Milk Fat Globule Membrane Components–A Proteomic Approach

  • Maria Cavaletto
  • Maria Gabriella Giuffrida
  • Amedeo Conti
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 606)


The milk fat globule membrane (MFGM) is the membrane surrounding lipid droplets during their secretion in the alveolar lumen of the lactating mammary gland. MFGM proteins represent only 1–4% of total milk protein content; nevertheless, the MFGM consists of a complex system of integral and peripheral proteins, enzymes, and lipids. Despite their low classical nutritional value, MFGMproteins have been reported to play an important role in various cellular processes and defense mechanisms in the newborn.

Using a proteomic approach, such as high-resolution, two-dimensional electrophoresis followed by direct protein identification by mass spectrometry, it has been possible to comprehensively characterize the subcellular organization of MFGM.

This chapter covers the description of MFGM proteomics from the first studies about 10 years ago through the most recent papers. Most of the investigations deal with MFGMs from human and cow milk.


Lipid Droplet Xanthine Oxidase Proteomic Approach Peptide Mass Fingerprinting Lipid Globule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aoki, N. (2006). Regulation and functional relevance of milk fat globules and their components in the mammary gland. Bioscience, Biotechnology, Biochemistry, 70, 2019–2027.CrossRefGoogle Scholar
  2. Appel, R. D., Bairoch, A., Sanchez, J. C., Vargas, J. R., Golaz, O., Pasquali, C., & Hochstrasser, D. F. (1996). Federated 2-DE database: A simple means of publishing 2-DE data. Electrophoresis, 17, 540–546.CrossRefGoogle Scholar
  3. Bargmann, W., & Knoop, A. (1959). Über die morphologie der milchsekretion. Licht- und elektronenmikroskopische studien an der milchdrüse der ratte. Z. Zellforsch, 49, 344–388.CrossRefGoogle Scholar
  4. Cavaletto, M., Giuffrida, M. G., Fortunato, D., Gardano, L., Dellavalle, G., Napolitano, L., Giunta, C., Bertino, E., Fabris, C., & Conti, A. (2002). A proteomic approach to evaluate the butyrophilin gene family expression in human milk fat globule membrane. Proteomics, 2, 850–856.CrossRefGoogle Scholar
  5. Cavaletto, M., Giuffrida, M. G., & Conti, A. (2004). The proteomic approach to analysis of human milk fat globule membrane. Clinica Chimica Acta, 347, 41–48.CrossRefGoogle Scholar
  6. Charlwood, J., Hanrahan, S., Tyldesley, R., Langridge, J., Dwek, M., & Camilleri, P. (2002). Use of proteomic methodology for the characterization of human milk fat globular membrane proteins. Analytical Biochemistry, 301, 314–324.CrossRefGoogle Scholar
  7. Dreger, M. (2003). Proteome analysis at the level of subcellular structures. European Journal of Biochemistry, 270, 589–599.CrossRefGoogle Scholar
  8. Fong, B. Y., Norris, C. S., & MacGibbon, A. K. H. (2007). Protein and lipid composition of bovine milk-fat-globule membrane. International Dairy Journal, 17, 275–288.CrossRefGoogle Scholar
  9. Fortunato, D., Giuffrida, M. G., Cavaletto, M., Perono Garoffo, L., Dellavalle, G., Napolitano, L., Giunta, C., Fabris, C., Bertino, E., Coscia, A., & Conti, A. (2003). Structural proteome of human colostral fat globule membrane proteins. Proteomics, 3, 897–905.CrossRefGoogle Scholar
  10. Goldfarb, M. (1997). Two-dimensional electrophoretic analysis of human milk-fat-globule membrane proteins with attention to apolipoprotein E patterns. Electrophoresis, 18, 511–515.CrossRefGoogle Scholar
  11. Görg, A., Weiss, W., & Dunn, M. J. (2004). Current two-dimensional electrophoresis technology for proteomics. Proteomics, 4, 3665–3685.CrossRefGoogle Scholar
  12. Hamosh, M., Peterson, J. A., Henderson, T. R., Scallan, C. D., Kiwan, R., Ceriani, R. L., Armand, M., Mehta, N. R., & Hamosh, P. (1999). Protective function of human milk: The milk fat globule. Seminars in Perinatology, 23, 242–249.CrossRefGoogle Scholar
  13. Heid, H. W., & Keenan, T. W. (2005). Intracellular origin and secretion of milk fat globules. European Journal of Cell Biology, 84, 245–258.CrossRefGoogle Scholar
  14. Karhumaa, P., Leinonen, J., Parkkila, S., Kaunisto, K., Tapanainen, J., & Rajaniemi, H. (2001). The identification of secreted carbonic anhydrase VI as a constitutive glycoprotein of human and rat milk. Proceedings of the National Academy of Sciences USA, 98, 11604–11608.CrossRefGoogle Scholar
  15. Link, A. J., Eng, J., Schieltz, D. M., Carmack, E., Mize, G. J., Morris, D. R., Garvik, B. M., & Yates, J. R. III (1999). Direct analysis of protein complexes using mass spectrometry. Nature Biotechnology, 17, 676–682.CrossRefGoogle Scholar
  16. Mather, I. H. (2000). A review and proposed nomenclature for major proteins of the milk-fat globule membrane. Journal of Dairy Science, 83, 203–247.CrossRefGoogle Scholar
  17. Mather, I. H., & Keenan, T. W. (1998). Origin and secretion of milk lipids. Journal of Mammary Gland Biology Neoplasia, 3, 259–273.CrossRefGoogle Scholar
  18. McDonald, W. H., & Yates, J. R. III (2000). Proteomic tools for cell biology. Traffic, 1, 747–754.CrossRefGoogle Scholar
  19. O’Farrel, P. H. (1975). High resolution two-dimensional electrophoresis of proteins.Journal of Biological Chemistry, 250, 4007–4021.Google Scholar
  20. Pandey, A., & Mann, M. (2000). Proteomics to study genes and genomes. Nature, 405, 837–846.CrossRefGoogle Scholar
  21. Patton, W. F., & Beechem, J. M. (2001). Rainbow’s end: The quest for multiplexed fluorescence quantitative analysis in proteomics. Current Opinions in Chemical Biology, 6, 63–69.CrossRefGoogle Scholar
  22. Quaranta, S., Giuffrida, M. G., Cavaletto, M., Giunta, C., Godovac-Zimmermann, J., Cañas, B., Fabris, C., Bertino, E., Mombrò, M., & Conti, A. (2001). Human proteome enhancement: High-recovery method and improved two-dimensional map of colostral fat globule membrane proteins. Electrophoresis, 22, 1810–1818.CrossRefGoogle Scholar
  23. Reinhardt, T. A., & Lippolis, J. D. (2006). Bovine milk fat globule membrane proteome. Journal of Dairy Research, 73, 406–416.CrossRefGoogle Scholar
  24. Sztalryd, C., Bell, M., Lu, X., Mertz, P., Hickenbottom, S., Chang, B. H. J., Chan, L., Kimmel, A. R., & Londos, C. (2006). Functional compensation for adipose differentiation-related protein (ADFP) by Tip47 in an ADFP null embryonic cell line. Journal of Biological Chemistry, 281, 34341–34348.CrossRefGoogle Scholar
  25. Smolenski, G., Haines, S., Kwan, F. Y. S., Bond, J., Farr, V., Davis, S. R., Stelwagen, K., & Wheeler, T. T. (2007). Characterisation of host defence proteins in milk using a proteomic approach. Journal of Proteome Research, 6, 207–215.CrossRefGoogle Scholar
  26. Wooding, F. B. P. (1971). The mechanism of secretion of the milk fat globule. Journal of Cell Science, 9, 805–821.Google Scholar
  27. Wu, C. C., Howell, K. E., Neville, M. C., Yates, J. R. III, & McManaman, J. L. (2000). Proteomics reveals a link between the endoplasmic reticulum and lipid secretory mechanisms in mammary epithelial cells. Electrophoresis, 21, 3470–3482.CrossRefGoogle Scholar
  28. Ye, A., Singh, H., Taylor, M. W., & Anema, S. (2002). Characterization of protein components of natural and heat-treated milk fat globule membranes. International Dairy Journal, 12, 393–402.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Maria Cavaletto
    • 1
  • Maria Gabriella Giuffrida
  • Amedeo Conti
  1. 1.Biochemistry and Proteomics Section, DISAV Dipartimento Scienze dell’ Ambiente e della VitaUniversità del Piemonte OrientaleAlessandriaItaly

Personalised recommendations