Multi-Contextual use of Chemosignals by Liolaemus Lizards

  • Antonieta Labra

Abstract

Squamata reptiles are often divided in two major groups based on the main sensory modality that they use: the chemical/visual and the visual taxa. Although Liolaemus lizards belong to the visual taxon Iguania, I show that they may depend heavily on chemosignals in many different aspects of their life. The combined information from Liolaemus and other “visual genera” that use chemosignals, urges us to reconsider the classical dichotomous segregation of Squamata in terms of sensory modality. In addition, further work is also necessary to understand the role of chemical signals in “visual” lizards.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  1. Alberts, A. C. and Werner, D. I. (1993) Chemical recognition of unfamiliar conspecifics by green iguanas: functional significance of different signals components. Anim. Behav. 46, 197–199.CrossRefGoogle Scholar
  2. Bealor, M. T. and Krekorian, C. O. (2002) Chemosensory identification of lizard-eating snakes in the desert iguana, Dipsosaurus dorsalis (Squamata: Iguanidae). J. Herpetol. 36, 9–15.Google Scholar
  3. Butlin, R. K. and Ritchie, M. G. (1994) Behaviour and speciation. In: P. J. B. Slater and T. R. Halliday (Eds.), Behaviour and Evolution. Cambridge University Press, Cambridge, pp. 43–79.Google Scholar
  4. Cooper, W. E. (1995) Foraging mode, prey chemical discrimination, and phylogeny in lizards. Anim. Behav. 50, 973–985.CrossRefGoogle Scholar
  5. Cooper, W. E. (1997) Correlated evolution of prey chemical discrimination with foraging, lingual morphology and vomeronasal chemoreceptor abundance in lizards. Behav. Ecol. Sociobiol. 41, 257–265.CrossRefGoogle Scholar
  6. Cooper, W. E. (2003) Correlated evolution of herbivory and food chemical discrimination in iguanian and ambush foraging lizards. Behav. Ecol. 14, 409–416.CrossRefGoogle Scholar
  7. De Perno, C. S. and Cooper, W. E. (1993) Prey chemical discrimination and strike-induced chemosensory searching in the lizard Liolaemus zapallarensis. Chemoecology 4, 86–92.CrossRefGoogle Scholar
  8. Donoso-Barros, R. (1966) Reptiles de Chile. Universidad de Chile, Santiago, Chile.Google Scholar
  9. Escobar, C., Escobar, C. A., Labra, A. and Niemeyer, H. M. (2003) Chemical composition of precloacal secretions of two Liolaemus fabiani populations: are they different? J. Chem. Ecol. 29, 629–638.PubMedCrossRefGoogle Scholar
  10. Escobar, C. A., Labra, A. and Niemeyer, H. M. (2001) Chemical composition of precloacal secretions of Liolaemus lizards. J. Chem. Ecol. 27, 1677–1690.PubMedCrossRefGoogle Scholar
  11. Etheridge, R. (1995) Redescription of Ctenoblepharys adspersa Tschudi, 1845, and the taxonomy of Liolaeminae (Reptilia: Squamata: Tropiduridae). Amer. Mus. Nat. Hist. 3142, 1–34.Google Scholar
  12. Fox, S. F. and Shipman, P. A. (2003) Social behavior at high and low elevations: environmental release and phylogenetic effects in Liolaemus. In: S. F. Fox, J. K. McCoy and T. A. Baird (Eds.), Lizard Social Behavior. John Hopkins University Press, New York, pp. 310–355.Google Scholar
  13. Frost, D. R., Etheridge, R., Janies, D. and Titus, T. A. (2001) Total evidence, sequence alignment, evolution of polychrotid lizards, and a reclassification of the Iguania (Squamata: Iguania). Amer. Mus. Novitates, 3343, 1–38CrossRefGoogle Scholar
  14. Jaksic, F. M., Núñez, H. and Ojeda, F. P. (1980) Body proportions, microhabitat selection, and adaptive radiation of Liolaemus lizards in central Chile. Oecologia 45, 178–181.CrossRefGoogle Scholar
  15. Jenssen, T. A. (1978) Display diversity in anoline lizards and problems in interpretation. In: N. Greenberg and D. Maclean (Eds.), Behavior and Neuroethology of Lizards. National Institute of Mental Health, Washington, D.C. pp. 269–285.Google Scholar
  16. Labra, A. (2006) Chemoreception and the assessment of fighting abilities in the lizard Liolaemus monticola. Ethology 112, 993–999.CrossRefGoogle Scholar
  17. Labra, A. (2007) The peculiar case of an insectivorous iguanid lizard that detects chemical cues from prey. Chemoecology 17, in press.Google Scholar
  18. Labra, A. and Niemeyer, H. M. (1999) Intraspecific chemical recognition in the lizard Liolaemus tenuis. J. Chem. Ecol. 25, 1799–1811.CrossRefGoogle Scholar
  19. Labra, A. and Niemeyer, H. M. (2004) Variability in the assessment of snake predation risk by Liolaemus lizards. Ethology 110, 649–662.CrossRefGoogle Scholar
  20. Labra, A., Brann, J. H. and Fadool, D. A. (2005) Heterogeneity of voltage- and chemosignal-activated response profiles in vomeronasal sensory neurons. J. Neurophysiol. 94, 2535–2548.PubMedCrossRefGoogle Scholar
  21. Labra, A., Beltrán, S. and Niemeyer, H. M. (2001) Chemical exploratory behavior in the lizard Liolaemus bellii. J. Herpetol. 35, 51–55.CrossRefGoogle Scholar
  22. Labra, A., Cortéz, S. and Niemeyer, H. M. (2003) Age and season affect chemical discrimination of Liolaemus bellii own space. J. Chem. Ecol. 29, 2615–2620.PubMedCrossRefGoogle Scholar
  23. Labra, A., Escobar, C. A., Aguilar, P. M. and Niemeyer, H. M. (2002) Sources of pheromones in the lizard Liolaemus tenuis. Rev. Chil. Hist. Nat. 75, 141–147.Google Scholar
  24. Labra, A., Escobar, C. A. and Niemeyer, H. M. (2001) Chemical discrimination in Liolaemus lizards: comparison of behavioral and chemical data. In: A. Marchelewska-Koj, J. J. Lepri and D. Müller-Schwarze (Eds.), Chemical Signals in Vertebrates IX. Kluwer Academic/Plenum Publishers, New York, pp. 439–444.Google Scholar
  25. Lamborot, M. and Alvarez-Sarret, E. (1989) Karyotypic characterization of some Liolaemus lizards in Chile (Iguanidae). Genome 32, 393–403.Google Scholar
  26. Lamborot, M., Eaton, L. and Carrasco, B. A. (2003) The Aconcagua river as another barrier to Liolaemus monticola (Sauria: Iguanidae) chromosomal races of central Chile. Rev. Chil. Hist. Nat. 76, 23–24.CrossRefGoogle Scholar
  27. Lamborot, M., Espinoza, A. and Alvarez, E. (1979) Karyotypic variation in Chilean lizards of the genus Liolaemus (Iguanidae). Experientia 35, 593–595.CrossRefGoogle Scholar
  28. Martins, M. P., Labra, A., Halloy, M. and Thompson, J. T. (2004) Repeated large scale patterns of signal evolution: an interspecific study of Liolaemus lizards headbob displays. Anim. Behav. 68, 453–463.CrossRefGoogle Scholar
  29. Mason, R. T. (1992) Reptilian pheromones. In: C. Gans and D. Crews (Eds.), Hormones, Brain and Behavior. Biology of Reptilia. The University Chicago Press, Chicago, Illinois, pp. 114–228.Google Scholar
  30. Ord, T. J. and Martins, E. P. (2006) Tracing the origins of signal diversity in anole lizards: phylogenetic approaches to inferring the evolution of complex behaviour. Anim. Behav. 71, 1411–1429.CrossRefGoogle Scholar
  31. Pedersen, J. M. (1992) Field observations on the role of tongue extrusion in the social-behavior of the desert iguana (Dipsosaurus dorsalis). J. Comp. Psych. 106, 287–294.CrossRefGoogle Scholar
  32. Punzo, F. and Parker, L. G. (2006) Food-deprivation affects tongue extrusions as well as attractivity and proceptivity components of sexual behavior in the lizard, Sceloporus jarrovii. Amphibia-Reptilia 27, 377–383.CrossRefGoogle Scholar
  33. Schwenk, K. (1995) Of tongue and noses: chemoreception in lizards and snakes. TREE 10, 7–12.Google Scholar
  34. Trigosso-Venario, R., Labra, A. and Niemeyer, H. N. (2002) Interactions between males of the lizard Liolaemus tenuis: roles of familiarity and memory. Ethology 108, 1057–1064.CrossRefGoogle Scholar
  35. Vidal, M. A. (2002) Variación morfológica, cromosómica e isoenzimática en Liolaemus tenuis. Master Thesis in Zoology, Universidad de Concepción, Chile.Google Scholar
  36. Vitt, L. J. and Pianka, E. R. (2005) Deep history impacts present-day ecology and biodiversity. PNAS 102, 7877–7881.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media,LLC 2008

Authors and Affiliations

  • Antonieta Labra
    • 1
  1. 1.Department of BiologyUniversity of OsloOsloNorway

Personalised recommendations