Origin of Eukaryotic Endomembranes: A Critical Evaluation of Different Model Scenarios

  • Gáspár JékelyEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 607)


All cells can be assigned to one of two categories based on the complexity of cellular organization, eukaryotes and prokaryotes. Eukaryotes possess, among other distinguishing features, an intracellular dynamic membrane system through which there is a constant flow of membranes scaffolded by an internal cytoskeleton. Prokaryotes, however, can have internal membranes, entirely lack a system that resembles eukaryotic endomembranes in terms of dynamics, complexity and the multitude of functions. How and why did the complex endomembrane system of eukaryotes arise? Here I give a critical overview of the different cell biological model scenarios that have been proposed to explain endomembrane origins. I argue that the widely held symbiotic models for the origin of the nuclear envelope and other endomembranes are cell biologically and evolutionarily highly implausible. Recent findings about the origin of nuclear pore complexes also severely challenge such models. I also criticize a scenario of de novo vesicle formation at the origin of the endomembrane system. I contrast these scenarios to traditional and revised autogenous models according to which eukaryotic endomembranes evolved by the inward budding of a prokaryotic cell’s plasma membrane. I argue that such models can best satisfy the major constraints of membrane topology, membrane heredity and straightforwardly account for selection pressures while being consistent with genomic findings.


Nuclear Pore Complex Coated Vesicle Membrane Topology Endomembrane System Eukaryotic Membrane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gray MW. The endosymbiont hypothesis revisited. Int Rev Cytol 1992; 141:233–357.PubMedCrossRefGoogle Scholar
  2. 2.
    Hirt RP, Horner DS. Organelles, genomes and eukaryote phylogeny: An Evolutionary Synthesis in the Age of Genomics. London: Taylor and Francis, 2004.Google Scholar
  3. 3.
    Cavalier-Smith T. The membranome and membrane heredity in development and evolution. In: Hirt RP, Horner DS, eds. Organelles, Genomes and Eukaryote Phylogeny: An Evolutionary Synthesis in the Age of Genomics. Vol 68. London: Taylor and Francis, 2004:335–351.Google Scholar
  4. 4.
    Mereschkowsky C. Über natur und Ursprung der chromatophoren im pflanzenreiche. Biol Centralbl 1905; 25:593–604.Google Scholar
  5. 5.
    Sagan L. On the origin of mitosing cells. J Theor Biol 1967; 14(3):255–274.PubMedCrossRefGoogle Scholar
  6. 6.
    Sogin ML. Early evolution and the origin of eukaryotes. Curr Opin Genet Dev 1991; l(4):457–463.CrossRefGoogle Scholar
  7. 7.
    Gupta RS, Golding GB. The origin of the eukaryotic cell. Trends Biochem Sci 1996; 21(5): 166–171.PubMedGoogle Scholar
  8. 8.
    Moreira D, Löpez-Garcfa P. Symbiosis between methanogenic archaea and delta-proteobacteria as the origin of eukaryotes: The syntrophic hypothesis. J Mol Evol 1998; 47(5):517–530.PubMedCrossRefGoogle Scholar
  9. 9.
    Wachtershauser G. From precells to Eukarya—a tale of two lipids. Mol Microbiol 2003; 47(l):13–22.PubMedCrossRefGoogle Scholar
  10. 10.
    Horiike T, Hamada K, Kanaya S et al. Origin of eukaryotic cell nuclei by symbiosis of Archaea in Bacteria is revealed, by homology-hit analysis. Nat Cell Biol 2001; 3(2):210–214.PubMedCrossRefGoogle Scholar
  11. 11.
    von Dohlen CD, Köhler S, Alsop ST et al. Mealybug beta-proteobacterial endosymbionts contain gamma-proteobacterial symbionts. Nature 2001; 412(6845):433–436.CrossRefGoogle Scholar
  12. 12.
    Martin W, Müller M. The hydrogen hypothesis for the first eukaryote. Nature 1998; 392(6671):37–41.PubMedCrossRefGoogle Scholar
  13. 13.
    Gray MW, Burger G, Lang BF. Mitochondrial evolution. Science 1999; 283(5407):1476–1481.PubMedCrossRefGoogle Scholar
  14. 14.
    Stechmann A, Cavlier-Smith T. Rooting the eukaryote tree by using a derived gene fusion. Science 2002; 297(5578):89–91.PubMedCrossRefGoogle Scholar
  15. 15.
    Richards TA, Cavalier-Smith T. Myosin domain evolution and the primary divergence of eukaryotes. Nature 2005; 436(7054): 1113–1118.PubMedCrossRefGoogle Scholar
  16. 16.
    Martin W, Rotte C, Hoffmeister M et al. Early cell evolution, eukaryotes, anoxia, sulfide, oxygen, fungi first (?), and a tree of genomes revisited. IUBMB Life 2003; 55(4–5): 193–204.PubMedCrossRefGoogle Scholar
  17. 17.
    Thorsness PE, Fox TD. Escape of DNA from mitochondria to the nucleus in Saccharomyces cerevisiae. Nature 1990; 346(6282):376–379.PubMedCrossRefGoogle Scholar
  18. 18.
    Martin W, Russell MJ. On the origins of cells: A hypothesis for the evolutionary transitions from abiotic geochemistry to chemoautotrophic prokaryotes, and from prokaryotes to nucleated cells. Philos Trans R Soc Lond B Biol Sci 2003; 358(l429):59–83, (discussion 83–55).PubMedGoogle Scholar
  19. 19.
    Devos D, Dokudovskaya S, Alber F et al. Components of coated vesicles and nuclear pore complexes share a common molecular architecture. PLoS Biol 2004; 2(12):e380.PubMedCrossRefGoogle Scholar
  20. 20.
    Mans BJ, Anantharaman V, Aravind L et al. Comparative genomics, evolution and origins of the nuclear envelope and nuclear pore complex. Cell Cycle 2004; 3(12): 1612–1637.PubMedGoogle Scholar
  21. 21.
    Jékely G. Glimpsing over the event horizon: Evolution of nuclear pores and envelope. Cell Cycle 2005; 4(2):297–299.PubMedGoogle Scholar
  22. 22.
    Avidor-Reiss T, Maer AM, Koundakjian E et al. Decoding cilia function: Defining specialized genes required for compartmentalized cilia biogenesis. Cell 2004; 117(4):527–539.PubMedCrossRefGoogle Scholar
  23. 23.
    Jékely G, Arendt D. Evolution of intraflagellar transport from coated vesicles and autogenous origin of the eukaryotic cilium. Bioessays 2006; 28(2): 191–8.PubMedCrossRefGoogle Scholar
  24. 24.
    Margulis L, Dolan MF, Guerrero R. The chimeric eukaryote: Origin of the nucleus from the karyomastigont in amitochondriate protists. Proc Natl Acad Sci USA 2000; 97(13):6954–6959.PubMedCrossRefGoogle Scholar
  25. 25.
    Martin W. A briefly argued case that mitochondria and plastids are descendants of endosymbionts, but that the nuclear compartment is not. Proc Roy Soc Lond B 1999; 266:1387–1395.CrossRefGoogle Scholar
  26. 26.
    Osborne AR, Rapoport TA, van den Berg B. Protein Translocation by the Sec61/Secy Channel.Annu Rev Cell Dev Biol 2005; 21:529–550.PubMedCrossRefGoogle Scholar
  27. 27.
    Blobel G. Intracellular protein topogenesis. Proc Natl Acad Sci USA 1980; 77(3):1496–1500.PubMedCrossRefGoogle Scholar
  28. 28.
    Stanier RY. Some aspects of the biology of cells and their possible evolutionary signicance. Symp Soc Gen Microbiol 1970; 20:1–38.Google Scholar
  29. 29.
    De Duve C. Evolution of the peroxisome. Ann NY Acad Sci 1969; 168(2):369–381.PubMedCrossRefGoogle Scholar
  30. 30.
    Cavalier-Smith T. The phagotrophic origin of eukaryotes and phylogenetic classification of Protozoa. Int J Syst Evol Microbiol 2002; 52(Pt 2):297–354.PubMedGoogle Scholar
  31. 31.
    Cavalier-Smith T. The origin of cells: A symbiosis between genes, catalysts, and membranes. Cold Spring Harb Symp Quant Biol 1987; 52:805–824.PubMedGoogle Scholar
  32. 32.
    Jékely G. Small GTPases and the evolution of the eukaryotic cell. Bioessays 2003; 25(11):1129–1138.PubMedCrossRefGoogle Scholar
  33. 33.
    Doolittle WF. You are what you eat: A gene transfer ratchet could account for bacterial genes in eukaryotic nuclear genomes. Trends Genet 1998; 14(8):307–311.PubMedCrossRefGoogle Scholar
  34. 34.
    Cavalier-Smith T. The origin of eukaryotic and archaebacterial cells. Ann NY Acad Sci 1987; 503:17–54.PubMedCrossRefGoogle Scholar
  35. 35.
    De Duve C, Wattiaux R. Functions of lysosomes. Annu Rev Physiol 1966; 28:435–492.PubMedCrossRefGoogle Scholar
  36. 36.
    Ronquist F, Huelsenbeck JP. MRBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 2003; 19:1572–1574.PubMedCrossRefGoogle Scholar
  37. 37.
    Ford MG, Mills IG, Peter BJ et al. Curvature of clathrin-coated pits driven by epsin. Nature 2002; 419(6905):361–366.PubMedCrossRefGoogle Scholar
  38. 38.
    McMahon HT, Gallop JL. Membrane curvature and mechanisms of dynamic cell membrane remodelling. Nature 2005; 438(7068):590–596.PubMedCrossRefGoogle Scholar
  39. 39.
    Farsad K, Ringstad N, Takei K et al. Generation of high curvature membranes mediated by direct endophilin bilayer interactions. J Cell Biol 2001; 155(2):193–200.PubMedCrossRefGoogle Scholar
  40. 40.
    Lee MC, Orci L, Hamamoto S et al. Sarlp N-terminal helix initiates membrane curvature and completes the fission of a COPII vesicle. Cell 2005; 122(4):605–617.PubMedCrossRefGoogle Scholar
  41. 41.
    Roux A, Cappello G, Cartaud J et al. A minimal system allowing tubulation with molecular motors pulling on giant liposomes. Proc Natl Acad Sci USA 2002; 99(8):5394–5399.PubMedCrossRefGoogle Scholar
  42. 42.
    Koster G, VanDuijn M, Hofs B et al. Membrane tube formation from giant vesicles by dynamic association of motor proteins. Proc Natl Acad Sci USA 2003; 100(26):15583–15588.PubMedCrossRefGoogle Scholar
  43. 43.
    Roux A, Cuvelier D, Nassoy P et al. Role of curvature and phase transition in lipid sorting and fission of membrane tubules. Embo J 2005; 24(8):1537–1545.PubMedCrossRefGoogle Scholar
  44. 44.
    Lowe J, Amos LA. Crystal structure of the bacterial cell-division protein FtsZ. Nature 1998; 391(6663):203–206.PubMedCrossRefGoogle Scholar
  45. 45.
    Lowe J, Amos LA. Tubulin-like protofilaments in Ca2+-induced FtsZ sheets. Embo J 1999; 18(9):2364–2371.PubMedCrossRefGoogle Scholar
  46. 46.
    Ben-Yehuda S, Losick R. Asymmetric cell division in B. subtilis involves a spiral-like intermediate of the cytokinetic protein FtsZ. Cell 2002; 109(2):257–266.PubMedCrossRefGoogle Scholar
  47. 47.
    van den Ent F, Amos LA, Lowe J. Prokaryotic origin of the actin cytoskeleton. Nature 2001; 413(6851):39–44.PubMedCrossRefGoogle Scholar
  48. 48.
    Moller-Jensen J, Jensen RB, Lowe J et al. Prokaryotic DNA segregation by an actin-like filament. Embo J 2002; 21(12):3119–3127.PubMedCrossRefGoogle Scholar
  49. 49.
    Moller-Jensen J, Lowe J. Increasing complexity of the bacterial cytoskeleton. Curr Opin Cell Biol 2005; 17(1):75–81.PubMedCrossRefGoogle Scholar
  50. 50.
    Surrey T, Nedelec F, Leibler S et al. Physical properties determining self-organization of motors and microtubules. Science 2001; 292(5519):1167–1171.PubMedCrossRefGoogle Scholar
  51. 51.
    Nedelec F. Computer simulations reveal motor properties generating stable antiparallel microtubule interactions. J Cell Biol 2002; 158(6):1005–1015.PubMedCrossRefGoogle Scholar
  52. 52.
    Camalet S, Jülicher F, Prost J. Self-organized beating and swimming of internally driven filaments. Physical Review Letters 1999; 82(7):1590–1593.CrossRefGoogle Scholar
  53. 53.
    Bryant MP, Wolin EA, Wolin MJ et al. Methanobacillus omelianskii, a symbiotic association of two species of bacteria. Arch Mikrobiol 1967; 59(l):20–31.PubMedCrossRefGoogle Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media 2007

Authors and Affiliations

  1. 1.European Molecular Biology LaboratoryHeidelbergGermany

Personalised recommendations