The Early Eukaryotic Fossil Record

  • Emmanuelle J. Javaux
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 607)


The Precambrian era records the evolution of the domain Eucarya. Although the taxonomy of fossils is often impossible to resolve beyond the level of domain, their morphology and chemistry indicate the evolution of major biological innovations. The late Archean record for eukaryotes is limited to trace amounts of biomarkers. Morphological evidence appears in late Paleoproterozoic and early Mesoproterozoic (1800–1300 Ma) rocks. The moderate diversity of preservable eukaryotic organisms includes cell walls without surface ornament (but with complex ultrastructure), with regularly distributed surface ornamentation, and with irregularly or regularly arranged processes. Collectively, these fossils suggest that eukaryotes with flexible membranes and cytoskeletons existed in mid-Proterozoic oceans. The late Mesoproterozoic-early Neoproterozoic (1300–750 Ma) is a time of diversification and evolution when direct evidence for important biological innovations occurs in the fossil record such as multicellularity, sex, photosynthesis, biomineralization, prédation, and heterotrophy. Members of extant clades can be recognized and include bangiophyte red algae, xanthophyte algae, cladophorale green algae, euglyphid, lobose, and filose amoebae and possible fungi. In the late Neoproterozoic, besides more diversification of ornamented fossils, florideophyte red algae and brown algae diversify, and animals take the stage.

The record of biological innovations documented by the fossils shows that eukaryotes had evolved most cytological and molecular complexities very early in the Proterozoic but environmental conditions delayed their diversifications within clades until oxygen level and predation pressure increased significantly.


Photosynthetic Eukaryote Eukaryotic Membrane Vindhyan Supergroup Early Eukaryote Acanthomorphic Acritarch 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Margulis L. Symbiosis in Cell Evolution. WH Freeman: San Francisco, 1981.Google Scholar
  2. 2.
    Knoll AH. Life on a Young Planet. Princeton: Princeton University Press, 2003:277.Google Scholar
  3. 3.
    Martin W, Müller M. The hydrogen hypothesis for the first eukaryote. Nature 1998; 392(6671):37–41.PubMedCrossRefGoogle Scholar
  4. 4.
    Moreira D, Lopez-Garcia P. Symbiosis between methanogenic archaea and delta-proteobacteria as the origin of eukaryotes: The syntrophic hypothesis. J Mol Evol 1998; 47(5):517–530.PubMedCrossRefGoogle Scholar
  5. 5.
    Hartman H, Federov A. The origin of the eukaryotic cell: A genomic investigation. Proc Natl Acad Sci USA 2002; 99(3):1420–1425.PubMedCrossRefGoogle Scholar
  6. 6.
    Xu Y, Glansdorff N. Was our ancestor a hyperthermophilic procaryote? Comp Biochem Physiol A Mol Integr Physiol 2002; 133:677–688.PubMedCrossRefGoogle Scholar
  7. 7.
    Dyall SD, Johnson PJ. Origins of hydrogenosomes and mitochondria: Evolution and organelle biogenesis. Curr Opin Microbiol 2003:404–411.Google Scholar
  8. 8.
    Cavalier-Smith T. Only six kingdoms of life. Proc Biol Sci 2004; 271:1251–1262.PubMedCrossRefGoogle Scholar
  9. 9.
    Simpson AGB, Roger AJ. The real kingdoms of eukaryotes. Curr Biol 2004; 14(17):693–696.CrossRefGoogle Scholar
  10. 10.
    Katz LA. Changing perspectives on the origin of eukaryotes. Trends Ecol Evol 1998; 13(12):493–497.CrossRefGoogle Scholar
  11. 11.
    McFadden GI. Primary and secondary endosymbiosis and the origin of plastids. J Phycol 2001; 37:951–959.CrossRefGoogle Scholar
  12. 12.
    Berney C, Fahrni J, Pawlowski P. How many novel eukaryotic ‘kingdoms’? pitfalls and limitations of environmental DNA surveys. BMC Biol 2004; 2:13PubMedCrossRefGoogle Scholar
  13. 13.
    Keeling PJ, Burger G, Durnford DG et al. The tree of eukaryotes. Trends Ecol Evol 2005; 20(12):670–676.PubMedCrossRefGoogle Scholar
  14. 14.
    Baldauf SL. The deep roots of eukaryotes. Science 2003; 300:1703–1706.PubMedCrossRefGoogle Scholar
  15. 15.
    Richards TA, Cavalier-Smith T. Myosin domain evolution and the primary divergence of eukaryotes. Nature 2005; 436:1113–1118.PubMedCrossRefGoogle Scholar
  16. 16.
    Javaux EJ, Knoll AH, Walter MR. Recognizing and interpreting the fossils of early eukaryotes. Orig Life Evol Biosph 2003; 33:75–94.PubMedCrossRefGoogle Scholar
  17. 17.
    Porter SM. Early eukaryotic diversification. In: Lipps J, Waggoner B, eds. Neoproterozoic-Cambrian Biological Revolutions. Paleontological Society Papers, 2004:10:35–50.Google Scholar
  18. 18.
    Knoll AH, Javaux EJ, Hewitt D et al. Eukaryotic organisms in Proterozoic Oceans. Proc R Soc Lond B Biol Sci (in press).Google Scholar
  19. 19.
    Rosing MT. C-13-depleted carbon micropartides in >3700-Ma sea-floor sedimentary rocks from western Greenland. Science 1999; 283:674–676.PubMedCrossRefGoogle Scholar
  20. 20.
    Shen Y, Buick R, Canfield DE. Isotopic evidence for microbial sulphate reduction in the early Archaean era. Nature 2001; 410:77–81.PubMedCrossRefGoogle Scholar
  21. 21.
    Hayes JM, Kaplan IR, Wedeking KW. Precambrian organic chemistry, preservation of the record. In: Schopf JW, ed. Earth’s Earliest Biosphere. Princeton University Press, 1983:93–134.Google Scholar
  22. 22.
    Moreira D, Lopez-Garcia P. The molecular ecology of microbial eukaryotes unveils a hidden world. Trends Microbiol 2002; 10(l):31–38.PubMedCrossRefGoogle Scholar
  23. 23.
    Schulz HN, Brinkhoff T, Ferdelman TG et al. Dense populations of a giant sulfur bacterium in Namibian shelf sediments. Science 1999; 284:493–495.PubMedCrossRefGoogle Scholar
  24. 24.
    Brocks JJ, Logan GA, Buick R et al. Archean molecular fossils and the early rise of eukaryotes. Science 1999; 285:1033–1036.PubMedCrossRefGoogle Scholar
  25. 25.
    Brocks JJ, Buick R, Summons RE et al. A reconstruction of Archean biological diversity based on molecular fossils from the 2.78–2.45 billion year old Mount Bruce Supergroup, Hamersley Basin, Western Australia, Geochim Cosmochim Acta 2003; 67(22):4321–4335.CrossRefGoogle Scholar
  26. 26.
    Cavalier-Smith T. The neomuran origin of archaebacteria: The negibacteria root of the universal tree and bacteria megaclassification. International Int J Syst Evol Microbiol 2002; 52:7–76.Google Scholar
  27. 27.
    Hedges SB, Blair JE, Venturi ML et al. A molecular timescale of eukaryote evolution and the rise of complex multicellular life. BMC Evol Biol 2004; 4, (Art. No. 2).Google Scholar
  28. 28.
    Yoon HS, Hackett JD, Ciniglia C et al. A molecular time line for the origin of photosynthetic eukaryotes. Mol Biol Evol 2004; 21:809–818.PubMedCrossRefGoogle Scholar
  29. 29.
    Javaux EJ. Extreme life on Earth-past, present and possibly beyond. Res Microbiol 2006; 157:37–48.PubMedCrossRefGoogle Scholar
  30. 30.
    Douzery EJP, Snell EA, Bapteste E et al. The timing of eukaryotic evolution: Does a relaxed molecular clock reconcile proteins and fossils? Proc Natl Acad Sci USA, 2004; 101:15386–15391.PubMedCrossRefGoogle Scholar
  31. 31.
    Pearson A, Budin M, Brocks J. Phylogenetic and biochemical evidence for sterol synthesis in the bacterium Gemmata obscuriglobus. Proc Natl Acad Sci USA 2003; 100:15352–15357.PubMedCrossRefGoogle Scholar
  32. 32.
    Volkman JK. Sterols and other triterpenoids: Source specificity and evolution of biosynthetic pathways. Org Geochem 2005; 36:139–159.CrossRefGoogle Scholar
  33. 33.
    Volkman JK. Sterols in microorganisms. Appl Microbiol Biotechnol 2003; 60:495–506.PubMedGoogle Scholar
  34. 34.
    Raymond J, Blankenship RE. Biosynthetic pathways, gene replacement and the antiquity of life. Geobiology 2004; 2(4): 199–203.CrossRefGoogle Scholar
  35. 35.
    Canfield DE. A new model for Proterozoic ocean chemistry. Nature 1998; 396:450–453.CrossRefGoogle Scholar
  36. 36.
    Shen Y, Knoll AH, Walter MR. Evidence for low sulphate and deep water anoxia in a mid-Proterozoic marine basin. Nature 2003; 423:632–635.PubMedCrossRefGoogle Scholar
  37. 37.
    Kah LC, Lyons TM, Frank TD. Low marine sulphate and protracted oxygénation of the Proterozoic biosphere. Nature 2004; 431:834–838.PubMedCrossRefGoogle Scholar
  38. 38.
    Brocks JJ, Love GD, Summons RE et al. Biomarker evidence for green and purple sulfur bacteria in an intensely stratified Paleoproterozoic ocean. Nature 2005; 437:866–870.PubMedCrossRefGoogle Scholar
  39. 39.
    Li C, Peng P, Sheng GY et al. A molecular and isotopic geochemical study of Meso-to Neoproterozoic (1.73-0.85 Ga) sediments from the Jixian section, Yanshan Basin, North China. Precambrian Res 2003; 125(3–4):337–356.CrossRefGoogle Scholar
  40. 40.
    Javaux EJ, Knoll AH, Walter MR. Morphological and ecological complexity complexity in early eukaryotic ecosystems. Nature 2001; 412:66–69.PubMedCrossRefGoogle Scholar
  41. 41.
    Anbar A, Knoll AH. Proterozoic ocean chemistry and evolution: A bioinorganic bridge? Science 2002; 297:1137–1142.PubMedCrossRefGoogle Scholar
  42. 42.
    Peng PG, Sheng JF, Yan Y. Biological markers in 1.7 billion year old rock from the Tuanshanzi Formation, Jixian strata section, North China. Org Geochem 1998; 29:1321–1329.CrossRefGoogle Scholar
  43. 43.
    Moldowan JM, Jacobsen SR, Dahl J et al. Molecular fossils demonstrate Precambrian origins of dinoflagellates. In: Zhuralev AY, Riding R, eds. The Ecology of the Cambrian Radiation. New York: Columbia University Press, 2001:475–493.Google Scholar
  44. 44.
    Summons RE, Walter MR. Molecular fossils and microfossils from proterozoic sediments. Am J Sci 1990; 290–A:212–244.Google Scholar
  45. 45.
    Meng FW, Zhou CM, Yin LM et al. The oldest known dinoflagellates: Morphological and molecular evidence from Mesoproterozoic rocks at Yongji, Shanxi Province. Chin Sci Bull 2005; 50:1230–1234.CrossRefGoogle Scholar
  46. 46.
    Pratt LM, Summons RE, Hieshima GB. Sterane and triterpane biomarkers in the Precambrian Nonesuch Formation, North American Midcontinent Rift. Geochem Cosmochim Acta 1991; 55:911–916.CrossRefGoogle Scholar
  47. 47.
    Summons RE, Thomas J, Maxwell JR et al. Secular and environmental constraints on the occurrence of dinosterane in sediments. Geochem Cosmochim Acta 1992; 56:2437–2444.CrossRefGoogle Scholar
  48. 48.
    Summons RE, Brassell SC, Eglinton G et al. Distinctive hydrocarbon biomarkers from fossiliferous sediment of the late proterozoic Walcott Member, Chuar Group, Grand-Canyon, Arizona. Geochem Cosmochim Acta 1988; 52(11):2625–2637.CrossRefGoogle Scholar
  49. 49.
    Kleeman G, Poralla K, Englert G et al. Tetrahymenol from the phototrophic bacterium Rhodopseudomonas palustris: First report of a gammacerane triterpene from a prokaryote. J Genet Microbiol 1990; 136:2551–2553.Google Scholar
  50. 50.
    Marshall CP, Javaux EJ, Knoll AH et al. Combined micro-Fourier transform infrared (FTIR) spectroscopy and Micro-Raman spectroscopy of Proterozoic acritarchs: A new approach to palaeobiology. Precambrian Res 2005; 138:208–224.CrossRefGoogle Scholar
  51. 51.
    Javaux EJ, Marshall CP. A new approach in deciphering early protist paleobiology and evolution: Combined microscopy and microchemistry of single Proterozoic acritarchs. Rev Palaeobot Palynol (in press).Google Scholar
  52. 52.
    Arouri K, Greenwood PF, Walter MR. A possible chlorophycean affinity of some Neoproterozoic acritarchs. Org Geochem 1999; 30:1323–1337.CrossRefGoogle Scholar
  53. 53.
    Versteegh GJM, Blokker P. Resistant macromolecules of extant and fossil microalgae. Phycological Res 2004; 52:325–339.CrossRefGoogle Scholar
  54. 54.
    Yan Y, Liu Z. Significance of eukaryotic organisms in the microfossil flora of Changcheng System. Acta Micropalaeontologica Sinica 1993; 10:167–180.Google Scholar
  55. 55.
    Javaux EJ, Knoll AH, Walter MR. TEM evidence for eukaryotic diversity in mid-Proterozoic oceans. Geobiology 2004; 2:121–132.CrossRefGoogle Scholar
  56. 56.
    Hofmann HJ. Global distribution of the Proterozoic sphaeropmorph acritarch Valeria lophostriata (Jankauskas). Acta Micropaleontologica Sinica 1999; 16:215–224.Google Scholar
  57. 57.
    Yin L. Acanthomorphic acritarchs from Meso-Neoproterozoic shales of the Ruyang Group, Shanxi, China. Rev Palaeobot Palynol 1997; 98:15–25.CrossRefGoogle Scholar
  58. 58.
    Xiao S, Knoll AH, Kaufman AJ et al. Neoproterozoic fossils in Mesoproterozoic rocks? Precambrian Res 1997; 84:197–220.CrossRefGoogle Scholar
  59. 59.
    Prasad B, Asher R. Acritarch biostratigraphy and lithostratigraphic classification of Proterozoic and Lower Paleozoic sediments (Pre-Unconformity Sequence) of Ganga Basin, India. Paleontographica Indica 2001; 5:1–151.Google Scholar
  60. 60.
    Nagovitsin KE. Mikrofossilii i stratigrafiya verchnego Rifeya Yugo-Zapadnoi chasti Siberskoi Platformi. Ph.D. Thesis. RAS Siberian Branch, Institute of Geology, 2001:222.Google Scholar
  61. 61.
    Hofmann HJ, Jackson. Shale faciès microfossils from the Proterozoic Bylot Supergroup, Baffin Island, Canada. J Paleontol 1994; 68(4):Memoir 37–39.Google Scholar
  62. 62.
    Jankauskas TV. Mikrofossilii dokembriya SSSR (Precambrian microfossils of the USSR). Nauka Leningrad 1989:1–190.Google Scholar
  63. 63.
    Yan Y, Zhu S. Discovery of acanthomorphic acritarchs from the Baicaoping Formation in Yongi, Shanxi, and its geological significance. Acta Palaeontologica Sinica 1992; 9:267–282.Google Scholar
  64. 64.
    Kaufman AJ, Xiao S. High CO2 levels in the Proterozoic atmosphere estimated from analyses of individual microfossils. Nature 2003; 425:279–282.PubMedCrossRefGoogle Scholar
  65. 65.
    Butterfield NJ. Probable Proterozoic fungi. Paleobiology 2005; 31:165–182.CrossRefGoogle Scholar
  66. 66.
    Yin LM, Yuan XL, Meng FW et al. Protists of the Upper Mesoproterozoic Ruyang Group in Shanxi Province, China. Precambrian Res 2005; l41(l–2):49–66.Google Scholar
  67. 67.
    Butterfield NJ, Knoll AH, Swett K. A bangiophyte red alga from the Proterozoic of Arctic Canada. Science 1990; 250:104–107.PubMedCrossRefGoogle Scholar
  68. 68.
    Butterfield NJ. Bangimorpha pubescens n. gen., n. sp.: Implications for the evolution of sex, multicelluarity and the Mesoproterozoic/Neoproterozoic radiation of eukaryotes. Paleobiology 2000; 26:386–404.CrossRefGoogle Scholar
  69. 69.
    Herman N. Organic world one billion years ago. Leningrad, Nauka: 1990.Google Scholar
  70. 70.
    Rainbird RH, Stern RA, Khudoley AK et al. U-Pb geochronology of Riphean sandstone and gabbro from southeast Siberia and its bearing on the Laurentia-Siberia connection. Earth and Planetary Sciences Letters 1998; 164:409–420.CrossRefGoogle Scholar
  71. 71.
    Woods KN, Knoll AH, Herman TN. Xanthophyte algae from the Mesoproterozoic/Neoproterozoic transition: Confirmation and evolutionary implications. Geological Society of America Abstracts with Programs 1998; 30:A232.Google Scholar
  72. 72.
    Butterfield NJ. A vaucherian alga from the middle Neoproterozoic of Spitsbergen: Implications for the evolution of Proterozoic eukaryotes and the Cambrian explosion. Paleobiology 2004; 30:231–252.CrossRefGoogle Scholar
  73. 73.
    Xiao S, Zhang Y, Knoll AH. Three-dimensionally preservation of algae and animal embryos in a Neoproterozoic phosphate. Nature 1998; 391:553–558.CrossRefGoogle Scholar
  74. 74.
    Narbonne GM. The Ediacara biota: Neoproterozoic origin of animals and their ecosystems. Ann Rev Earth and Planetary Sciences Letters 2005; 33:421–442.CrossRefGoogle Scholar
  75. 75.
    Butterfield NJ, Knoll AH, Swett N. Paleobiology of the Neoproterozoic Svanbergfjellet Formation, Spitsbergen. Fossils and Strata 1994; 34:1–84.Google Scholar
  76. 76.
    Porter SM, Knoll AH. Testate amoebae in the Neoproterozoic era: Evidence from vase-shaped microfossils in the Chuar Group, Grand Canyon. Paleobiology 2000; 26:360–385.CrossRefGoogle Scholar
  77. 77.
    Porter SM, Meisterfeld R, Knoll AH. Vase-shaped microfossils from the Neoproterozoic Chuar Group, Grand Canyon: A classification guided by modern testate amoebae. J Paleontol 2003; 77:409–429.CrossRefGoogle Scholar
  78. 78.
    Baldauf SL, Roger AJ, Wenk-Siefert I et al. A kingdom-level phylogeny of eukaryotes based on combined protein data. Science 2000; 290:972–977.PubMedCrossRefGoogle Scholar
  79. 79.
    Bapteste E, Brinkmann H, Lee JA et al. The analysis of 100 genes supports the grouping of three highly divergent amoebae: Dictyostelium, Entamoeba, and Mastigamoeba. Proc Natl Acad Sci USA 2002; 99(3):1414–1419.PubMedCrossRefGoogle Scholar
  80. 80.
    Allison CW, Awramik SM. Organic-walled microfossils from earliest Cambrian or latest Proterozoic Tindir Group rocks, northwest Canada. Precambrian Res 1989; 43:253–294.CrossRefGoogle Scholar
  81. 81.
    Kaufman AJ, Knoll AH, Awramik SM. Biostratigraphic and chemostratigraphic correlation of Neoproterozoic sedimentary successions — Upper Tindir Group, northwestern Canada, as a test case. Geology 1992; 20:181–185.PubMedCrossRefGoogle Scholar
  82. 82.
    Moczydlowska M. Acritarch biostratigraphy of the lower cambrian and the precambrian-cambrian boundary in southeast Poland. Fossils and Strata 1991; 29:1–127.Google Scholar
  83. 83.
    Grey K. Ediacaran palynology of Australia. Australian Association Palaeontologists Memoir 2005; 31:1–432.Google Scholar
  84. 84.
    Xiao S, Knoll AH. Phosphatized embryos from the Neoproterozoic Doushantuo Formation. J Paleontol 2000; 74:767–788.CrossRefGoogle Scholar
  85. 85.
    Grotzinger JP, Watters W, Knoll AH. Calcareous metazoans in thrombolitic bioherms of the terminal Proterozoic Nama Group, Namibia. Paleobiology 2000; 26:334–359.CrossRefGoogle Scholar
  86. 86.
    Barfod GH, Albarède F, Knoll AH et al. New Lu-Hf and Pb-Pb age constraints on the earliest animal fossils. Earth and Planetary Sciences Letters 2002; 201(l):203–212.CrossRefGoogle Scholar
  87. 87.
    Xiao S, Knoll AH, Yuan X. Miaohephyton, a possible brown alga from the terminal Proterozoic Doushantuo Formation, China. J Paleontol 1998; 72:1072–1086.Google Scholar
  88. 88.
    Xiao S, Yuan X, Steiner M et al. Macroscopic carbonaceous compressions in a terminal Proterozoic shale: A systematic reassessment of the Miaohe biota, South China. J Paleontol 2002; 76:345–374.CrossRefGoogle Scholar
  89. 89.
    Walter MR, Du R, Horodyski RJ. Coiled carbonaceous megafossils from the middle proterozoic of Jixian (Tianjin) and Montana. Am J Sci 1990; 290A:133–l48.Google Scholar
  90. 90.
    Walter MR, Oehler JH, Oehler DZ. Megascopic algae 1300 million years old from the Belt Supergroup, Montana: A reinterpretation of Walcott’s Helminthichnites. J Paleontol 1976; 50:872–881.Google Scholar
  91. 91.
    Kumar S. Megafossils from the Mesoproterozoic Rohtas Formation (The Vindhyan Supergroup), Katni Area, Central India. Precambrian Res 1995; 72(3–4): 171–184.CrossRefGoogle Scholar
  92. 92.
    Sarangi S, Gopalan K, Kumar S. Pb-Pb age of earliest megascopic, eukaryotic alga bearing Rohtas Formation, Vindhyan Supergroup, India: Implications for Precambrian atmospheric oxygen evolution. Precambrian Res 2004; 132(l–2):107–121.CrossRefGoogle Scholar
  93. 93.
    Han TM, Runnegar B. Megascopic eukaryotic algae from the 2.1-billion-year-old Negaunee Iron Formation. Science 1992; 257:232–235.PubMedCrossRefGoogle Scholar
  94. 94.
    Schneider DA, Bickford ME, Cannon WF et al. Age of volcanic rocks and syndepositional iron formations, Marquette Range Supergroup; implications for the tectonic setting of Paleoproterozoic iron formations of the Lake Superior region. Can J Earth Sci 2002; 39:999–1012.CrossRefGoogle Scholar
  95. 95.
    Samuelsson J, Butterfield NJ. Neoproterozoic fossils from the Franklin Mountains, northwestern Canada: Stratigraphie and palaeobiological implications. Precambrian Res 2001; 107:235–251.CrossRefGoogle Scholar
  96. 96.
    Zhu S, Chen H. Megascopic multicellular organisms from the 1700-million-year-old Tuanshanzi Formation in the Jixian area, North China. Science 1995; 270:620–622.CrossRefGoogle Scholar
  97. 97.
    Zhu SX, Sun SF, Huang XG et al. Discovery of carbonaceous compressions and their multicellular tissues from the Changzhougou Formation (1 800 Ma) in the Yanshan range, North China. Chin Sci Bull 2000; 45(9):841–847.CrossRefGoogle Scholar
  98. 98.
    Grey K, Williams IR. Problematic bedding-plane markings from the Middle Proterozoic Manganese Subgroup, Bangemall Basin, Western Australia. Precambrian Res 1990; 46:307–327.CrossRefGoogle Scholar
  99. 99.
    Horodyski R. Problematic bedding-plane markings from the Middle Proterozoic Appekunny Argillite, Belt Supergroup, northwestern Montana. J Paleontol 1982; 56:882–889.Google Scholar
  100. 100.
    Yochelson EL, Fedonkin MA. A new tissue-grade organism 1.5 billion years old from Montana. Proc Biol Soc Wash 2000; 113:843–847.Google Scholar
  101. 101.
    Hofmann HJ. Proterozoic carbonaceous films. In: Schopf JW, Klein C, eds. The Proterozoic biosphere: A multidisiciplinary study. Cambridge: Cambridge University Press, 1992:349–357.Google Scholar
  102. 102.
    Graumann PL. Cytoskeletal elements in bacteria. Curr Opin Microbiol 2004; 7(6):565–571.PubMedCrossRefGoogle Scholar
  103. 103.
    Moller-Jensen J, Lowe J. Increasing complexity of the bacterial cytoskeleton. Curr Opin Cell Biol 2005; 17(1):75–81.PubMedCrossRefGoogle Scholar
  104. 104.
    Cabeen MT, Jacobs-Wagner C. Bacterial cell shape. Nat Rev Microbiol 2005; 3(8):601–610.PubMedCrossRefGoogle Scholar
  105. 105.
    Knoll AH. Archaean and proterozoic palaeontology. In: Jansonius J, McGregor DC, eds. Palynology: Principles and Applications, Vol. 1. American Association of Stratigraphic Palynologists Foundation. Publishers Press Salt Lake City, 1996:51–80.Google Scholar
  106. 106.
    Cavalier-Smith T. The phagotrophic origin of eukaryotes and phylogenetic classification of Protozoa. Int J Syst Evol Microbiol 2002; 52:297–354.PubMedGoogle Scholar
  107. 107.
    Bonner T. The origins of multicellularity. Integrative Biology 1998:27–36.Google Scholar
  108. 108.
    Bonner T. On the origin of differentiation. J Biosci 2003; 28(4):523–528.PubMedCrossRefGoogle Scholar
  109. 109.
    Cavalier-Smith T. Origins of the machinery of recombination and sex. Heredity 2002; 88:125–141.PubMedCrossRefGoogle Scholar
  110. 110.
    Knoll AH. Biomineralization and evolutionary history. Rev Mineralog Geochem 2003; 54:329–356.CrossRefGoogle Scholar
  111. 111.
    Xiao S, Knoll AH, Yuan X et al. Phosphatized multicellular algae in the Neoproterozoic Doushantuo Formation, China, and the early evolution of florideophyte red algae. Am J Botany 2004; 91:214–227.CrossRefGoogle Scholar
  112. 112.
    Peterson KJ, Butterfield NJ. Origin of the Eumetazoa: Testing ecological predictions of molecular clocks against the Proterozoic fossil record. Proc Natl Acad Sci USA 2005; 102:9547–9552.PubMedCrossRefGoogle Scholar
  113. 113.
    Talyzina NM. Ultrastructure and morphology of Chuaria circularis (Walcott, 1899) Vidal and Ford (1985) from the Neoproterozoic Visingsö Group, Sweden. Precambrian Res 2000; 102:123–134.CrossRefGoogle Scholar
  114. 114.
    Schopf JW, Kudryavtsev AB. Three-dimensional Raman imagery of Precambrian microscopic organisms. Geobiology 2005; 3:1–12.CrossRefGoogle Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media 2007

Authors and Affiliations

  • Emmanuelle J. Javaux
    • 1
  1. 1.Department of GeologyUniversity of LiègeLiège Sart-TilmanBelgium

Personalised recommendations