in cultured human hepatocytes. Hepatology Research, 24, 228.CrossRefGoogle Scholar
  52. Hasegawa, K., Motsuchi, W., Tanaka, S., & Dosako, S. (1994). Inhibition with lactoferrin of in vitro infection with human herpes virus. Japanese Journal of Medical Science and Biology, 47, 73–85.Google Scholar
  53. Haversen, L., Ohlsson, B. G., Hahn-Zoric, M., Hanson, L. A., & Mattsby-Baltzer, I. (2002). Lactoferrin down-regulates the LPS-induced cytokine production in monocytic cells via NF-κB. Cellular Immunology, 220, 83–95.CrossRefGoogle Scholar
  54. Hayashida, K., Kaneko, T., Takeuchi, T., Shimizu, H., Ando, K., & Harada, E. (2004). Oral administration of lactoferrin inhibits inflammation and nociception in rat adjuvant-induced arthritis. Journal of Veterinary Medical Science, 66, 149–154.CrossRefGoogle Scholar
  55. He, J., & Furmanski, P. (1995). Sequence specificity and transcriptional activation in the binding of lactoferrin to DNA. Nature, 373, 721–724.CrossRefGoogle Scholar
  56. He, S., McEuen, A. R., Blewett, S. A., Li, P., Buckley, M. G., Leufkens, P., & Walls, A. F. (2003). The inhibition of mast cell activation by neutrophil lactoferrin: Uptake by mast cells and interaction with tryptase, chymase and cathepsin G. Biochemical Pharmacology, 65, 1007–1015.CrossRefGoogle Scholar
  57. Hendrixson, D. R., Qiu, J., Shewry, S. C., Fink, D. L., Petty, S., Baker, E. N., Plaut, A. G., & St Geme, J. W., III (2003). Human milk lactoferrin is a serine protease that cleaves Haemophilus surface proteins at arginine-rich sites. Molecular Microbiology, 47, 607–617.Google Scholar
  58. Herz, J., & Strickland, D. K. (2001). LRP: A multifunctional scavenger and signaling receptor. Journal of Clinical Investigation, 108, 779–784.CrossRefGoogle Scholar
  59. Hwang, S. A., Kruzel, M. L., & Actor, J. K. (2005). Lactoferrin augments BCG vaccine efficacy to generate T helper response and subsequent protection against challenge with virulent Mycobacterium tuberculosis. International Immunopharmacology, 5, 591–599.CrossRefGoogle Scholar
  60. Iigo, M., Kuhara, T., Ushida, Y., Sekine, K., Moore, M. A., & Tsuda, H. (1999). Inhibitory effects of bovine lactoferrin on colon carcinoma 26 lung metastasis in mice. Clinical and Experimental Metastasis, 17, 35-40.Google Scholar
  61. Iigo, M., Shimamura, M., Matsuda, E., Fujita, K., Nomoto, H., Satoh, J., Kojima, S., Alexander, D. B., Moore, M. A., & Tsuda, H. (2004). Orally administered bovine lactoferrin induces caspase-1 and interleukin-18 in the mouse intestinal mucosa: A possible explanation for inhibition of carcinogenesis and metastasis. Cytokine, 25, 36–44.CrossRefGoogle Scholar
  62. Iijima, H., Tomizawa, Y., Iwasaki, Y., Sato, K., Sunaga, N., Dobashi, K., Saito, R., Nakajima, T., Minna, J. D., & Mori, M. (2006). Genetic and epigenetic inactivation of LTF gene at 3p21.3 in lung cancers. International Journal of Cancer, 118, 797–801.CrossRefGoogle Scholar
  63. Ishii, K., Takamura, N., Shinohara, M., Wakui, N., Shin, H., Sumino, Y., Ohmoto, Y., Teraguchi, S., & Yamauchi, K. (2003). Long-term follow-up of chronic hepatitis C patients treated with oral lactoferrin for 12 months. Hepatology Research, 25, 226–233.CrossRefGoogle Scholar
  64. Jameson, G. B., Anderson, B. F., Norris, G. E., Thomas, D. H., & Baker, E. N. (1998). Structure of human apolactoferrin at 2.0 Å resolution. Refinement and analysis of ligand-induced conformational change. Acta Crystallographica D, 54, 1319–1335.Google Scholar
  65. Japelj, B., Pristovsek, P., Majerle, A., & Jerala, R. (2005). Structural origin of endotoxin neutralization and antimicrobial activity of a lactoferrin-based peptide. Journal of Biological Chemistry, 280, 16955–16961.CrossRefGoogle Scholar
  66. Kai, K., Komine, K., Komine, Y., Kuroishi, T., Kozutsumi, T., Kobayashi, J., Ohta, M., Kitamura, H., & Kumagai, K. (2002). Lactoferrin stimulates Staphylococcus aureus killing activity of bovine phagocytes in the mammary gland. Microbiology and Immunology, 46, 187–194.Google Scholar
  67. Kane, S. V., Sandborn, W. J., Rufo, P. A., Zholudev, A., Boone, J., Lyerly, D., Camilleri, M., & Hanauer, S. B. (2003). Fecal lactoferrin is a sensitive and specific marker in identifying intestinal inflammation. American Journal of Gastroenterology, 98, 1309–1314.CrossRefGoogle Scholar
  68. Katunuma, N., Le, Q. T., Murata, E., Matsui, A., Majima, E., Ishimaru, N., Hayashi, Y., & Ohashi, A. (2006). A novel apoptosis cascade mediated by lysosomal lactoferrin and its participation in hepatocyte apoptosis induced by D-galactosamine. FEBS Letters, 580, 3699–3705.CrossRefGoogle Scholar
  69. Katunuma, N., Murata, E., Le, Q.T., Hayashi, Y., & Ohashi, A. (2004). New apoptosis cascade mediated by lysosomal enzyme and its protection by epigallo-catechin gallate. Advances in Enzyme Regulation, 44, 1–10.Google Scholar
  70. Kawasaki, Y., Tazume, S., Shimizu, K., Matsuzawa, H., Dosako, S., Isoda, H., Tsukiji, M., Fujimura, R., Muranaka, Y., & Isihida, H. (2000). Inhibitory effects of bovine lactoferrin on the adherence of enterotoxigenic Escherichia coli to host cells. Bioscience, Biotechnology, and Biochemistry, 64, 348–354.CrossRefGoogle Scholar
  71. Kim, C. W., Son, K. N., Choi, S. Y., & Kim, J. (2006). Human lactoferrin upregulates expression of KDR/Flk-1 and stimulates VEGF-A-mediated endothelial cell proliferation and migration. FEBS Letters, 580, 4332–4336.CrossRefGoogle Scholar
  72. Konishi, M., Iwasa, M., Yamauchi, K., Sugimoto, R., Fujita, N., Kobayashi, Y., Watanabe, S., Teraguchi, S., Adachi, Y., & Kaito, M. (2006). Lactoferrin inhibits lipid peroxidation in patients with chronic hepatitis C. Hepatology Research, 36, 27–32.CrossRefGoogle Scholar
  73. Kruzel, M. L., Bacsi, A., Choudhury, B., Sur, S., & Boldogh, I. (2006). Lactoferrin decreases pollen antigen-induced allergic airway inflammation in a murine model of asthma. Immunology, 119, 159–166.CrossRefGoogle Scholar
  74. Kuhara, T., Iigo, M., Itoh, T., Ushida, Y., Sekine, K., Terada, N., Okamura, H., & Tsuda, H. (2000). Orally administered lactoferrin exerts an antimetastatic effect and enhances production of IL-18 in the intestinal epithelium. Nutrition and Cancer, 38, 192–199.CrossRefGoogle Scholar
  75. Kuhara, T., Yamauchi, K., Tamura, Y., & Okamura, H. (2006). Oral administration of lactoferrin increases NK cell activity in mice via increased production of IL-18 and type I IFN in the small intestine. Journal of Interferon Cytokine Research, 26, 489–499.CrossRefGoogle Scholar
  76. Kumar, J., Weber, W., Münchau, S., Yadav, S., Bhaskar Singh, S., Saravanan, K., Paramasivam, M., Sharma, S., Kaur, P., Bhushan, A., Srinivasan, A., Betzel, C., & Singh, T. P. (2003). Crystal structure of human seminal diferric lactoferrin at 3.4 Å resolution. Indian Journal of Biochemistry and Biophysics, 40, 14–21.Google Scholar
  77. Legrand, D., Mazurier, J., Metz-Boutigue, M. H., Jollès, J., Jollès, P., Montreuil, J., & Spik, G. (1984). Characterization and localization of an iron-binding 18-kDa glycopeptide isolated from the N-terminal half of human lactotransferrin. Biochimica et Biophysica Acta, 787, 90–96.Google Scholar
  78. Legrand, D., van Berkel, P. H., Salmon, V., van Veen, H. A., Slomianny, M. C., Nuijens, J. H., & Spik, G. (1997). The N-terminal Arg2, Arg3 and Arg4 of human lactoferrin interact with sulphated molecules but not with the receptor present on Jurkat human lymphoblastic T-cells. Biochemical Journal, 327 (Pt 3), 841–846.Google Scholar
  79. Legrand, D., Vigié, K., Said, E. A., Elass, E., Masson, M., Slomianny, M. C., Carpentier, M., Briand, J. P., Mazurier, J., & Hovanessian, A. G. (2004). Surface nucleolin participates in both the binding and endocytosis of lactoferrin in target cells. European Journal of Biochemistry, 271, 303–317.CrossRefGoogle Scholar
  80. Legrand, D., Elass, E., Carpentier, M., & Mazurier, J. (2005). Lactoferrin: A modulator of immune and inflammatory responses. Cellular and Molecular Life Sciences, 62, 2549–2559.CrossRefGoogle Scholar
  81. Li, Y. M., Tan, A. X., & Vlassara, H. (1995). Antibacterial activity of lysozyme and lactoferrin is inhibited by binding of advanced glycation-modified proteins to a conserved motif. Nature Medicine, 1, 1057–1061.CrossRefGoogle Scholar
  82. Lima, M. F., & Kierszenbaum, F. (1987). Lactoferrin effects on the interaction of blood forms of Trypanosoma cruzi with mononuclear phagocytes. International Journal for Parasitology, 17, 1205–1208.CrossRefGoogle Scholar
  83. Lin, T. Y., Chiou, S. H., Chen, M., & Kuo, C. D. (2005). Human lactoferrin exerts bi-directional actions on PC12 cell survival via ERK1/2 pathway. Biochemical and Biophysical Research Communications, 337, 330–336.CrossRefGoogle Scholar
  84. Ling, J. M., & Schryvers, A. B. (2006). Perspectives on interactions between lactoferrin and bacteria. Biochemistry and Cell Biology, 84, 275–281.CrossRefGoogle Scholar
  85. Liu, D., Wang, X., Zhang, Z., & Teng, C. T. (2003). An intronic alternative promoter of the human lactoferrin gene is activated by Ets. Biochemical and Biophysical Research Communications, 301, 472–479.CrossRefGoogle Scholar
  86. Longhi, C., Conte, M. P., Seganti, L., Polidoro, M., Alfsen, A., & Valenti, P. (1993). Influence of lactoferrin on the entry process of Escherichia coli HB101 (pRI203) in HeLa cells. Medical Microbiology and Immunology, 182, 25–35.CrossRefGoogle Scholar
  87. Lorget, F., Clough, J., Oliveira, M., Daury, M. C., Sabokbar, A., & Offord, E. (2002). Lactoferrin reduces in vitro osteoclast differentiation and resorbing activity. Biochemical and Biophysical Research Communications, 296, 261–266.CrossRefGoogle Scholar
  88. Mader, J. S., Salsman, J., Conrad, D. M., & Hoskin, D. W. (2005). Bovine lactoferricin selectively induces apoptosis in human leukemia and carcinoma cell lines. Molecular Cancer Therapeutics, 4, 612–624.CrossRefGoogle Scholar
  89. Mann, D. M., Romm, E., & Migliorini, M. (1994). Delineation of the glycosaminoglycan-binding site in the human inflammatory response protein lactoferrin. Journal of Biological Chemistry, 269, 23661–23667.Google Scholar
  90. Marchetti, M., Longhi, C., Conte, M. P., Pisani, S., Valenti, P., & Seganti, L. (1996). Lactoferrin inhibits herpes simplex virus type 1 adsorption to Vero cells. Antiviral Research, 29, 221–231.CrossRefGoogle Scholar
  91. Mariller, C., Benaïssa, M., Hardivillé, S., Breton, M., Pradelle, G., Mazurier, J., & Pierce, A. (2007). Human delta-lactoferrin is a transcription factor which enhances Skp1 (S-phase kinase associated protein) gene expression. FEBS Journal, 274, 2038–2053.CrossRefGoogle Scholar
  92. Masson, P. L., Heremans, J. F., & Schonne, E. (1969). Lactoferrin, an iron-binding protein in neutrophilic leukocytes. Journal of Experimental Medicine, 130, 643–658.CrossRefGoogle Scholar
  93. Matsuda, Y., Saoo, K., Hosokawa, K., Yamakawa, K., Yokohira, M., Zeng, Y., Takeuchi, H., & Imaida, K. (2007). Post-initiation chemopreventive effects of dietary bovine lactoferrin on 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone-induced lung tumorigenesis in female A/J mice. Cancer Letters, 246, 41–46.CrossRefGoogle Scholar
  94. Mazurier, J., & Spik, G. (1980). Comparative study of the iron-binding properties of human transferrins. I. Complete and sequential iron saturation and desaturation of the lactotransferrin. Biochimica et Biophysica Acta, 629, 399–408.Google Scholar
  95. Mazurier, J., Legrand, D., Hu, W. L., Montreuil, J., & Spik, G. (1989). Expression of human lactotransferrin receptors in phytohemagglutinin-stimulated human peripheral blood lymphocytes. Isolation of the receptors by antiligand-affinity chromatography. European Journal of Biochemistry, 179, 481–487.CrossRefGoogle Scholar
  96. McAbee, D. D., Jiang, X., & Walsh, K. B. (2000). Lactoferrin binding to the rat asialoglycoprotein receptor requires the receptor's lectin properties. Biochemical Journal, 348 (Pt 1), 113–117.CrossRefGoogle Scholar
  97. Medina, I., Tombo, I., Satue-Gracia, M. T., German, J. B., & Frankel, E. N. (2002). Effects of natural phenolic compounds on the antioxidant activity of lactoferrin in liposomes and oil-in-water emulsions. Journal of Agricultural and Food Chemistry, 50, 2392–2399.CrossRefGoogle Scholar
  98. Meilinger, M., Haumer, M., Szakmary, K. A., Steinbock, F., Scheiber, B., Goldenberg, H., & Huettinger, M. (1995). Removal of lactoferrin from plasma is mediated by binding to low density lipoprotein receptor-related protein/alpha 2-macroglobulin receptor and transport to endosomes. FEBS Letters, 360, 70–74.CrossRefGoogle Scholar
  99. Metz-Boutigue, M. H., Jollès, J., Mazurier, J., Schoentgen, F., Legrand, D., Spik, G., Montreuil, J., & Jollès, P. (1984). Human lactotransferrin: Amino acid sequence and structural comparisons with other transferrins. European Journal of Biochemistry, 145, 659–676.CrossRefGoogle Scholar
  100. Montreuil, J., Tonnelat, J., & Mullet, S. (1960). Preparation and properties of lactosiderophilin (lactotransferrin) of human milk. [in French] Biochimica et Biophysica Acta, 45, 413–421.Google Scholar
  101. Moshynskyy, I., Jiang, M., Fontaine, M. C., Perez-Casal, J., Babiuk, L. A., & Potter, A. A. (2003). Characterization of a bovine lactoferrin binding protein of Streptococcus uberis. Microbial Pathogenesis, 35, 203–215.CrossRefGoogle Scholar
  102. Na, Y. J., Han, S. B., Kang, J. S., Yoon, Y. D., Park, S. K., Kim, H. M., Yang, K. H., & Joe, C. O. (2004). Lactoferrin works as a new LPS-binding protein in inflammatory activation of macrophages. International Immunopharmacology, 4, 1187–1199.CrossRefGoogle Scholar
  103. Naidu, A. S., Andersson, M., & Forsgren, A. (1992). Identification of a human lactoferrin-binding protein in Staphylococcus aureus. Journal of Medical Microbiology, 36, 177–183.CrossRefGoogle Scholar
  104. Naidu, A. S., Chen, J., Martinez, C., Tulpinski, J., Pal, B. K., & Fowler, R. S. (2004). Activated lactoferrin's ability to inhibit Candida growth and block yeast adhesion to the vaginal epithelial monolayer. Journal of Reproductive Medicine, 49, 859–866.Google Scholar
  105. Nibbering, P. H., Ravensbergen, E., Welling, M. M., van Berkel, L. A., van Berkel, P. H., Pauwels, E. K., & Nuijens, J. H. (2001). Human lactoferrin and peptides derived from its N terminus are highly effective against infections with antibiotic-resistant bacteria. Infection and Immunity, 69, 1469–1476.CrossRefGoogle Scholar
  106. Norrby, K. (2004). Human apo-lactoferrin enhances angiogenesis mediated by vascular endothelial growth factor A in vivo. Journal of Vascular Research, 41, 293–304.CrossRefGoogle Scholar
  107. Norrby, K., Mattsby-Baltzer, I., Innocenti, M., & Tuneberg, S. (2001). Orally administered bovine lactoferrin systemically inhibits VEGF(165)-mediated angiogenesis in the rat. International Journal of Cancer, 91, 236–240.CrossRefGoogle Scholar
  108. Ochoa, T. J., Noguera-Obenza, M., Ebel, F., Guzman, C. A., Gomez, H. F., & Cleary, T. G. (2003). Lactoferrin impairs type III secretory system function in enteropathogenic Escherichia coli. Infection and Immunity, 71, 5149–5155.CrossRefGoogle Scholar
  109. Oh, S. M., Hahm, D. H., Kim, I. H., & Choi, S. Y. (2001). Human neutrophil lactoferrin trans-activates the matrix metalloproteinase 1 gene through stress-activated MAPK signaling modules. Journal of Biological Chemistry, 276, 42575–42579.CrossRefGoogle Scholar
  110. Oh, S. M., Pyo, C. W., Kim, Y., & Choi, S. Y. (2004). Neutrophil lactoferrin upregulates the human p53 gene through induction of NF-κB activation cascade. Oncogene, 23, 8282–8291.CrossRefGoogle Scholar
  111. Omata, Y., Satake, M., Maeda, R., Saito, A., Shimazaki, K., Yamauchi, K., Uzuka, Y., Tanabe, S., Sarashina, T., & Mikami, T. (2001). Reduction of the infectivity of Toxoplasma gondii and Eimeria stiedai sporozoites by treatment with bovine lactoferricin. Journal of Veterinary Medical Science, 63, 187–190.CrossRefGoogle Scholar
  112. Penco, S., Scarfi, S., Giovine, M., Damonte, G., Millo, E., Villaggio, B., Passalacqua, M., Pozzolini, M., Garre, C., & Benatti, U. (2001). Identification of an import signal for, and the nuclear localization of, human lactoferrin. Biotechnology and Applied Biochemistry, 34, 151–159.CrossRefGoogle Scholar
  113. Pietrantoni, A., Di Biase, A. M., Tinari, A., Marchetti, M., Valenti, P., Seganti, L., & Superti, F. (2003). Bovine lactoferrin inhibits adenovirus infection by interacting with viral structural polypeptides. Antimicrobial Agents and Chemotherapy, 47, 2688–2691.CrossRefGoogle Scholar
  114. Prinz, T., Meyer, M., Pettersson, A., & Tommassen, J. (1999). Structural characterization of the lactoferrin receptor from Neisseria meningitidis. Journal of Bacteriology, 181, 4417–4419.Google Scholar
  115. Puddu, P., Borghi, P., Gessani, S., Valenti, P., Belardelli, F., & Seganti, L. (1998). Antiviral effect of bovine lactoferrin saturated with metal ions on early steps of human immunodeficiency virus type 1 infection. International Journal of Biochemistry and Cell Biology, 30, 1055–1062.CrossRefGoogle Scholar
  116. Qiu, J., Hendrixson, D. R., Baker, E. N., Murphy, T. F., St Geme, J. W., III, & Plaut, A. G. (1998). Human milk lactoferrin inactivates two putative colonization factors expressed by Haemophilus influenzae. Proceedings of the National Academy of Sciences USA, 95, 12641–12646.CrossRefGoogle Scholar
  117. Reghunathan, R., Jayapal, M., Hsu, L. Y., Chng, H. H., Tai, D., Leung, B. P., & Melendez, A. J. (2005). Expression profile of immune response genes in patients with Severe Acute Respiratory Syndrome. BMC Immunology, 6, 2.CrossRefGoogle Scholar
  118. Rey, M. W., Woloshuk, S. L., deBoer, H. A., & Pieper, F. R. (1990). Complete nucleotide sequence of human mammary gland lactoferrin. Nucleic Acids Research, 18, 5288.CrossRefGoogle Scholar
  119. Rogan, M. P., Taggart, C. C., Greene, C. M., Murphy, P. G., O'Neill, S. J., & McElvaney, N. G. (2004). Loss of microbicidal activity and increased formation of biofilm due to decreased lactoferrin activity in patients with cystic fibrosis. Journal of Infectious Diseases, 190, 1245–1253.CrossRefGoogle Scholar
  120. Rossi, P., Giansanti, F., Boffi, A., Ajello, M., Valenti, P., Chiancone, E., & Antonini, G. (2002). Ca2+ binding to bovine lactoferrin enhances protein stability and influences the release of bacterial lipopolysaccharide. Biochemistry and Cell Biology, 80, 41–48.CrossRefGoogle Scholar
  121. Sakai, T., Banno, Y., Kato, Y., Nozawa, Y., & Kawaguchi, M. (2005). Pepsin-digested bovine lactoferrin induces apoptotic cell death with JNK/SAPK activation in oral cancer cells. Journal of Pharmacological Sciences, 98, 41–48.CrossRefGoogle Scholar
  122. Sallmann, F. R., Baveye-Descamps, S., Pattus, F., Salmon, V., Branza, N., Spik, G., & Legrand, D. (1999). Porins OmpC and PhoE of Escherichia coli as specific cell-surface targets of human lactoferrin. Binding characteristics and biological effects. Journal of Biological Chemistry, 274, 16107–16114.CrossRefGoogle Scholar
  123. Sawatzki, G., & Rich, I. N. (1989). Lactoferrin stimulates colony stimulating factor production in vitro and in vivo. Blood Cells, 15, 371–385.Google Scholar
  124. Sekine, K., Ushida, Y., Kuhara, T., Iigo, M., Baba-Toriyama, H., Moore, M. A., Murakoshi, M., Satomi, Y., Nishino, H., Kakizoe, T., & Tsuda, H. (1997). Inhibition of initiation and early stage development of aberrant crypt foci and enhanced natural killer activity in male rats administered bovine lactoferrin concomitantly with azoxymethane. Cancer Letters, 121, 211–216.CrossRefGoogle Scholar
  125. Sfeir, R. M., Dubarry, M., Boyaka, P. N., Rautureau, M., & Tomé, D. (2004). The mode of oral bovine lactoferrin administration influences mucosal and systemic immune responses in mice. Journal of Nutrition, 134, 403–409.Google Scholar
  126. Shakibaei, M., & Frevert, U. (1996). Dual interaction of the malaria circumsporozoite protein with the low density lipoprotein receptor-related protein (LRP) and heparan sulfate proteoglycans. Journal of Experimental Medicine, 184, 1699–1711.CrossRefGoogle Scholar
  127. Sherman, M. P., Bennett, S. H., Hwang, F. F., & Yu, C. (2004). Neonatal small bowel epithelia: Enhancing anti-bacterial defense with lactoferrin and Lactobacillus GG. Biometals, 17, 285–289.CrossRefGoogle Scholar
  128. Shimamura, M., Yamamoto, Y., Ashino, H., Oikawa, T., Hazato, T., Tsuda, H., & Iigo, M. (2004). Bovine lactoferrin inhibits tumor-induced angiogenesis. International Journal of Cancer, 111, 111–116.CrossRefGoogle Scholar
  129. Shimizu, K., Matsuzawa, H., Okada, K., Tazume, S., Dosako, S., Kawasaki, Y., Hashimoto, K., & Koga, Y. (1996). Lactoferrin-mediated protection of the host from murine cytomegalovirus infection by a T-cell-dependent augmentation of natural killer cell activity. Archives of Virology, 141, 1875–1889.CrossRefGoogle Scholar
  130. Siciliano, R., Rega, B., Marchetti, M., Seganti, L., Antonini, G., & Valenti, P. (1999). Bovine lactoferrin peptidic fragments involved in inhibition of herpes simplex virus type 1 infection. Biochemical and Biophysical Research Communications, 264, 19–23.CrossRefGoogle Scholar
  131. Siebert, P. D., & Huang, B. C. (1997). Identification of an alternative form of human lactoferrin mRNA that is expressed differentially in normal tissues and tumor-derived cell lines. Proceedings of the National Academy of Sciences USA, 94, 2198–2203.CrossRefGoogle Scholar
  132. Singh, P. K. (2004). Iron sequestration by human lactoferrin stimulates P. aeruginosa surface motility and blocks biofilm formation. Biometals, 17, 267–270.CrossRefGoogle Scholar
  133. Son, H. J., Lee, S. H., & Choi, S. Y. (2006). Human lactoferrin controls the level of retinoblastoma protein and its activity. Biochemistry and Cell Biology, 84, 345–350.CrossRefGoogle Scholar
  134. Son, K. N., Park, J., Chung, C. K., Chung, D. K., Yu, D. Y., Lee, K. K., & Kim, J. (2002). Human lactoferrin activates transcription of IL-1β gene in mammalian cells. Biochemical and Biophysical Research Communications, 290, 236–241.CrossRefGoogle Scholar
  135. Sorimachi, K., Akimoto, K., Hattori, Y., Ieiri, T., & Niwa, A. (1997). Activation of macrophages by lactoferrin: Secretion of TNF-α, IL-8 and NO. Biochemistry and Molecular Biology International, 43, 79–87.Google Scholar
  136. Spik, G., Coddeville, B., & Montreuil, J. (1988). Comparative study of the primary structures of sero-, lacto- and ovotransferrin glycans from different species. Biochimie, 70, 1459–1469.CrossRefGoogle Scholar
  137. Srivastava, M., & Pollard, H. B. (1999). Molecular dissection of nucleolin's role in growth and cell proliferation: New insights. FASEB Journal, 13, 1911–1922.Google Scholar
  138. Superti, F., Ammendolia, M. G., Valenti, P., & Seganti, L. (1997). Antirotaviral activity of milk proteins: Lactoferrin prevents rotavirus infection in the enterocyte-like cell line HT-29. Medical Microbiology and Immunology, 186, 83–91.CrossRefGoogle Scholar
  139. Suzuki, Y. A., Lopez, V., & Lönnerdal, B. (2005). Mammalian lactoferrin receptors: Structure and function. Cellular and Molecular Life Sciences, 62, 2560–2575.CrossRefGoogle Scholar
  140. Swart, P. J., Kuipers, M. E., Smit, C., Pauwels, R., deBethune, M. P., de Clercq, E., Meijer, D. K., & Huisman, J. G. (1996). Antiviral effects of milk proteins: Acylation results in polyanionic compounds with potent activity against human immunodeficiency virus types 1 and 2 in vitro. AIDS Research and Human Retroviruses, 12, 769–775.Google Scholar
  141. Takayama, Y., Takahashi, H., Mizumachi, K., & Takezawa, T. (2003). Low density lipoprotein receptor-related protein (LRP) is required for lactoferrin-enhanced collagen gel contractile activity of human fibroblasts. Journal of Biological Chemistry, 278, 22112–22118.CrossRefGoogle Scholar
  142. Tani, F., Iio, K., Chiba, H., & Yoshikawa, M. (1990). Isolation and characterization of opioid antagonist peptides derived from human lactoferrin. Agricultural and Biological Chemistry, 54, 1803–1810.Google Scholar
  143. Taylor, S., Brock, J., Kruger, C., Berner, T., & Murphy, M. (2004). Safety determination for the use of bovine milk-derived lactoferrin as a component of an antimicrobial beef carcass spray. Regulatory Toxicology and Pharmacology, 39, 12–24.CrossRefGoogle Scholar
  144. Teng, C., Gladwell, W., Raphiou, I., & Liu, E. (2004). Methylation and expression of the lactoferrin gene in human tissues and cancer cells. Biometals, 17, 317–323.CrossRefGoogle Scholar
  145. Teng, C. T. (2006). Factors regulating lactoferrin gene expression. Biochemistry and Cell Biology, 84, 263–267.CrossRefGoogle Scholar
  146. Teng, C. T., & Gladwell, W. (2006). Single nucleotide polymorphisms (SNPs) in human lactoferrin gene. Biochemistry and Cell Biology, 84, 381–384.CrossRefGoogle Scholar
  147. Teng, C. T., Beard, C., & Gladwell, W. (2002). Differential expression and estrogen response of lactoferrin gene in the female reproductive tract of mouse, rat, and hamster. Biology of Reproduction, 67, 1439–1449.CrossRefGoogle Scholar
  148. Tsuda, H., Sekine, K., Fujita, K., & Ligo, M. (2002). Cancer prevention by bovine lactoferrin and underlying mechanisms—A review of experimental and clinical studies. Biochemistry and Cell Biology, 80, 131–136.CrossRefGoogle Scholar
  149. Tsuda, H., Ohshima, Y., Nomoto, H., Fujita, K., Matsuda, E., Iigo, M., Takasuka, N., & Moore, M. A. (2004). Cancer prevention by natural compounds. Drug Metabolism and Pharmacokinetics, 19, 245–263.CrossRefGoogle Scholar
  150. Valenti, P., & Antonini, G. (2005). Lactoferrin: An important host defence against microbial and viral attack. Cellular and Molecular Life Sciences, 62, 2576–2587.CrossRefGoogle Scholar
  151. van Berkel, P. H., Geerts, M. E., van Veen, H. A., Mericskay, M., de Boer, H. A., & Nuijens, J. H. (1997). N-terminal stretch Arg2, Arg3, Arg4 and Arg5 of human lactoferrin is essential for binding to heparin, bacterial lipopolysaccharide, human lysozyme and DNA. Biochemical Journal, 328 (Pt 1), 145–151.Google Scholar
  152. van der Kraan, M. I., van Marle, J., Nazmi, K., Groenink, J., van't Hof, W., Veerman, E. C., Bolscher, J. G., & Nieuw Amerongen, A. V. (2005). Ultrastructural effects of antimicrobial peptides from bovine lactoferrin on the membranes of Candida albicans and Escherichia coli. Peptides, 26, 1537–1542.CrossRefGoogle Scholar
  153. van Veen, H. A., Geerts, M. E., van Berkel, P. H., & Nuijens, J. H. (2004). The role of N-linked glycosylation in the protection of human and bovine lactoferrin against tryptic proteolysis. European Journal of Biochemistry, 271, 678–684.CrossRefGoogle Scholar
  154. Varadhachary, A., Wolf, J. S., Petrak, K., O'Malley, B. W., Jr., Spadaro, M., Curcio, C., Forni, G., & Pericle, F. (2004). Oral lactoferrin inhibits growth of established tumors and potentiates conventional chemotherapy. International Journal of Cancer, 111, 398–403.CrossRefGoogle Scholar
  155. Velliyagounder, K., Kaplan, J. B., Furgang, D., Legarda, D., Diamond, G., Parkin, R. E., & Fine, D. H. (2003). One of two human lactoferrin variants exhibits increased antibacterial and transcriptional activation activities and is associated with localized juvenile periodontitis. Infection and Immunity, 71, 6141–6147.CrossRefGoogle Scholar
  156. Viejo-Diaz, M., Andres, M. T., Perez-Gil, J., Sanchez, M., & Fierro, J. F. (2003). Potassium efflux induced by a new lactoferrin-derived peptide mimicking the effect of native human lactoferrin on the bacterial cytoplasmic membrane. Biochemistry, 68, 217–227.Google Scholar
  157. Visca, P., Berlutti, F., Vittorioso, P., Dalmastri, C., Thaller, M. C., & Valenti, P. (1989). Growth and adsorption of Streptococcus mutans 6715-13 to hydroxyapatite in the presence of lactoferrin. Medical Microbiology and Immunology, 178, 69–79.CrossRefGoogle Scholar
  158. Wakabayashi, H., Takakura, N., Teraguchi, S., & Tamura, Y. (2003). Lactoferrin feeding augments peritoneal macrophage activities in mice intraperitoneally injected with inactivated Candida albicans. Microbiology and Immunology, 47, 37–43.Google Scholar
  159. Wakabayashi, H., Kurokawa, M., Shin, K., Teraguchi, S., Tamura, Y., & Shiraki, K. (2004). Oral lactoferrin prevents body weight loss and increases cytokine responses during herpes simplex virus type 1 infection of mice. Bioscience, Biotechnology, and Biochemistry, 68, 537–544.CrossRefGoogle Scholar
  160. Ward, P. P., Paz, E., & Conneely, O. M. (2005). Multifunctional roles of lactoferrin: A critical overview. Cellular and Molecular Life Sciences, 62, 2540–2548.CrossRefGoogle Scholar
  161. Williams, T. J., Schneider, R. P., & Willcox, M. D. (2003). The effect of protein-coated contact lenses on the adhesion and viability of Gram negative bacteria. Current Eye Research, 27, 227–235.CrossRefGoogle Scholar
  162. Willnow, T. E., Goldstein, J. L., Orth, K., Brown, M. S., & Herz, J. (1992). Low density lipoprotein receptor-related protein and gp330 bind similar ligands, including plasminogen activator-inhibitor complexes and lactoferrin, an inhibitor of chylomicron remnant clearance. Journal of Biological Chemistry, 267, 26172–26180.Google Scholar
  163. Wong, H., & Schryvers, A. B. (2003). Bacterial lactoferrin-binding protein A binds to both domains of the human lactoferrin C-lobe. Microbiology, 149, 1729–1737.CrossRefGoogle Scholar
  164. Xiao, Y., Monitto, C. L., Minhas, K. M., & Sidransky, D. (2004). Lactoferrin down-regulates G1 cyclin-dependent kinases during growth arrest of head and neck cancer cells. Clinical Cancer Research, 10, 8683–8686.CrossRefGoogle Scholar
  165. Xu, Y. Y., Samaranayake, Y. H., Samaranayake, L. P., & Nikawa, H. (1999). In vitro susceptibility of Candida species to lactoferrin. Medical Mycology, 37, 35–41.Google Scholar
  166. Yamaguchi, H., Abe, S., & Takakura, N. (2004). Potential usefulness of bovine lactoferrrin for adjunctive immunotherapy for mucosal Candida infections. Biometals, 17, 245–248.CrossRefGoogle Scholar
  167. Yamauchi, K., Wakabayashi, H., Shin, K., & Takase, M. (2006). Bovine lactoferrin: Benefits and mechanism of action against infections. Biochemistry and Cell Biology, 84, 291–296.CrossRefGoogle Scholar
  168. Yang, N., Strom, M. B., Mekonnen, S. M., Svendsen, J. S., & Rekdal, O. (2004). The effects of shortening lactoferrin derived peptides against tumour cells, bacteria and normal human cells. Journal of Peptide Science, 10, 37–46.CrossRefGoogle Scholar
  169. Yi, M., Kaneko, S., Yu, D. Y., & Murakami, S. (1997). Hepatitis C virus envelope proteins bind lactoferrin. Journal of Virology, 71, 5997–6002.Google Scholar
  170. Yoo, Y. C., Watanabe, R., Koike, Y., Mitobe, M., Shimazaki, K., Watanabe, S., & Azuma, I. (1997). Apoptosis in human leukemic cells induced by lactoferricin, a bovine milk protein-derived peptide: Involvement of reactive oxygen species. Biochemical and Biophysical Research Communications, 237, 624–628.CrossRefGoogle Scholar
  171. Yoo, Y. C., Watanabe, S., Watanabe, R., Hata, K., Shimazaki, K., & Azuma, I. (1998). Bovine lactoferrin and Lactoferricin inhibit tumor metastasis in mice. Advances in Experimental Medicine and Biology, 443, 285–291.Google Scholar
  172. Zagulski, T., Lipinski, P., Zagulska, A., Broniek, S., & Jarzabek, Z. (1989). Lactoferrin can protect mice against a lethal dose of Escherichia coli in experimental infection in vivo. British Journal of Experimental Pathology, 70, 697–704.Google Scholar
  173. Zimecki, M., Kocieba, M., & Kruzel, M. (2002). Immunoregulatory activities of lactoferrin in the delayed type hypersensitivity in mice are mediated by a receptor with affinity to mannose. Immunobiology, 205, 120–131.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Dominique Legrand
    • 1
  • Annick Pierce
  • Elisabeth Elass
  • Mathieu Carpentier
  • Christophe Mariller
  • Joël Mazurier
  1. 1.Unité de Glycobiologie Structurale et Fontionnelle, UMR n°8576 du CNRS, IFR 147 Université des Sciences et des Technologies de LilleF-59655 Villeneuve d’Ascq CedexFrance

Personalised recommendations