Expression and Nutritional Regulation of Lipogenic Genes in the Ruminant Lactating Mammary Gland

  • L. Bernard
  • C. Leroux
  • Y. Chilliard
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 606)


The effect of nutrition on milk fat yield and composition has largely been investigated in cows and goats, with some differences for fatty acid (FA) composition responses and marked species differences in milk fat yield response. Recently, the characterization of lipogenic genes in ruminant species allowed in vivo studies focused on the effect of nutrition on mammary expression of these genes, in cows (mainly fed milk fat-depressing diets) and goats (fed lipid-supplemented diets). These few studies demonstrated some similarities in the regulation of gene expression between the two species, although the responses were not always in agreement with milkFAsecretion responses.Acentral role for trans-10 C18:1 and trans-10, cis-12 CLA as regulators of milk fat synthesis has been proposed. However, trans-10 C18:1 does not directly control milk fat synthesis in cows, despite the fact that it largely responds to dietary factors, with its concentration being negatively correlated with milk fat yield response in cows and, to a lesser extent, in goats. Milk trans-10, cis-12CLAis often correlated with milk fat depression in cows but not in goats and, when postruminally infused, acts as an inhibitor of the expression of key lipogenic genes in cows. Recent evidence has also proven the inhibitory effect of the trans-9, cis-11 CLA isomer. The molecular mechanisms by which nutrients regulate lipogenic gene expression have yet to be well identified, but a central role for SREBP-1 has been outlined as mediator of FA effects, whereas the roles of PPARs and STAT5 need to be determined. It is expected that the development of in vitro functional systems for lipid synthesis and secretion will allow future progress toward (1) the identification of the inhibitors and activators of fat synthesis, (2) the knowledge of cellular mechanisms, and (3) the understanding of differences between ruminant species.


nutrition gene expression lipogenesis mammary gland lactating ruminant 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abu-Elheiga, L., Almarza-Ortega, D. B., Baldini, A., & Wakil, S. J. (1997). Human acetyl-CoA carboxylase 2. Molecular cloning, characterization, chromosomal mapping, and evidence for two isoforms. Journal of Biological Chemistry, 272, 10669–10677.Google Scholar
  2. Abu-Elheiga, L., Brinkley, W. R., Zhong, L., Chirala, S. S., Woldegiorgis, G., & Wakil, S. J. (2000). The subcellular localization of acetyl-CoA carboxylase 2. Proceedings of the National Academy of Sciences USA, 97, 1444–1449.Google Scholar
  3. Abumrad, N. A., el-Maghrabi, M. R., Amri, E. Z., Lopez, E., & Grimaldi, P. A. (1993). Cloning of a rat adipocyte membrane protein implicated in binding or transport of long-chain fatty acids that is induced during preadipocyte differentiation. Homology with human CD36. Journal of Biological Chemistry, 268, 17665–17668.Google Scholar
  4. Ahnadi, C. E., Beswick, N., Delbecchi, L., Kennelly, J. J., & Lacasse, P. (2002). Addition of fish oil to diets for dairy cows. II. Effects on milk fat and gene expression of mammary lipogenic enzymes. Journal of Dairy Research, 69, 521–531.Google Scholar
  5. Andrade, P. V. D., & Schmidely, P. (2005). Effect of duodenal infusion of trans10, cis12-CLA on milk performance and milk fatty acid profile in dairy goats fed high or low concentrate diet in combination with rolled canola seed. Reproduction Nutrition Development, 46, 31–48.Google Scholar
  6. Angiolillo, A., Amills, M., Urrutia, B., Domenech, A., Sastre, Y., Badaoui, B., & Jordana, J. (2006). Identification of a single nucleotide polymorphism at intron 16 of the caprine acyl-coenzyme A: diacylglycerol acyltransferase 1 (DGAT1) gene. Journal of Dairy Research, in press.Google Scholar
  7. Annison, E. F., Linzell, J. L., & West, C. E. (1968). Mammary and whole animal metabolism of glucose and fatty acids in fasting lactating goats. Journal of Physiology, 197, 445–459.Google Scholar
  8. Aoki, N., Ishii, T., Ohira, S., Yamaguchi, Y., Negi, M., Adachi, T., Nakamura, R., & Matsuda, T. (1997). Stage specific expression of milk fat globule membrane glycoproteins in mouse mammary gland: Comparison of MFG-E8, butyrophilin, and CD36 with a major milk protein, beta-casein. Biochimica et Biophysica Acta, 1334, 182–190.Google Scholar
  9. Assumpcao, R. P., Santos, F. D., Setta, C. L., Barreto, G. F., Matta, I. E., Estadella, D., Azeredo, V. B., & Tavares do Carmo, M. G. (2002). Trans fatty acids in maternal diet may impair lipid biosynthesis in mammary gland of lactating rats. Annals of Nutrition and Metabolism, 46, 169–175.Google Scholar
  10. Barber, M. C., & Travers, M. T. (1995). Cloning and characterisation of multiple acetyl-CoA carboxylase transcripts in ovine adipose tissue. Gene, 154, 271–275.Google Scholar
  11. Barber, M. C., & Travers, M. T. (1998). Elucidation of a promoter activity that directs the expression of acetyl-CoA carboxylase alpha with an alternative N-terminus in a tissue-restricted fashion. Biochemical Journal, 333 (Pt 1), 17–25.Google Scholar
  12. Barber, M. C., Clegg, R. A., Travers, M. T., & Vernon, R. G. (1997). Lipid metabolism in the lactating mammary gland. Biochimica et Biophysica Acta, 1347, 101–126.Google Scholar
  13. Barber, M. C., Vallance, A. J., Kennedy, H. T., & Travers, M. T. (2003). Induction of transcripts derived from promoter III of the acetyl-CoA carboxylase-alpha gene in mammary gland is associated with recruitment of SREBP-1 to a region of the proximal promoter defined by a DNase I hypersensitive site. Biochemical Journal, 375, 489–501.Google Scholar
  14. Barber, M. C., Price, N. T., & Travers, M. T. (2005). Structure and regulation of acetyl-CoA carboxylase genes of metazoa. Biochimica et Biophysica Acta, 1733, 1–28.Google Scholar
  15. Barillet, F., Arranz, J. J., & Carta, A. (2005). Mapping quantitative trait loci for milk production and genetic polymorphisms of milk proteins in dairy sheep. Genetics Selection Evolution, 37 (Suppl 1), S109–123.Google Scholar
  16. Bauman, D. E., & Griinari, J. M. (2001). Regulation and nutritional manipulation of milk fat: Low-fat milk syndrome. Livestock Production Science,70, 15–29.Google Scholar
  17. Bauman, D. E., & Griinari, J. M. (2003). Nutritional regulation of milk fat synthesis. Annual Review of Nutrition, 23, 203–227.Google Scholar
  18. Bauman D. E., Corl, B. A., Baumgard, L. H., & Griinari, J. M. (2001). Conjugated linoleic acid (CLA) and the dairy cow. In J.Wisman and P.C. Garnsworthy (Eds.), Recent Advances in Animal Nutrition (pp. 221–250). Nottingham: Nottingham University Press.Google Scholar
  19. Baumgard, L. H., Corl, B. A., Dwyer, D. A., Sæbo, A., & Bauman, D. E. (2000). Identification of the conjugated linoleic acid isomer that inhibits milk fat synthesis. American Journal of Physiology—Regulatory, Integrative and Comparative Physiology, 278, R179–184.Google Scholar
  20. Baumgard, L. H., Corl, B. A., Dwyer, D. A., & Bauman, D. E. (2002). Effects of conjugated linoleic acids (CLA) on tissue response to homeostatic signals and plasma variables associated with lipid metabolism in lactating dairy cows. Journal of Animal Science, 80, 1285–1293.Google Scholar
  21. Bernard, L., Leroux, C., Hayes, H., Gautier, M., Chilliard, Y., & Martin, P. (2001). Characterization of the caprine stearoyl-CoA desaturase gene and its mRNA showing an unusually long 3'-UTR sequence arising from a single exon. Gene, 281, 53–61.Google Scholar
  22. Bernard, C., Degrelle, S., Ollier, S., Campion, E., Cassar-Malek, I., Charpigny, G., Dhorne-Pollet, S., Hue, I., Hocquette, J. F., Le Provost, F., Leroux, C., Piump, F., Rolland, G., Uzbekova, S., Zalachas, E., & Martin, P. (2005a). A cDNA macro-array resource for gene expression profiling in ruminant tissues involved in reproduction and production (milk and beef) traits. Journal of Physiology and Pharmacology, 56 (Suppl 3), 215–224.Google Scholar
  23. Bernard, L., Leroux, C., Bonnet, M., Rouel, J., Martin P., & Chilliard Y. (2005b). Expression and nutritional regulation of lipogenic genes in mammary gland and adipose tissues of lactating goats. Journal of Dairy Research, 72, 250–255.Google Scholar
  24. Bernard, L., Rouel, J., Leroux, C., Ferlay, A., Faulconnier, Y., Legrand P., & Chilliard, Y. (2005c). Mammary lipid metabolism and fatty acid secretion in Alpine goats fed vegetable lipids. Journal of Dairy Science, 88,1478–1489.Google Scholar
  25. Bernard, L., Leroux, C., & Chilliard, Y. (2006). Characterisation and nutritional regulation of the main lipogenic genes in the ruminant lactating mammary gland. In K. Sejrsen, T. Hvelplund, M.O. Nielsen (Eds.), Ruminant Physiology: Digestion, metabolism and impact of nutrition on gene expression, immunology and stress (pp. 295–362). Wageningen, The Netherlands: Wageningen Academic Publishers.Google Scholar
  26. Beswick, N. S., & Kennelly, J. J. (1998). The influence of bovine growth hormone and growth hormone releasing factor on acetyl-CoA carboxylase and fatty acid synthase in primiparous Holstein cows. Comparative Biochemistry and Physiology. Part C, Pharmacology, Toxicology and Endocrinology, 120, 241–249.Google Scholar
  27. Bickerstaffe, R., & Annison, E. F. (1970). Lipid metabolism in the perfused chicken liver. The uptake and metabolism of oleic acid, elaidic acid, cis-vaccenic acid, trans-vaccenic acid and stearic acid. Biochemical Journal, 118, 433–442.Google Scholar
  28. Bonnet, M., Faulconnier, Y., Fléchet, J., Hocquette, J. F., Leroux, C., Langin, D., Martin, P., & Chilliard, Y. (1998). Messenger RNAs encoding lipoprotein lipase, fatty acid synthase and hormone-sensitive lipase in the adipose tissue of underfed-refed ewes and cows. Reproduction, Nutrition, Development, 38, 297–307.Google Scholar
  29. Bonnet, M., Leroux, C., Chilliard, Y., & Martin, P. (2000a). Rapid communication: Nucleotide sequence of the ovine lipoprotein lipase cDNA. Journal of Animal Science, 78, 2994–2995.Google Scholar
  30. Bonnet, M., Leroux, C., Faulconnier, Y., Hocquette, J. F., Bocquier, F., Martin, P., & Chilliard, Y. (2000b). Lipoprotein lipase activity and mRNA are up-regulated by refeeding in adipose tissue and cardiac muscle of sheep. Journal of Nutrition, 130, 749–756.Google Scholar
  31. Brown, M. S., & Goldstein, J. L. (1997). The SREBP pathway: Regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor. Cell, 89, 331–340.Google Scholar
  32. Camps, L., Reina, M., Llobera, M., Vilaro, S., & Olivecrona, T. (1990). Lipoprotein lipase: Cellular origin and functional distribution. American Journal of Physiology, 258, C673–681.Google Scholar
  33. Chilliard, Y., & Ferlay, A. (2004). Dietary lipids and forages interactions on cow and goat milk fatty acid composition and sensory properties. Reproduction, Nutrition, Development, 44, 467–492.Google Scholar
  34. Chilliard, Y., Gagliostro, G., Fléchet, J., Lefaivre, J., & Sebastian, I. (1991). Duodenal rapeseed oil infusion in early and midlactation cows. 5. Milk fatty acids and adipose tissue lipogenic activities. Journal of Dairy Science, 74, 1844–1854.Google Scholar
  35. Chilliard, Y., Ferlay, A., Mansbridge, R. M., & Doreau, M. (2000). Ruminant milk fat plasticity: Nutritional control of saturated, polyunsaturated, trans and conjugated fatty acids. Annales de Zootechnie, 49, 181–205.Google Scholar
  36. Chilliard, Y., Ferlay, A., & Doreau, M. (2001). Effect of different types of forages, animal fat or marine oils in cow's diet on milk fat secretion and composition, especially conjugated linoleic acid (Cla) and polyunsaturated fatty acids. Livestock Production Science, 70, 31–48.Google Scholar
  37. Chilliard, Y., Ferlay, A., Rouel, J., & Lamberet, G. (2003a). A review of nutritional and physiological factors affecting goat milk lipid synthesis and lipolysis. Journal of Dairy Science, 86, 1751–1770.Google Scholar
  38. Chilliard, Y., Rouel, J., Capitan, P., Chabosseau, J. M., Raynal-Ljutovac, K., & Ferlay, A. (2003b). Correlations between milk fat content and fatty acid composition in goats receiving different combinations of forages and lipid supplements. In Y. van der Honing (Ed.), Book of Abstracts of the 54th Annual Meeting of European Association for Animal Production (p. 343), Rome, Italy, August 31–September 3, 2003. Wageningen, The Netherlands: Wageningen Academic Publishers.Google Scholar
  39. Chilliard, Y., Rouel, J., Chabosseau, J. M., Capitan, P., Gaborit, P., & Ferlay, A. (2003c). Interactions between raygrass preservation and linseed oil supplementation on goat milk yield and composition, including trans and conjugated fatty acids. In Y. van der Honing (Ed.), Book of Abstracts of the 54th Annual Meeting of European Association for Animal Production(p. 343, Rome, Italy, August 31–September 3, 2003. Wageningen, The Netherlands: Wageningen Academic Publishers.Google Scholar
  40. Chilliard, Y., Rouel, J., Ferlay, A., Bernard, L., Gaborit, P., Raynal-Ljutovac, K., Lauret, A., & Leroux, C. (2006a). Optimising goat's milk and cheese fatty acid composition. In C. Williams and J. Buttriss (Eds.), Improving the Fat Content of Foods(pp. 281–312). Cambridge: Woodhead Publishing Ltd.Google Scholar
  41. Chilliard, Y., Ollier, S., Rouel, J., Bernard, L., & Leroux, C. (2006b). Milk fatty acid profile in goats receiving high forage or high concentrate diets supplemented, or not, with either whole rapeseeds or sunflower oil. In Y. van der Honing (Ed.), Book of Abstracts of the 57th Annual Meeting of European Association for Animal Production(p. 296), Antalya, Turkey, September 17–20, 2006. Wageningen, The Netherlands: Wageningen Academic Publishers.Google Scholar
  42. Christie, W. W. (1979). The effects of diet and other factors on the lipid composition of ruminant tissues and milk. Progress in Lipid Research,17, 245–277.Google Scholar
  43. Chung, M., Ha, S., Jeong, S., Bok, J., Cho, K., Baik, M., & Choi, Y. (2000). Cloning and characterization of bovine stearoyl CoA desaturase cDNA from adipose tissues. Bioscience, Biotechnology, and Biochemistry, 64, 1526–1530.Google Scholar
  44. Clarke, S. D. (2001). Nonalcoholic steatosis and steatohepatitis. I. Molecular mechanism for polyunsaturated fatty acid regulation of gene transcription. American Journal of Physiology—Gastrointestinal and Liver Physiology, 281, G865–869.Google Scholar
  45. Cobanoglu, O., Zaitoun, I., Chang, Y. M., Shook, G. E., & Khatib, H. (2006). Effects of the signal transducer and activator of transcription 1 (STAT1) gene on milk production traits in Holstein dairy cattle. Journal of Dairy Science, 89, 4433–4437.Google Scholar
  46. Coleman, R. A., & Lee, D. P. (2004). Enzymes of triacylglycerol synthesis and their regulation. Progress in Lipid Research, 43, 134–176.Google Scholar
  47. Coleman, R. A., Lewin, T. M., & Muoio, D. M. (2000). Physiological and nutritional regulation of enzymes of triacylglycerol synthesis. Annual Review of Nutrition, 20, 77–103.Google Scholar
  48. Corl, B. A., Baumgard, L. H., Dwyer, D. A., Griinari, J. M., Phillips, B. S., & Bauman, D. E. (2001). The role of Delta(9)-desaturase in the production of cis-9, trans-11 CLA. Journal of Nutritional Biochemistry, 12, 622–630.Google Scholar
  49. Corl, B. A., Baumgard, L. H., Griinari, J. M., Delmonte, P., Morehouse, K. M., Yurawecz, M. P., & Bauman, D. E. (2002). Trans-7,cis-9 CLA is synthesized endogenously by delta9-desaturase in dairy cows. Lipids, 37, 681–688.Google Scholar
  50. Coulon, J. B., Dupont, D., Pochet, S., Pradel, P., & Duployer, H. (2001). Effect of genetic potential and level of feeding on milk protein composition. Journal of Dairy Research, 68, 569–577.Google Scholar
  51. Cunningham, B. A., Moncur, J. T., Huntington, J. T., & Kinlaw, W. B. (1998). ?Spot 14? protein: A metabolic integrator in normal and neoplastic cells. Thyroid, 8, 815–825.Google Scholar
  52. Daniels, K. M., Webb, K. E., Jr., McGilliard, M. L., Meyer, M. J., Van Amburgh, M. E., & Akers, R. M. (2006). Effects of body weight and nutrition on mammary protein expression profiles in Holstein heifers. Journal of Dairy Science, 89, 4276–4288.Google Scholar
  53. Davis, C. L., & Brown, R. E. (1970). Low-fat milk syndrome. In A.T. Phillipson (Ed.) Physiology of Digestion and Metabolism in Ruminants(pp. 545–565). Newcastle Upon Tyne: Oriel.Google Scholar
  54. Delbecchi, L., Ahnadi, C. E., Kennelly J. J., & Lacasse, P. (2001). Milk fatty acid composition and mammary lipid metabolism in Holstein cows fed protected or unprotected canola seeds. Journal of Dairy Science, 84, 1375–1381.Google Scholar
  55. Del Prado, M., Villalpando, S., Gordillo, J., & Hernandez-Montes, H. (1999). A high dietary lipid intake during pregnancy and lactation enhances mammary gland lipid uptake and lipoprotein lipase activity in rats. Journal of Nutrition, 129, 1574–1578.Google Scholar
  56. Ding, S. T., Schinckel, A. P., Weber, T. E., & Mersmann, H. J. (2000). Expression of porcine transcription factors and genes related to fatty acid metabolism in different tissues and genetic populations. Journal of Animal Science, 78, 2127–2134.Google Scholar
  57. Eberlé, D., Hegarty, B., Bossard, P., Ferré, P., & Foufelle, F. (2004). SREBP transcription factors: Master regulators of lipid homeostasis. Biochimie, 86, 839–848.Google Scholar
  58. Enoch, H. G., Catala, A., & Strittmatter, P. (1976). Mechanism of rat liver microsomal stearyl-CoA desaturase. Studies of the substrate specificity, enzyme-substrate interactions, and the function of lipid. Journal of Biological Chemistry, 251, 5095–5103.Google Scholar
  59. Ferlay, A., Rouel, J., Chabosseau, J. M., Capitan, P., Raynal-Ljutovac, K., & Chilliard, Y. (2003). Interactions between raygrass preservation and high-oleic sunflower oil supplementation on goat milk composition, including trans and conjugated fatty acids. In Y. van der Honing (Ed.), Book of Abstracts of the 55th Annual Meeting of European Association for Animal Production (p. 350), Bled, Slovenia, September 5–9, 2004. Wageningen, The Netherlands: Wageningen Academic Publishers.Google Scholar
  60. Gagliostro, G., Chilliard, Y., & Davicco, M. J. (1991). Duodenal rapeseed oil infusion in early and midlactation cows. 3. Plasma hormones and mammary apparent uptake of metabolites. Journal of Dairy Science, 74, 1893–1903.Google Scholar
  61. German, J. B., Morand, C., Dillard, C. J., & Xu, R. (1997). Milk fat composition: Targets for alteration of function and nutrition. In R. A. S. Welch, D. J. W. Burns, S. R. Davis, A. I. Popay, and C. G. Prosser (Eds.), Milk Composition, Production and Biotechnology (pp. 39–72). New York: CAB International.Google Scholar
  62. Girard, J., Perdereau, D., Foufelle, F., Prip-Buus, C., & Ferré, P. (1994). Regulation of lipogenic enzyme gene expression by nutrients and hormones. FASEB Journal, 8, 36–42.Google Scholar
  63. Girard, J., Ferré, P., & Foufelle, F. (1997). Mechanisms by which carbohydrates regulate expression of genes for glycolytic and lipogenic enzymes. Annual Review of Nutrition,17, 325–352.Google Scholar
  64. Granlund, L., Juvet, L. K., Pedersen, J. I., & Nebb, H. I. (2003). Trans10, cis12-conjugated linoleic acid prevents triacylglycerol accumulation in adipocytes by acting as a PPARγ modulator. Journal of Lipid Research, 44, 1441–1452.Google Scholar
  65. Griinari, J. M., Dwyer, D. A., McGuire, M. A., Bauman, D. E., Palmquist, D. L., & Nurmela, K. V. (1998). Trans-octadecenoic acids and milk fat depression in lactating dairy cows. Journal of Dairy Science, 81, 1251–1261.Google Scholar
  66. Griinari, J. M., Corl, B. A., Lacy, S. H., Chouinard, P. Y., Nurmela, K. V., & Bauman, D. E. (2000). Conjugated linoleic acid is synthesized endogenously in lactating dairy cows by delta(9)-desaturase. Journal of Nutrition, 130, 2285–2291.Google Scholar
  67. Grisart, B., Coppieters, W., Farnir, F., Karim, L., Ford, C., Berzi, P., Cambisano, N., Mni, M., Reid, S., Simon, P., Spelman, R., Georges, M., & Snell, R. (2002). Positional candidate cloning of a QTL in dairy cattle: Identification of a missense mutation in the bovine DGAT1 gene with major effect on milk yield and composition. Genome Research,12, 222–231.Google Scholar
  68. Grisart, B., Farnir, F., Karim, L., Cambisano, N., Kim, J. J., Kvasz, A., Mni, M., Simon, P., Frere, J. M., Coppieters, W., & Georges, M. (2004). Genetic and functional confirmation of the causality of the DGAT1 K232A quantitative trait nucleotide in affecting milk yield and composition. Proceedings of the National Academy of Sciences USA, 101, 2398–2403.Google Scholar
  69. Guichard, C., Dugail, I., Le Liepvre, X., & Lavau, M. (1992). Genetic regulation of fatty acid synthetase expression in adipose tissue: Overtranscription of the gene in genetically obese rats. Journal of Lipid Research, 33, 679–687.Google Scholar
  70. Hansen, H. O., & Knudsen, J. (1987). Effect of exogenous long-chain fatty acids on lipid biosynthesis in dispersed ruminant mammary gland epithelial cells: Esterification of long-chain exogenous fatty acids. Journal of Dairy Science, 70, 1344–1349.Google Scholar
  71. Hansen, H. O., Tornehave, D., & Knudsen, J. (1986). Synthesis of milk specific fatty acids and proteins by dispersed goat mammary-gland epithelial cells. Biochemical Journal, 238, 167–172.Google Scholar
  72. Harvatine, K. J., & Bauman, D. E. (2006). SREBP1 and thyroid hormone responsive spot 14 (S14) are involved in the regulation of bovine mammary lipid synthesis during diet-induced milk fat depression and treatment with CLA. Journal of Nutrition, 136, 2468–2474.Google Scholar
  73. He, J., & Furmanski, P. (1995). Sequence specificity and transcriptional activation in the binding of lactoferrin to DNA. Nature, 373, 721–724.Google Scholar
  74. Hennighausen, L. (1997). Molecular mechanisms of hormone controlled gene expression in the breast. Molecular Biology Reports, 24,169–174.Google Scholar
  75. Jayakumar, A., Tai, M. H., Huang, W. Y., al-Feel, W., Hsu, M., Abu-Elheiga, L., Chirala, S. S., & Wakil, S. J. (1995). Human fatty acid synthase: Properties and molecular cloning. Proceedings of the National Academy of Sciences USA, 92, 8695–8699.Google Scholar
  76. Jayan, G. C., & Herbein, J. H. (2000). “Healthier” dairy fat using trans-vaccenic acid. Nutrition and food Science, 30, 304–309.Google Scholar
  77. Jensen, D. R., Bessesen, D. H., Etienne, J., Eckel, R. H., & Neville, M. C. (1991). Distribution and source of lipoprotein lipase in mouse mammary gland. Journal of Lipid Research, 32, 733–742.Google Scholar
  78. Jensen, R. G. (2002). The composition of bovine milk lipids: January 1995 to December 2000. Journal of Dairy Science, 85, 295–350.Google Scholar
  79. Keating, A. F., Stanton, C., Murphy, J. J., Smith, T. J., Ross, R. P., & Cairns, M. T. (2005). Isolation and characterization of the bovine stearoyl-CoA desaturase promoter and analysis of polymorphisms in the promoter region in dairy cows. Mammalian Genome, 16, 184–193.Google Scholar
  80. Keating, A. F., Kennelly, J. J., & Zhao, F. Q. (2006). Characterization and regulation of the bovine stearoyl-CoA desaturase gene promoter. Biochemical and Biophysical Research Communications, 344, 233–240.Google Scholar
  81. Kim, K. H. (1997). Regulation of mammalian acetyl-coenzyme A carboxylase. Annual Review of Nutrition 17, 77–99.Google Scholar
  82. Kinsella, J. E. (1970). Stearic acid metabolism by mammary cells. Journal of Dairy Science, 53, 1757–1765.Google Scholar
  83. Klein, I., Sarkadi, B., & Varadi, A. (1999). An inventory of the human ABC proteins. Biochimica et Biophysica Acta, 1461, 237–262.Google Scholar
  84. Knudsen, J., & Grunnet, I. (1982). Transacylation as a chain-termination mechanism in fatty acid synthesis by mammalian fatty acid synthetase. Synthesis of medium-chain-length (C8-C12) acyl-CoA esters by goat mammary-gland fatty acid synthetase. Biochemical Journal, 202, 139–143.Google Scholar
  85. Knudsen, J., Neergaard, T. B., Gaigg, B., Jensen, M. V., & Hansen, J. K. (2000). Role of acyl-CoA binding protein in acyl-CoA metabolism and acyl-CoA-mediated cell signaling. Journal of Nutrition, 130, 294S–298S.Google Scholar
  86. Kühn, C., Thaller, G., Winter, A., Bininda-Emonds, O. R., Kaupe, B., Erhardt, G., Bennewitz, J., Schwerin, M., & Fries, R. (2004). Evidence for multiple alleles at the DGAT1 locus better explains a quantitative trait locus with major effect on milk fat content in cattle. Genetics, 167, 1873–1881.Google Scholar
  87. Lee, S. H., & Hossner, K. L. (2002). Coordinate regulation of ovine adipose tissue gene expression by propionate. Journal of Animal Science, 80, 2840–2849.Google Scholar
  88. Legrand, P., Catheline, D., Fichot, M. C., & Lemarchal, P. (1997). Inhibiting delta9-desaturase activity impairs triacylglycerol secretion in cultured chicken hepatocytes. Journal of Nutrition, 127, 249–256.Google Scholar
  89. Lehner, R., & Kuksis, A. (1996). Biosynthesis of triacylglycerols. Progress in Lipid Research, 35, 169–201.Google Scholar
  90. Leroux, C., Le Provost, F., Petit, E., Bernard, L., Chilliard, Y., & Martin, P. (2003). Real-time RT-PCR and cDNA macroarray to study the impact of the genetic polymorphism at the alphas1-casein locus on the expression of genes in the goat mammary gland during lactation. Reproduction, Nutrition, Development, 43, 459–469.Google Scholar
  91. Leroux, C., Laubier, J., Giraud-Delville, C., Le Provost, F., Chadi, S., Bernard, L., Bonnet, M., Chilliard, Y., & Martin, P. (2007). Sharp increase of goat fatty acid synthase gene expression in mammary gland during the last part of pregnancy. Journal of Dairy Research, submitted.Google Scholar
  92. Lin, X., Loor, J. J., & Herbein, J. H. (2004). Trans10, cis12-18:2 is a more potent inhibitor of de novo fatty acid synthesis and desaturation than cis9,trans11-18:2 in the mammary gland of lactating mice. Journal of Nutrition, 134, 1362–1368.Google Scholar
  93. Liu, W., Degner, S. C., & Romagnolo, D. F. (2006). Trans-10, cis-12 conjugated linoleic acid inhibits prolactin-induced cytosolic NADP+-dependent isocitrate dehydrogenase expression in bovine mammary epithelial cells. Journal of Nutrition, 136, 2743–2747.Google Scholar
  94. Lock, A. L., Teles, B. M., Perfield, J. W. II, Bauman, D. E., & Sinclair, L. A. (2006). A conjugated linoleic acid supplement containing trans-10, cis-12 reduces milk fat synthesis in lactating sheep. Journal of Dairy Science, 89, 1525–1532.Google Scholar
  95. Lock, A. L., Tyburczy, C., Dwyer, D. A., Harvatine, K. J., Destaillats, F., Mouloungui, Z., Candy, L., & Bauman, D. E. (2007). Trans-10 octadecenoic acid does not reduce milk fat synthesis in dairy cows. Journal of Nutrition, 137, 71–76.Google Scholar
  96. Loor, J. J., & Herbein, J. H. (2003). Reduced fatty acid synthesis and desaturation due to exogenous trans10,cis12-CLA in cows fed oleic or linoleic oil. Journal of Dairy Science, 86, 1354–1369.Google Scholar
  97. Loor, J. J., Ueda, K., Ferlay, A., Chilliard, Y., & Doreau, M. (2004a). Biohydrogenation, duodenal flow, and intestinal digestibility of trans fatty acids and conjugated linoleic acids in response to dietary forage:concentrate ratio and linseed oil in dairy cows. Journal of Dairy Science, 87, 2472–2485.Google Scholar
  98. Loor, J. J., Ueda, K., Ferlay, A., Chilliard, Y., & Doreau, M. (2004b). Short communication: Diurnal profiles of conjugated linoleic acids and trans fatty acids in ruminal fluid from cows fed a high concentrate diet supplemented with fish oil, linseed oil, or sunflower oil. Journal of Dairy Science, 87, 2468–2471.Google Scholar
  99. Loor, J. J., Dann, H. M., Everts, R. E., Rodriguez-Zas, S. L., Lewin, H. A., &. Drackley, J. K. (2004c). Mammary and hepatic gene expression analysis in peripartal dairy cows using a bovine cDNA microarray. Journal of Animal Science, 82 (Suppl 1), 196.Google Scholar
  100. Loor, J. J., Ferlay, A., Ollier, A., Doreau, M., & Chilliard, Y. (2005a). Relationship among trans and conjugated fatty acids and bovine milk fat yield due to dietary concentrate and linseed oil. Journal of Dairy Science, 88, 726–740.Google Scholar
  101. Loor, J. J., Doreau, M., Chardigny, J. M., Ollier, A., Sébédio, J. L., & Chilliard, Y. (2005b). Effects of ruminal or duodenal supply of fish oil on milk fat secretion and profiles of trans-fatty acids and conjugated linoleic acid isomers in dairy cows fed maize silage. Animal Feed Science and Technology, 119, 227–246.Google Scholar
  102. Loor, J. J., Piperova, L. S., Everts, R. E., Rodriguez-Zas, S. L., Drackley, J. K., Erdman, R. A., & Lewin, H. A. (2005c). Mammary gene expression profiling in cows fed a milk fat-depressing diet using a bovine 13,000 oligonucleotide microarray. Journal of Animal Science, 83 (Suppl 1), 120.Google Scholar
  103. Loor, J. J., Ferlay, A., Ollier, A., Ueda, K., Doreau, M., & Chilliard, Y. (2005d). High-concentrate diets and polyunsaturated oils alter trans and conjugated isomers in bovine rumen, blood, and milk. Journal of Dairy Science, 88,3986–3999.Google Scholar
  104. Lopez-Casillas, F., Ponce-Castaneda, M. V., & Kim, K. H. (1991). In vivo regulation of the activity of the two promoters of the rat acetyl coenzyme-A carboxylase gene. Endocrinology, 129, 1049–1058.Google Scholar
  105. Mao, J., Marcos, S., Davis, S. K., Burzlaff, J., & Seyfert, H. M. (2001). Genomic distribution of three promoters of the bovine gene encoding acetyl-CoA carboxylase alpha and evidence that the nutritionally regulated promoter I contains a repressive element different from that in rat. Biochemical Journal, 358, 127–135.Google Scholar
  106. Mao, J., Molenaar, A. J., Wheeler, T. T., & Seyfert, H. M. (2002). STAT5 binding contributes to lactational stimulation of promoter III expressing the bovine acetyl-CoA carboxylase alpha-encoding gene in the mammary gland. Journal of Molecular Endocrinology, 29, 73–88.Google Scholar
  107. Marshall, M. O., & Knudsen, J. (1977). The specificity of 1-acyl-sn-glycerol 3-phosphate acyltransferase in microsomal fractions from lactating cow mammary gland towards short, medium and long chain acyl-CoA esters. Biochimica et Biophysica Acta, 489, 236–241.Google Scholar
  108. Massaro, M., Carluccio, M. A., & De Caterina, R. (1999). Direct vascular antiatherogenic effects of oleic acid: A clue to the cardioprotective effects of the Mediterranean diet. Cardiologia, 44, 507–513.Google Scholar
  109. Mather, I. H. (2000). A review and proposed nomenclature for major proteins of the milk-fat globule membrane. Journal of Dairy Science, 83, 203–247.Google Scholar
  110. Matitashvili, E., & Bauman, D. E. (2000). Effect of different isomers of C18:1 and C18:2 fatty acids on lipogenesis in bovine mammary epithelial cells. Journal of Animal Science, 78, 165.Google Scholar
  111. Mayorek, N., Grinstein, I., & Bar-Tana, J. (1989). Triacylglycerol synthesis in cultured rat hepatocytes. The rate-limiting role of diacylglycerol acyltransferase. European Journal of Biochemistry, 182, 395–400.Google Scholar
  112. Mihara, K. (1990). Structure and regulation of rat liver microsomal stearoyl-CoA desaturase gene. Journal of Biochemistry, 108, 1022–1029.Google Scholar
  113. Mikkelsen, J., & Knudsen, J. (1987). Acyl-CoA-binding protein from cow. Binding characteristics and cellular and tissue distribution. Biochemical Journal, 248, 709–714.Google Scholar
  114. Miller, R. T., Scappino, L. A., Long, S. M., & Corton, J. C. (2001). Role of thyroid hormones in hepatic effects of peroxisome proliferators. Toxicologic Pathology, 29, 149–155.Google Scholar
  115. Mistry, D. H., & Medrano, J. F. (2002). Cloning and localization of the bovine and ovine lysophosphatidic acid acyltransferase (LPAAT) genes that codes for an enzyme involved in triglyceride biosynthesis. Journal of Dairy Science, 85, 28–35.Google Scholar
  116. Molenaar, A., Mao, J., Oden, K., & Seyfert, H. M. (2003). All three promoters of the acetyl-coenzyme A-carboxylase alpha-encoding gene are expressed in mammary epithelial cells of ruminants. Journal of Histochemistry and Cytochemistry, 51, 1073–1081.Google Scholar
  117. Mosley, E. E., Powell, G. L., Riley, M. B., & Jenkins, T. C. (2002). Microbial biohydrogenation of oleic acid to trans isomers in vitro. Journal of Lipid Research, 43, 290–296.Google Scholar
  118. Murrieta, C. M., Hess, B. W., Scholljegerdes, E. J., Engle, T. E., Hossner, K. L., Moss, G. E., & Rule, D. C. (2006). Evaluation of milk somatic cells as a source of mRNA for study of lipogenesis in the mammary gland of lactating beef cows supplemented with dietary high-linoleate safflower seeds. Journal of Animal Science, 84, 2399–2405.Google Scholar
  119. Mutch, D. M., Anderle, P., Fiaux, M., Mansourian, R., Vidal, K., Wahli, W., Williamson, G., & Roberts, M. A. (2004). Regional variations in ABC transporter expression along the mouse intestinal tract. Physiological Genomics, 17, 11–20.Google Scholar
  120. Neville, M. C., & Picciano, M. F. (1997). Regulation of milk lipid secretion and composition. Annual Review of Nutrition, 17, 159–183.Google Scholar
  121. Nielsen, M. O., & Jakobsen, K. (1994). Changes in mammary uptake of free fatty acids, triglyceride, cholesterol and phospholipid in relation to milk synthesis during lactation in goats. Comparative Biochemistry and Physiology. Part A, Physiology, 109, 857–867.Google Scholar
  122. Ntambi, J. M. (1999). Regulation of stearoyl-CoA desaturase by polyunsaturated fatty acids and cholesterol. Journal of Lipid Research, 40, 1549–1558.Google Scholar
  123. Ntambi, J. M., Buhrow, S. A., Kaestner, K. H., Christy, R. J., Sibley, E., Kelly, T. J., Jr., & Lane, M. D. (1988). Differentiation-induced gene expression in 3T3-L1 preadipocytes. Characterization of a differentially expressed gene encoding stearoyl-CoA desaturase. Journal of Biological Chemistry, 263, 17291–17300.Google Scholar
  124. Offer, N. W., Speake, B. K., Dixon, J., & Marsden, M. (2001). Effect of fish-oil supplementation on levels of (N-3) poly-unsaturated fatty acids in the lipoprotein fractions of bovine plasma. Animal Science, 73, 523–531.Google Scholar
  125. Ogg, S. L., Weldon, A. K., Dobbie, L., Smith, A. J., & Mather, I. H. (2004). Expression of butyrophilin (Btn1a1) in lactating mammary gland is essential for the regulated secretion of milk-lipid droplets. Proceedings of the National Academy of Sciences USA, 101, 10084–10089.Google Scholar
  126. Ollier, S., Robert-Granié, C., Bes, S., Goutte, M., Faulconnier, Y., Chilliard, Y., & Leroux, C. (2006). Impact of nutrition on mammary transcriptome and its interaction with the CSN1S1 genotype in lactating goats. In Y. van der Honing (Ed.) Book of Abstracts, 57th Annual Meeting of European Association for Animal Production(p. 49), Antalya, Turkey, September 17–20, 2006. Wageningen, The Netherlands: Wageningen Academic Publishers.Google Scholar
  127. Ollier, S., Robert-Granié, C., Bernard, L., Chilliard, Y., & Leroux, C. (2007). Mammary transcriptome analysis of food-deprived lactating goats highlights genes involved in milk secretion and programmed cell death. Journal of Nutrition,137, 560–567.Google Scholar
  128. Palmquist, D. L., Beaulieu, A. D., & Barbano, D. M. (1993). Feed and animal factors influencing milk fat composition. Journal of Dairy Science, 76, 1753–1771.Google Scholar
  129. Pariza, M. W., Park, Y., & Cook, M. E. (2001). The biologically active isomers of conjugated linoleic acid. Progress in Lipid Research, 40, 283–298.Google Scholar
  130. Parodi, P. W. (1982). Positional distribution of fatty acids in triglycerides from milk of several species of mammals. Lipids, 17, 437–442.Google Scholar
  131. Perfield, J. W. II, Sæbo, A., & Bauman, D. E. (2004). Use of conjugated linoleic acid (CLA) enrichments to examine the effects of trans-8, cis-10 CLA, and cis-11, trans-13 CLA on milk-fat synthesis. Journal of Dairy Science, 87, 1196–1202.Google Scholar
  132. Perfield, J. W. II, Lock, A. L., Sæbo, A., Griinari, J. M., & Bauman, D. E. (2005). Trans-9,cis11 conjugated linoleic acid (CLA) reduces milk fat synthesis in lactating dairy cows. Journal of Dairy Science, 88 (Suppl 1), 211.Google Scholar
  133. Perfield, J. W. II, Delmonte, P., Lock, A. L., Yurawecz, M. P., & Bauman, D. E. (2006). Trans-10, trans-12 conjugated linoleic acid does not affect milk fat yield but reduces delta9-desaturase index in dairy cows. Journal of Dairy Science, 89,2559–2566.Google Scholar
  134. Peterson, D. G., Matitashvili, E. A., & Bauman, D. E. (2003). Diet-induced milk fat depression in dairy cows results in increased trans-10, cis-12 CLA in milk fat and coordinate suppression of mRNA abundance for mammary enzymes involved in milk fat synthesis. Journal of Nutrition, 133, 3098–3102.Google Scholar
  135. Peterson, D. G., Matitashvili, E. A., & Bauman, D. E. (2004). The inhibitory effect of trans-10, cis-12 CLA on lipid synthesis in bovine mammary epithelial cells involves reduced proteolytic activation of the transcription factor SREBP-1. Journal of Nutrition, 134, 2523–2527.Google Scholar
  136. Piperova, L. S., Teter, B. B., Bruckental, I., Sampugna, J., Mills, S. E., Yurawecz, M. P., Fritsche, J., Ku, K., & Erdman, R. A. (2000). Mammary lipogenic enzyme activity, trans fatty acids and conjugated linoleic acids are altered in lactating dairy cows fed a milk fat-depressing diet. Journal of Nutrition, 130, 2568–2574.Google Scholar
  137. Rosen, E. D., & Spiegelman, B. M. (2001). PPARγ: A nuclear regulator of metabolism, differentiation, and cell growth. Journal of Biological Chemistry, 276, 37731–37734.Google Scholar
  138. Rosen, E. D., Sarraf, P., Troy, A. E., Bradwin, G., Moore, K., Milstone, D. S., Spiegelman, B. M., & Mortensen, R. M. (1999). PPARγ is required for the differentiation of adipose tissue in vivo and in vitro. Molecular Cell, 4, 611–617.Google Scholar
  139. Rouel, J., Ferlay, A., Bruneteau, E., Capitan, P., Raynal-Ljutovac, K., & Chilliard, Y. (2004). Interactions between starchy concentrate and linseed oil supplementation on goat milk yield and composition, including trans and conjugated fatty acids (FA). In Y. van der Honing (Ed.), Book of Abstracts of the 55th Annual Meeting of European Association for Animal Production (p. 124), Bled, Slovenia, September 5–9, 2004. Wageningen, The Netherlands: Wageningen Academic Publishers.Google Scholar
  140. Roy, R., Taourit, S., Zaragoza, P., Eggen, A., & Rodellar, C. (2005). Genomic structure and alternative transcript of bovine fatty acid synthase gene (FASN): Comparative analysis of the FASN gene between monogastric and ruminant species. Cytogenetic and Genome Research, 111, 65–73.Google Scholar
  141. Roy, A., Ferlay, A., Shingfield, K. J., & Chilliard, Y. (2006a). Examination of the persistency of milk fatty acid composition responses to plant oils in cows fed different basal diets, with particular emphasis on trans-C18:1 fatty acids and isomers of conjugated linoleic acid. Animal Science, 82, 479–492.Google Scholar
  142. Roy, R., Ordovas, L., Taourit, S., Zaragoza, P., Eggen, A., & Rodellar, C. (2006b). Genomic structure and an alternative transcript of bovine mitochondrial glycerol-3-phosphate acyltransferase gene (GPAM). Cytogenetics and Genome Research, 112, 82–89.Google Scholar
  143. Roy, R., Ordovas, L., Zaragoza, P., Romero, A., Moreno, C., Altarriba, J., & Rodellar, C. (2006c). Association of polymorphisms in the bovine FASN gene with milk-fat content. Animal Genetics, 37, 215–218.Google Scholar
  144. Sæbo, A., Sæbo, P. C., Griinari, J. M., & Shingfield, K. J. (2005). Effect of abomasal infusions of geometric isomers of 10,12 conjugated linoleic acid on milk fat synthesis in dairy cows. Lipids, 40, 823–832.Google Scholar
  145. Sakai, J., Duncan, E. A., Rawson, R. B., Hua, X., Brown, M. S., & Goldstein, J. L. (1996). Sterol-regulated release of SREBP-2 from cell membranes requires two sequential cleavages, one within a transmembrane segment. Cell, 85, 1037–1046.Google Scholar
  146. Sarraf, P., Mueller, E., Smith, W. M., Wright, H. M., Kum, J. B., Aaltonen, L. A., de la Chapelle, A., Spiegelman, B. M., & Eng, C. (1999). Loss-of-function mutations in PPAR gamma associated with human colon cancer. Molecular Cell, 3, 799–804.Google Scholar
  147. Schoonjans, K., Peinado-Onsurbe, J., Lefebvre, A. M., Heyman, R. A., Briggs, M., Deeb, S., Staels, B., & Auwerx, J. (1996a). PPARα and PPARγ activators direct a distinct tissue-specific transcriptional response via a PPRE in the lipoprotein lipase gene. EMBO Journal, 15, 5336–5348.Google Scholar
  148. Schoonjans, K., Staels, B., & Auwerx, J. (1996b). Role of the peroxisome proliferator-activated receptor (PPAR) in mediating the effects of fibrates and fatty acids on gene expression. Journal of Lipid Research, 37, 907–925.Google Scholar
  149. Schweizer, M., Takabayashi, K., Laux, T., Beck, K. F., & Schreglmann, R. (1989). Rat mammary gland fatty acid synthase: Localization of the constituent domains and two functional polyadenylation/termination signals in the cDNA. Nucleic Acids Research, 17, 567–586.Google Scholar
  150. Senda, M., Oka, K., Brown, W. V., Qasba, P. K., & Furuichi, Y. (1987). Molecular cloning and sequence of a cDNA coding for bovine lipoprotein lipase. Proceedings of the National Academy of Sciences USA, 84, 4369–4373.Google Scholar
  151. Seyfert, H. M., Pitra, C., Meyer, L., Brunner, R. M., Wheeler, T. T., Molenaar, A., McCracken, J. Y., Herrmann, J., Thiesen, H. J., & Schwerin, M. (2000). Molecular characterization of STAT5A- and STAT5B-encoding genes reveals extended intragenic sequence homogeneity in cattle and mouse and different degrees of divergent evolution of various domains. Journal of Molecular Evolution, 50, 550–561.Google Scholar
  152. Shimomura, I., Shimano, H., Horton, J. D., Goldstein, J. L., & Brown, M. S. (1997). Differential expression of exons 1a and 1c in mRNAs for sterol regulatory element binding protein-1 in human and mouse organs and cultured cells. Journal of Clinical Investigation, 99, 838–845.Google Scholar
  153. Shimomura, I., Hammer, R. E., Richardson, J. A., Ikemoto, S., Bashmakov, Y., Goldstein, J. L., & Brown, M. S. (1998). Insulin resistance and diabetes mellitus in transgenic mice expressing nuclear SREBP-1c in adipose tissue: Model for congenital generalized lipodystrophy. Genes and Development, 12, 3182–3194.Google Scholar
  154. Shingfield, K. J., Ahvenjarvi, S., Toivonen, V., Ärölä, A., Nurmela, K. V., Huhtanen, P., & Griinari, J. M. (2003). Effect of dietary fish oil on biohydrogenation of fatty acids and milk fatty acid content in cows. Animal Science, 77, 165–179.Google Scholar
  155. Shingfield, K. J., Reynolds, C. K., Lupoli, B., Toivonen, V., Yurawecz, M. P., Delmonte, P., Griinari, J. M., Grandison, A. S., & Beever, D. E. (2005). Effect of forage type and proportion of concentrate in diet on milk fatty acid composition in cows fed sunflower oil and fish oil. Animal Science, 80, 225–238.Google Scholar
  156. Shingfield, K. J., Reynolds, C. K., Hervas, G., Griinari, J. M., Grandison, A. S., & Beever, D. E. (2006). Examination of the persistency of milk fatty acid composition responses to fish oil and sunflower oil in the diet of dairy cows. Journal of Dairy Science, 89, 714–732.Google Scholar
  157. Shirley, J. E., Emery, R. S., Convey, E. M., & Oxender, W. D. (1973). Enzymic changes in bovine adipose and mammary tissue, serum and mammary tissue hormonal changes with initiation of lactation. Journal of Dairy Science, 56, 569–574.Google Scholar
  158. Singh, K., Hartley, D. G., McFadden, T. B., & Mackenzie, D. D. (2004). Dietary fat regulates mammary stearoyl coA desaturase expression and activity in lactating mice. Journal of Dairy Research, 71, 1–6.Google Scholar
  159. Small, D. M. (1991). The effects of glyceride structure on absorption and metabolism. Annual Review of Nutrition, 11, 413–434.Google Scholar
  160. Specht, B., Bartetzko, N., Hohoff, C., Kuhl, H., Franke, R., Borchers, T., & Spener, F. (1996). Mammary derived growth inhibitor is not a distinct protein but a mix of heart-type and adipocyte-type fatty acid-binding protein. Journal of Biological Chemistry, 271, 19943–19949.Google Scholar
  161. Spitsberg, V. L., Matitashvili, E., & Gorewit, R. C. (1995). Association and coexpression of fatty-acid-binding protein and glycoprotein CD36 in the bovine mammary gland. European Journal of Biochemistry, 230, 872–878.Google Scholar
  162. Suchyta, S. P., Sipkovsky, S., Halgren, R. G., Kruska, R., Elftman, M., Weber-Nielsen, M., Vandehaar, M. J., Xiao, L., Tempelman, R. J., & Coussens, P. M. (2003). Bovine mammary gene expression profiling using a cDNA microarray enhanced for mammary-specific transcripts. Physiological Genomics, 16, 8–18.Google Scholar
  163. Sundvold, H., Brzozowska, A., & Lien, S. (1997). Characterisation of bovine peroxisome proliferator-activated receptors gamma 1 and gamma 2: Genetic mapping and differential expression of the two isoforms. Biochemical and Biophysical Research Communications, 239, 857–861.Google Scholar
  164. Viswanadha, S., Giesy, J. G., Hanson, T. W., & McGuire, M. A. (2003). Dose response of milk fat to intravenous administration of the trans-10, cis-12 isomer of conjugated linoleic acid. Journal of Dairy Science, 86, 3229–3236.Google Scholar
  165. Viturro, E., Farke, C., Meyer, H. H., & Albrecht, C. (2006). Identification, sequence analysis and mRNA tissue distribution of the bovine sterol transporters ABCG5 and ABCG8. Journal of Dairy Science, 89, 553–561.Google Scholar
  166. Wakil, S. J. (1989). Fatty acid synthase, a proficient multifunctional enzyme. Biochemistry, 28, 4523–4530.Google Scholar
  167. Wang, X., Briggs, M. R., Hua, X., Yokoyama, C., Goldstein, J. L., & Brown, M. S. (1993). Nuclear protein that binds sterol regulatory element of low density lipoprotein receptor promoter. II. Purification and characterization. Journal of Biological Chemistry, 268, 14497–14504.Google Scholar
  168. Ward, R. J., Travers, M. T., Richards, S. E., Vernon, R. G., Salter, A. M., Buttery, P. J., & Barber, M. C. (1998). Stearoyl-CoA desaturase mRNA is transcribed from a single gene in the ovine genome. Biochimica et Biophysica Acta, 1391, 145–156.Google Scholar
  169. West, C. E., Bickerstaffe, R., Annison, E. F., & Linzell, J. L. (1972). Studies on the mode of uptake of blood triglycerides by the mammary gland of the lactating goat. The uptake and incorporation into milk fat and mammary lymph of labelled glycerol, fatty acids and triglycerides. Biochemical Journal, 126, 477–490.Google Scholar
  170. Wheeler, T. T., Broadhurst, M. K., Rajan, G. H., & Wilkins, R. J. (1997). Differences in the abundance of nuclear proteins in the bovine mammary gland throughout the lactation and gestation cycles. Journal of Dairy Science, 80, 2011–2019.Google Scholar
  171. Williams, C. M. (2000). Dietary fatty acids and human health. Annales de Zootechnie, 49, 165–180.Google Scholar
  172. Winter, A., Kramer, W., Werner, F. A., Kollers, S., Kata, S., Durstewitz, G., Buitkamp, J., Womack, J. E., Thaller, G., & Fries, R. (2002). Association of a lysine-232/alanine polymorphism in a bovine gene encoding acyl-CoA:diacylglycerol acyltransferase (DGAT1) with variation at a quantitative trait locus for milk fat content. Proceedings of the National Academy of Sciences USA, 99, 9300–9305.Google Scholar
  173. Yang, J., Kennelly, J. J., & Baracos, V. E. (2000a). The activity of transcription factor Stat5 responds to prolactin, growth hormone, and IGF-I in rat and bovine mammary explant culture. Journal of Animal Science, 78, 3114–3125.Google Scholar
  174. Yang, J., Kennelly, J. J., & Baracos, V. E. (2000b). Physiological levels of Stat5 DNA binding activity and protein in bovine mammary gland. Journal of Animal Science, 78, 3126–3134.Google Scholar
  175. Yang, T., Espenshade, P. J., Wright, M. E., Yabe, D., Gong, Y., Aebersold, R., Goldstein, J. L., & Brown, M. S. (2002). Crucial step in cholesterol homeostasis: Sterols promote binding of SCAP to INSIG-1, a membrane protein that facilitates retention of SREBPs in ER. Cell, 110, 489–500.Google Scholar
  176. Yeldandi, A. V., Rao, M. S., & Reddy, J. K. (2000). Hydrogen peroxide generation in peroxisome proliferator-induced oncogenesis. Mutation Research, 448, 159–177.Google Scholar
  177. Yonezawa, T., Yonekura, S., Kobayashi, Y., Hagino, A., Katoh, K., & Obara, Y. (2004a). Effects of long-chain fatty acids on cytosolic triacylglycerol accumulation and lipid droplet formation in primary cultured bovine mammary epithelial cells. Journal of Dairy Science, 87, 2527–2534.Google Scholar
  178. Yonezawa, T., Yonekura, S., Sanosaka, M., Hagino, A., Katoh, K., & Obara, Y. (2004b). Octanoate stimulates cytosolic triacylglycerol accumulation and CD36 mRNA expression but inhibits acetyl coenzyme A carboxylase activity in primary cultured bovine mammary epithelial cells. Journal of Dairy Research, 71, 398–404.Google Scholar
  179. Yu, L., Li-Hawkins, J., Hammer, R. E., Berge, K. E., Horton, J. D., Cohen, J. C., & Hobbs, H. H. (2002). Overexpression of ABCG5 and ABCG8 promotes biliary cholesterol secretion and reduces fractional absorption of dietary cholesterol. Journal of Clinical Investigation, 110, 671–680.Google Scholar
  180. Zhang, L., Ge, L., Parimoo, S., Stenn, K., & Prouty, S. M. (1999). Human stearoyl-CoA desaturase: Alternative transcripts generated from a single gene by usage of tandem polyadenylation sites. Biochemical Journal, 340 (Pt 1), 255–264.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • L. Bernard
    • 1
  • C. Leroux
  • Y. Chilliard
  1. 1.Adipose Tissue and Milk Lipid Laboratory, Herbivore Research Unit, INRA-Theix63 122 St Genès-ChampanelleFrance

Personalised recommendations