Linking Inflammation Reactions to Cancer: Novel Targets for Therapeutic Strategies

  • Alberto Mantovani
  • Federica Marchesi
  • Chiara Porta
  • Paola Allavena
  • Antonio Sica
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 610)

An inflammatory component is present in the microenvironment of most neoplastic tissues, including those not causally related to an obvious inflammatory process. Epidemiological studies have revealed that chronic inflammation predisposes to different forms of cancer and that usage of non-steroidal, anti-inflammatory agents is associated with protection against various tumors. The infiltration of white blood cells, the presence of polypeptide messengers of inflammation (cytokines and chemokines), the occurrence of tissue remodeling and angiogenesis, represent hallmarks of cancer-associated inflammation.


Mononuclear Phagocyte Myeloid Suppressor Cell CCL2 Secretion Mammary Carcinoma Model Spontaneous Mammary Carcinoma 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adini, A., Kornaga, T., Firoozbakht, F. and Benjamin, L. E. (2002). Placental growth factor is a survival factor for tumor endothelial cells and macrophages. Cancer Res 62: 2749–2752.PubMedGoogle Scholar
  2. Aharinejad, S., Abraham, D., Paulus, P., Abri, H., Hofmann, M., Grossschmidt, K., Schafer, R., Stanley, E. R. and Hofbauer, R. (2002). Colony-stimulating factor-1 antisense treatment suppresses growth of human tumor xenografts in mice. Cancer Res 62: 5317–5724.PubMedGoogle Scholar
  3. Allavena, P., Sica, A., Vecchi, A., Locati, M., Sozzani, S. and Mantovani, A. (2000). The chemokine receptor switch paradigm and dendritic cell migration: its significance in tumor tissues. Immunol Rev 177: 141–149.PubMedCrossRefGoogle Scholar
  4. Allavena, P., Signorelli, M., Chieppa, M., Erba, E., Bianchi, G., Marchesi, F., Olimpio, C. O., Bonardi, C., Garbi, A., Lissoni, A., de Braud, F., Jimeno, J. and D'Incalci, M. (2005). Anti-inflammatory properties of the novel antitumor agent yondelis (trabectedin): inhibition of macrophage differentiation and cytokine production. Cancer Res 65: 2964–2971.PubMedCrossRefGoogle Scholar
  5. Azenshtein, E., Luboshits, G., Shina, S., Neumark, E., Shahbazian, D., Weil, M., Wigler, N., Keydar, I. and Ben-Baruch, A. (2002). The CC chemokine RANTES in breast carcinoma progression: regulation of expression and potential mechanisms of pro-malignant activity. Cancer Res 62: 1093–1102.PubMedGoogle Scholar
  6. Balkwill, F., Charles, K. A. and Mantovani, A. (2005). Smoldering and polarized inflammation in the initiation and promotion of malignant disease. Cancer Cell 7: 211–217.PubMedCrossRefGoogle Scholar
  7. Balkwill, F. and Mantovani, A. (2001). Inflammation and cancer: back to Virchow? Lancet 357: 539–545.PubMedCrossRefGoogle Scholar
  8. Bell, D., Chomarat, P., Broyles, D., Netto, G., Harb, G. M., Lebecque, S., Valladeau, J., Davoust, J., Palucka, K. A. and Banchereau, J. (1999). In breast carcinoma tissue, immature dendritic cells reside within the tumor, whereas mature dendritic cells are located in peritumoral areas. J Exp Med 190: 1417–1426.PubMedCrossRefGoogle Scholar
  9. Bingle, L., Brown, N. J. and Lewis, C. E. (2002). The role of tumour-associated macrophages in tumour progression: implications for new anticancer therapies. J Pathol 196: 254–265.PubMedCrossRefGoogle Scholar
  10. Biswas, S. K., Gangi, L., Paul, S., Schioppa, T., Saccani, A., Sironi, M., Bottazzi, B., Doni, A., Bronte, V., Pasqualini, F., Vago, L., Nebuloni, M., Mantovani, A. and Sica, A. (2006). A distinct and unique transcriptional programme expressed by tumor-associated macrophages: defective NF-kB and enhanced IRF-3/STAT1 activation. Blood 107: 2112–2122.PubMedCrossRefGoogle Scholar
  11. Blaskovich, M. A., Sun, J., Cantor, A., Turkson, J., Jove, R. and Sebti, S. M. (2003). Discovery of JSI-124 (cucurbitacin I), a selective Janus kinase/signal transducer and activator of transcription 3 signaling pathway inhibitor with potent antitumor activity against human and murine cancer cells in mice. Cancer Res 63: 1270–1279.PubMedGoogle Scholar
  12. Borrello, M. G., Alberti, L., Fischer, A., Degl'innocenti, D., Ferrario, C., Gariboldi, M., Marchesi, F., Allavena, P., Greco, A., Collini, P., Pilotti, S., Cassinelli, G., Bressan, P., Fugazzola, L., Mantovani, A. and Pierotti, M. A. (2005). Induction of a pro-inflammatory program in normal human thyrocytes by the RET/PTC1 oncogene. Proc Natl Acad Sci U S A 102: 14825–14830.PubMedCrossRefGoogle Scholar
  13. Bottazzi, B., Polentarutti, N., Acero, R., Balsari, A., Boraschi, D., Ghezzi, P., Salmona, M. and Mantovani, A. (1983). Regulation of the macrophage content of neoplasms by chemoattractants. Science 220: 210–212.PubMedCrossRefGoogle Scholar
  14. Bronte, V., Kasic, T., Gri, G., Gallana, K., Borsellino, G., Marigo, I., Battistini, L., Iafrate, M., Prayer-Galetti, T., Pagano, F. and Viola, A. (2005). Boosting antitumor responses of T lymphocytes infiltrating human prostate cancers. J Exp Med 201: 1257–1268.PubMedCrossRefGoogle Scholar
  15. Bronte, V. and Zanovello, P. (2005). Regulation of immune responses by L-arginine metabolism. Nat Rev Immunol 5: 641–654.PubMedCrossRefGoogle Scholar
  16. Carta, L., Pastorino, S., Melillo, G., Bosco, M. C., Massazza, S. and Varesio, L. (2001). Engineering of macrophages to produce IFN-gamma in response to hypoxia. J Immunol 166: 5374–5380.PubMedGoogle Scholar
  17. Colombo, M. P. and Mantovani, A. (2005). Targeting myelomonocytic cells to revert inflammation-dependent cancer promotion. Cancer Res 65: 9113–9116.PubMedCrossRefGoogle Scholar
  18. Condeelis, J. and Pollard, J. W. (2006). Macrophages: obligate partners for tumor cell migration, invasion, and metastasis. Cell 124: 263–266.PubMedCrossRefGoogle Scholar
  19. Conti, I. and Rollins, B. J. (2004). CCL2 (monocyte chemoattractant protein-1) and cancer. Semin Cancer Biol 14: 149–154.PubMedCrossRefGoogle Scholar
  20. Coussens, L. M., Tinkle, C. L., Hanahan, D. and Werb, Z. (2000). MMP-9 supplied by bone marrow-derived cells contributes to skin carcinogenesis. Cell 103: 481–490.PubMedCrossRefGoogle Scholar
  21. Coussens, L. M. and Werb, Z. (2002). Inflammation and cancer. Nature 420: 860–867.PubMedCrossRefGoogle Scholar
  22. Desnues, B., Lepidi, H., Raoult, D. and Mege, J. L. (2005). Whipple disease: intestinal infiltrating cells exhibit a transcriptional pattern of M2/alternatively activated macrophages. J Infect Dis 192: 1642–1646.PubMedCrossRefGoogle Scholar
  23. Dinapoli, M. R., Calderon, C. L. and Lopez, D. M. (1996). The altered tumoricidal capacity of macrophages isolated from tumor-bearing mice is related to reduce expression of the inducible nitric oxide synthase gene. J Exp Med 183: 1323–1329.PubMedCrossRefGoogle Scholar
  24. Dinarello, C. A. (2005). Blocking IL-1 in systemic inflammation. J Exp Med 201: 1355–1359.PubMedCrossRefGoogle Scholar
  25. Dong, Z., Yoneda, J., Kumar, R. and Fidler, I. J. (1998). Angiostatin-mediated suppression of cancer metastases by primary neoplasms engineered to produce granulocyte/macrophage colony-stimulating factor. J Exp Med 188: 755–763.PubMedCrossRefGoogle Scholar
  26. Duyndam, M. C., Hilhorst, M. C., Schluper, H. M., Verheul, H. M., van Diest, P. J., Kraal, G., Pinedo, H. M. and Boven, E. (2002). Vascular endothelial growth factor-165 over-expression stimulates angiogenesis and induces cyst formation and macrophage infiltration in human ovarian cancer xenografts. Am J Pathol 160: 537–548.PubMedGoogle Scholar
  27. Garlanda, C., Riva, F., Veliz, T., Polentarutti, N., Pasqualini, F., Radaelli, E., Sironi, M., Nebuloni, M., Omodeo Zorini, E., Scanziani, E. and Mantovani, A. (2007, in press). Increased susceptibility to colitis-associated cancer of mice lacking TIR8, and inhibitory members of the IL-1 receptor family. Cancer Res.Google Scholar
  28. Ghassabeh, G. H., De Baetselier, P., Brys, L., Noel, W., Van Ginderachter, J. A., Meerschaut, S., Beschin, A., Brombacher, F. and Raes, G. (2006). Identification of a common gene signature for type II cytokine-associated myeloid cells elicited in vivo in different pathologic conditions. Blood 108: 575–583.PubMedCrossRefGoogle Scholar
  29. Giraudo, E., Inoue, M. and Hanahan, D. (2004). An amino-bisphosphonate targets MMP-9-expressing macrophages and angiogenesis to impair cervical carcinogenesis. J Clin Invest 114: 623–633.PubMedGoogle Scholar
  30. Goerdt, S. and Orfanos, C. E. (1999). Other functions, other genes: alternative activation of antigen-presenting cells. Immunity 10: 137–142.PubMedCrossRefGoogle Scholar
  31. Gordon, S. (2003). Alternative activation of macrophages. Nat Rev Immunol 3: 23–35.PubMedCrossRefGoogle Scholar
  32. Goswami, S., Sahai, E., Wyckoff, J. B., Cammer, M., Cox, D., Pixley, F. J., Stanley, E. R., Segall, J. E. and Condeelis, J. S. (2005). Macrophages promote the invasion of breast carcinoma cells via a colony-stimulating factor-1/epidermal growth factor paracrine loop. Cancer Res 65: 5278–5283.PubMedCrossRefGoogle Scholar
  33. Greten, F. R., Eckmann, L., Greten, T. F., Park, J. M., Li, Z. W., Egan, L. J., Kagnoff, M. F. and Karin, M. (2004). IKKbeta links inflammation and tumorigenesis in a mouse model of colitis-associated cancer. Cell 118: 285–296.PubMedCrossRefGoogle Scholar
  34. Guiducci, C., Vicari, A. P., Sangaletti, S., Trinchieri, G. and Colombo, M. P. (2005). Redirecting in vivo elicited tumor infiltrating macrophages and dendritic cells towards tumor rejection. Cancer Res 65: 3437–3446.PubMedGoogle Scholar
  35. Hagemann, T., Wilson, J., Burke, F., Kulbe, H., Li, N. F., Pluddemann, A., Charles, K., Gordon, S. and Balkwill, F. R. (2006). Ovarian cancer cells polarize macrophages toward a tumor-associated phenotype. J Immunol 176: 5023–5032.PubMedGoogle Scholar
  36. Hanada, T., Kobayashi, T., Chinen, T., Saeki, K., Takaki, H., Koga, K., Minoda, Y., Sanada, T., Yoshioka, T., Mimata, H., Kato, S. and Yoshimura, A. (2006). IFNgamma-dependent, spontaneous development of colorectal carcinomas in SOCS1-deficient mice. J Exp Med 203: 1391–1397.PubMedCrossRefGoogle Scholar
  37. Hanahan, D. and Weinberg, R. A. (2000). The hallmarks of cancer. Cell 100: 57–70.PubMedCrossRefGoogle Scholar
  38. Hotchkiss, K. A., Ashton, A. W., Klein, R. S., Lenzi, M. L., Zhu, G. H. and Schwartz, E. L. (2003). Mechanisms by which tumor cells and monocytes expressing the angiogenic factor thymidine phosphorylase mediate human endothelial cell migration. Cancer Res 63: 527–533.PubMedGoogle Scholar
  39. Joseph, I. B. and Isaacs, J. T. (1998). Macrophage role in the anti-prostate cancer response to one class of anti-angiogenic agents. J Natl Cancer Inst 90: 1648–1653.PubMedCrossRefGoogle Scholar
  40. Klimp, A. H., Hollema, H., Kempinga, C., van der Zee, A. G., de Vries, E. G. and Daemen, T. (2001). Expression of cyclooxygenase-2 and inducible nitric oxide synthase in human ovarian tumors and tumor-associated macrophages. Cancer Res 61: 7305–7309.PubMedGoogle Scholar
  41. Koehne, C. H. and Dubois, R. N. (2004). COX-2 inhibition and colorectal cancer. Semin Oncol 31: 12–21.PubMedCrossRefGoogle Scholar
  42. Kortylewski, M., Kujawski, M., Wang, T., Wei, S., Zhang, S., Pilon-Thomas, S., Niu, G., Kay, H., Mule, J., Kerr, W. G., Jove, R., Pardoll, D. and Yu, H. (2005). Inhibiting Stat3 signalling in the hematopoietic system elicits multi-component antitumor immunity. Nat Med 11: 1314–1321.PubMedCrossRefGoogle Scholar
  43. Kusmartsev, S. and Gabrilovich, D. I. (2005). STAT1 signalling regulates tumor-associated macrophage-mediated T cell deletion. J Immunol 174: 4880–4891.PubMedGoogle Scholar
  44. Lin, E. Y., Nguyen, A. V., Russell, R. G. and Pollard, J. W. (2001). Colony-stimulating factor 1 promotes progression of mammary tumors to malignancy. J Exp Med 193: 727–740.PubMedCrossRefGoogle Scholar
  45. Locati, M., Deuschle, U., Massardi, M. L., Martinez, F. O., Sironi, M., Sozzani, S., Bartfai, T. and Mantovani, A. (2002). Analysis of the gene expression profile activated by the CC chemokine ligand 5/RANTES and by lipopolysaccharide in human monocytes. J Immunol 168: 3557–3562.PubMedGoogle Scholar
  46. Mantovani, A. (1999). The chemokine system: redundancy for robust outputs. Immunol Today 20: 254–257.PubMedCrossRefGoogle Scholar
  47. Mantovani, A., Bottazzi, B., Colotta, F., Sozzani, S. and Ruco, L. (1992). The origin and function of tumor-associated macrophages. Immunol Today 13: 265–270.PubMedCrossRefGoogle Scholar
  48. Mantovani, A., Sica, A., Sozzani, S., Allavena, P., Vecchi, A. and Locati, M. (2004). The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol 25: 677–686.PubMedCrossRefGoogle Scholar
  49. Mantovani, A., Sozzani, S., Locati, M., Allavena, P. and Sica, A. (2002). Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol 23: 549–555.PubMedCrossRefGoogle Scholar
  50. Martinez, F. O., Gordon, S., Locati, M. and Mantovani, A. (2006). Transcriptional Profiling of the Human Monocyte-to-Macrophage Differentiation and Polarization: New Molecules and Patterns of Gene Expression. J Immunol 177: 7303–7311.PubMedGoogle Scholar
  51. Matsushima, K., Larsen, C. G., DuBois, G. C. and Oppenheim, J. J. (1989). Purification and characterization of a novel monocyte chemotactic and activating factor produced by a human myelomonocytic cell line. J Exp Med 169: 1485–1490.PubMedCrossRefGoogle Scholar
  52. Mellor, A. L., Keskin, D. B., Johnson, T., Chandler, P. and Munn, D. H. (2002). Cells expressing indoleamine 2,3-dioxygenase inhibit T cell responses. J Immunol 168: 3771–3776.PubMedGoogle Scholar
  53. Monti, P., Leone, B. E., Marchesi, F., Balzano, G., Zerbi, A., Scaltrini, F., Pasquali, C., Calori, G., Pessi, F., Sperti, C., Di Carlo, V., Allavena, P. and Piemonti, L. (2003). The CC chemokine MCP-1/CCL2 in pancreatic cancer progression: regulation of expression and potential mechanisms of anti-malignant activity. Cancer Res 63: 7451–7461.PubMedGoogle Scholar
  54. Muller, A. J., DuHadaway, J. B., Donover, P. S., Sutanto-Ward, E. and Prendergast, G. C. (2005). Inhibition of indoleamine 2,3-dioxygenase, an immuno-regulatory target of the cancer suppression gene Bin1, potentiates cancer chemotherapy. Nat Med 11: 312–319.PubMedCrossRefGoogle Scholar
  55. Nesbit, M., Schaider, H., Miller, T. H. and Herlyn, M. (2001). Low-level monocyte chemoattractant protein-1 stimulation of monocytes leads to tumor formation in nontumorigenic melanoma cells. J Immunol 166: 6483–6490.PubMedGoogle Scholar
  56. Noel, W., Raes, G., Hassanzadeh Ghassabeh, G., De Baetselier, P. and Beschin, A. (2004). Alternatively activated macrophages during parasite infections. Trends Parasitol 20: 126–133.PubMedCrossRefGoogle Scholar
  57. Paik, S., Shak, S., Tang, G., Kim, C., Baker, J., Cronin, M., Baehner, F. L., Walker, M. G., Watson, D., Park, T., Hiller, W., Fisher, E. R., Wickerham, D. L., Bryant, J. and Wolmark, N. (2004). A multi-gene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N Engl J Med 351: 2817–2826.PubMedCrossRefGoogle Scholar
  58. Paulus, P., Stanley, E. R., Schafer, R., Abraham, D. and Aharinejad, S. (2006). Colony-stimulating factor-1 antibody reverses chemo-resistance in human MCF-7 breast cancer xenografts. Cancer Res 66: 4349–4356.PubMedCrossRefGoogle Scholar
  59. Phillips, R. J., Mestas, J., Gharaee-Kermani, M., Burdick, M. D., Sica, A., Belperio, J. A., Keane, M. P. and Strieter, R. M. (2005). Epidermal growth factor and hypoxia-induced expression of CXC chemokine receptor 4 on non-small cell lung cancer cells is regulated by the phosphatidylinositol 3-kinase/PTEN/AKT/mammalian target of rapamycin signalling pathway and activation of hypoxia inducible factor-1alpha. J Biol Chem 280: 22473–22481.PubMedCrossRefGoogle Scholar
  60. Pikarsky, E., Porat, R. M., Stein, I., Abramovitch, R., Amit, S., Kasem, S., Gutkovich-Pyest, E., Urieli-Shoval, S., Galun, E. and Ben-Neriah, Y. (2004). NF-kappaB functions as a tumour promoter in inflammation-associated cancer. Nature 431: 461–466.PubMedCrossRefGoogle Scholar
  61. Pollard, J. W. (2004). Tumour-educated macrophages promote tumour progression and metastasis. Nat Rev Cancer 4: 71–78.PubMedCrossRefGoogle Scholar
  62. Pukrop, T., Klemm, F., Hagemann, T., Gradl, D., Schulz, M., Siemes, S., Trumper, L. and Binder, C. (2006). Wnt 5a signalling is critical for macrophage-induced invasion of breast cancer cell lines. Proc Natl Acad Sci U S A 103: 5454–5459.PubMedCrossRefGoogle Scholar
  63. Rauh, M. J., Sly, L. M., Kalesnikoff, J., Hughes, M. R., Cao, L. P., Lam, V. and Krystal, G. (2004). The role of SHIP1 in macrophage programming and activation. Biochem Soc Trans 32: 785–788.PubMedCrossRefGoogle Scholar
  64. Rollins, B. J. (1997). Chemokines. Blood 90: 909–928.PubMedGoogle Scholar
  65. Saji, H., Koike, M., Yamori, T., Saji, S., Seiki, M., Matsushima, K. and Toi, M. (2001). Significant correlation of monocyte chemoattractant protein-1 expression with neovascularization and progression of breast carcinoma. Cancer 92: 1085–1091.PubMedCrossRefGoogle Scholar
  66. Saccani, A., Schioppa, T., Porta, C., Biswas, SK., Nebuloni, M., Vago, L., Bottazzi, B., Colombo, MP., Mantovani, A., Sica, A. (2006). p50 nuclear factor-kappaB overexpression in tumor-associated macrophages inhibits M1 inflammatory responses and antitumor resistance. Cancer Res. 66(23): 11432–11440.PubMedCrossRefGoogle Scholar
  67. Sangaletti, S., Stoppacciaro, A., Guiducci, C., Torrisi, M. R. and Colombo, M. P. (2003). Leukocyte, rather than tumor-produced SPARC, determines stroma and collagen type IV deposition in mammary carcinoma. J Exp Med 198: 1475–1485.PubMedCrossRefGoogle Scholar
  68. Scarpino, S., Stoppacciaro, A., Ballerini, F., Marchesi, M., Prat, M., Stella, M. C., Sozzani, S., Allavena, P., Mantovani, A. and Ruco, L. P. (2000). Papillary carcinoma of the thyroid: hepatocyte growth factor (HGF) stimulates tumor cells to release chemokines active in recruiting dendritic cells. Am J Pathol 156: 831–837.PubMedGoogle Scholar
  69. Schioppa, T., Uranchimeg, B., Saccani, A., Biswas, S. K., Doni, A., Rapisarda, A., Bernasconi, S., Saccani, S., Nebuloni, M., Vago, L., Mantovani, A., Melillo, G. and Sica, A. (2003). Regulation of the chemokine receptor CXCR4 by hypoxia. J Exp Med 198: 1391–1402.PubMedCrossRefGoogle Scholar
  70. Schoppmann, S. F., Birner, P., Stockl, J., Kalt, R., Ullrich, R., Caucig, C., Kriehuber, E., Nagy, K., Alitalo, K. and Kerjaschki, D. (2002). Tumor-associated macrophages express lymphatic endothelial growth factors and are related to peritumoral lymphangiogenesis. Am J Pathol 161: 947–956.PubMedGoogle Scholar
  71. Scotton, C. J., Martinez, F. O., Smelt, M. J., Sironi, M., Locati, M., Mantovani, A. and Sozzani, S. (2005). Transcriptional profiling reveals complex regulation of the monocyte IL-1 beta system by IL-13. J Immunol 174: 834–845.PubMedGoogle Scholar
  72. Sessa, C., De Braud, F., Perotti, A., Bauer, J., Curigliano, G., Noberasco, C., Zanaboni, F., Gianni, L., Marsoni, S., Jimeno, J., D'Incalci, M., Dall'o, E. and Colombo, N. (2005). Trabectedin for women with ovarian carcinoma after treatment with platinum and taxanes fails. J Clin Oncol 23: 1867–1874.PubMedCrossRefGoogle Scholar
  73. Sica, A., Saccani, A., Bottazzi, B., Polentarutti, N., Vecchi, A., van Damme, J. and Mantovani, A. (2000). Autocrine production of IL-10 mediates defective IL-12 production and NF-kappa B activation in tumor-associated macrophages. J Immunol 164: 762–767.PubMedGoogle Scholar
  74. Sinha, P., Clements, V. K. and Ostrand-Rosenberg, S. (2005). Reduction of myeloid-derived suppressor cells and induction of M1 macrophages facilitate the rejection of established metastatic disease. J Immunol 174: 636–645.PubMedGoogle Scholar
  75. Takahashi, H., Tsuda, Y., Takeuchi, D., Kobayashi, M., Herndon, D. N. and Suzuki, F. (2004). Influence of systemic inflammatory response syndrome on host resistance against bacterial infections. Crit Care Med 32: 1879–1885.PubMedCrossRefGoogle Scholar
  76. Torroella-Kouri, M., Ma, X., Perry, G., Ivanova, M., Cejas, P. J., Owen, J. L., Iragavarapu-Charyulu, V. and Lopez, D. M. (2005). Diminished expression of transcription factors nuclear factor kappaB and CCAAT/enhancer binding protein underlies a novel tumor evasion mechanism affecting macrophages of mammary tumor-bearing mice. Cancer Res 65: 10578–10584.PubMedCrossRefGoogle Scholar
  77. Tsuda, Y., Takahashi, H., Kobayashi, M., Hanafusa, T., Herndon, D. N. and Suzuki, F. (2004). Three different neutrophil subsets exhibited in mice with different susceptibilities to infection by methicillin-resistant Staphylococcus aureus. Immunity 21: 215–226.PubMedCrossRefGoogle Scholar
  78. Ueno, T., Toi, M., Saji, H., Muta, M., Bando, H., Kuroi, K., Koike, M., Inadera, H. and Matsushima, K. (2000). Significance of macrophage chemoattractant protein-1 in macrophage recruitment, angiogenesis, and survival in human breast cancer. Clin Cancer Res 6: 3282–3289.PubMedGoogle Scholar
  79. Van Damme, J., Proost, P., Lenaerts, J. P. and Opdenakker, G. (1992). Structural and functional identification of two human, tumor-derived monocyte chemotactic proteins (MCP-2 and MCP-3) belonging to the chemokine family. J Exp Med 176: 59–65.PubMedCrossRefGoogle Scholar
  80. van den Brule, F., Califice, S., Garnier, F., Fernandez, P. L., Berchuck, A. and Castronovo, V. (2003). Galectin-1 accumulation in the ovary carcinoma peritumoral stroma is induced by ovary carcinoma cells and affects both cancer cell proliferation and adhesion to laminin-1 and fibronectin. Lab Invest 83: 377–386.PubMedGoogle Scholar
  81. Vicari, A. P. and Caux, C. (2002). Chemokines in cancer. Cytokine Growth Factor Rev 13: 143–154.PubMedCrossRefGoogle Scholar
  82. Voronov, E., Shouval, D. S., Krelin, Y., Cagnano, E., Benharroch, D., Iwakura, Y., Dinarello, C. A. and Apte, R. N. (2003). IL-1 is required for tumor invasiveness and angiogenesis. Proc Natl Acad Sci U S A 100: 2645–2650.PubMedCrossRefGoogle Scholar
  83. Wang, T., Niu, G., Kortylewski, M., Burdelya, L., Shain, K., Zhang, S., Bhattacharya, R., Gabrilovich, D., Heller, R., Coppola, D., Dalton, W., Jove, R., Pardoll, D. and Yu, H. (2004). Regulation of the innate and adaptive immune responses by Stat-3 signalling in tumor cells. Nat Med 10: 48–54.PubMedCrossRefGoogle Scholar
  84. Wyckoff, J., Wang, W., Lin, E. Y., Wang, Y., Pixley, F., Stanley, E. R., Graf, T., Pollard, J. W., Segall, J. and Condeelis, J. (2004). A paracrine loop between tumor cells and macrophages is required for tumor cell migration in mammary tumors. Cancer Res 64: 7022–7029.PubMedCrossRefGoogle Scholar
  85. Wynn, T. A. (2004). Fibrotic disease and the T(H) 1/T(H) 2 paradigm. Nat Rev Immunol 4: 583–594.PubMedCrossRefGoogle Scholar
  86. Yang, H., Bocchetta, M., Kroczynska, B., Elmishad, A. G., Chen, Y., Liu, Z., Bubici, C., Mossman, B. T., Pass, H. I., Testa, J. R., Franzoso, G. and Carbone, M. (2006). TNF-alpha inhibits asbestos-induced cytotoxicity via a NF-kappaB-dependent pathway, a possible mechanism for asbestos-induced oncogenesis. Proc Natl Acad Sci U S A 103: 10397–10402.PubMedCrossRefGoogle Scholar
  87. Yang, J. and Richmond, A. (2001). Constitutive IkappaB kinase activity correlates with nuclear factor-kappaB activation in human melanoma cells. Cancer Res 61: 4901–4909.PubMedGoogle Scholar
  88. Yoshimura, T., Matsushima, K., Oppenheim, J. J. and Leonard, E. J. (1987). Neutrophil chemotactic factor produced by lipopolysaccharide (LPS)-stimulated human blood mononuclear leukocytes: partial characterization and separation from interleukin 1 (IL-1). J Immunol 139: 788–793.PubMedGoogle Scholar
  89. Zeisberger, S. M., Odermatt, B., Marty, C., Zehnder-Fjallman, A. H., Ballmer-Hofer, K. and Schwendener, R. A. (2006). Clodronate-liposome-mediated depletion of tumour-associated macrophages: a new and highly effective anti-angiogenic therapy approach. Br J Cancer 95: 272–281.PubMedCrossRefGoogle Scholar
  90. Zhu, P., Baek, S. H., Bourk, E. M., Ohgi, K. A., Garcia-Bassets, I., Sanjo, H., Akira, S., Kotol, P. F., Glass, C. K., Rosenfeld, M. G. and Rose, D. W. (2006). Macrophage/cancer cell interactions mediate hormone resistance by a nuclear receptor de-repression pathway. Cell 124: 615–629.PubMedCrossRefGoogle Scholar
  91. Zhu, Z., Zheng, T., Homer, R. J., Kim, Y. K., Chen, N. Y., Cohn, L., Hamid, Q. and Elias, J. A. (2004). Acidic mammalian chitinase in asthmatic Th2 inflammation and IL-13 pathway activation. Science 304: 1678–1682.PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2008

Authors and Affiliations

  • Alberto Mantovani
    • 1
    • 2
  • Federica Marchesi
    • 1
  • Chiara Porta
    • 1
  • Paola Allavena
    • 1
  • Antonio Sica
    • 1
  1. 1.Istituto Clinico Humanitas IRCCSRozzano (Milan)Italy
  2. 2.Centro di Eccellenza per l'Innovazione Diagnostica e Terapeutica, Institute of PathologyUniversity of MilanItaly

Personalised recommendations