Introductory Remarks

  • Yi Lu
  • Yingfu Li
Part of the Integrated Analytical Systems book series (ANASYS)


The emergence of a large number of natural and artificial functional nucleic acids (FNAs; aptamers and nucleic acid enzymes, collectively termed functional nucleic acids in this book) has generated tremendous enthusiasm and new opportunities for molecular scientists from diverse disciplines to devise new concepts and applications. In this volume, we have assembled some leading experts to provide a timely account of recent progress in sensing and other analytical applications that explore functional nucleic acids.


Anisotropy Catalysis Electrophoresis Immobilization Explosive 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Kruger, K., Grabowski, P.J., Zaug, A.J., Sands, J., Gottschling, D.E. and Cech, T.R. (1982) Self-splicing RNA: autoexcision and autocyclization of the ribosomal RNA intervening sequence of Tetrahymena. Cell 31:147–157.CrossRefGoogle Scholar
  2. 2.
    Guerrier-Takada, C., Gardiner, K., Marsh, T., Pace, N. and Altman, S. (1983) The RNA moiety of ribonuclease P is the catalytic subunit of the enzyme. Cell 35:849–857.CrossRefGoogle Scholar
  3. 3.
    Ellington, A.D. and Szostak, J.W. (1990) In vitro selection of RNA molecules that bind specific ligands. Nature (Lond.) 346:818–822.CrossRefGoogle Scholar
  4. 4.
    Robertson, D.L. and Joyce, G.F. (1990) Selection in vitro of an RNA enzyme that specifically cleaves single-stranded DNA. Nature (Lond.) 344:467–468.CrossRefGoogle Scholar
  5. 5.
    Tuerk, C. and Gold, L. (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249:505–510.CrossRefGoogle Scholar
  6. 6.
    Lee, J.F., Hesselberth, J.R., Meyers, L.A. and Ellington, A.D. (2004) Aptamer database. Nucleic Acids Res. 32:D95–D100.CrossRefGoogle Scholar
  7. 7.
    Thodima, V., Piroozina, M. and Deng, Y. (2006) RiboaptDB: a comprehensive database of ribozymes and aptamers. BMC Bioinformatics 7(suppl 2):S6.CrossRefGoogle Scholar
  8. 8.
    Breaker, R.R. (2004) Natural and engineered nucleic acids as tools to explore biology. Nature (Lond.) 432:838–845.CrossRefGoogle Scholar
  9. 9.
    Fedor, M.J. and Williamson, J.R. (2005) The catalytic diversity of RNAs. Nat. Rev. Mol. Cell. Biol. 6:399–412.CrossRefGoogle Scholar
  10. 10.
    Achenbach, J.C., Chiuman, W., Cruz, R.P. and Li, Y. (2004) DNAzymes: from creation in vitro to application in vivo. Curr. Pharm. Biotechnol. 5:321–336.CrossRefGoogle Scholar
  11. 11.
    Joyce, G.F. (2004) Directed evolution of nucleic acid enzymes. Annu. Rev. Biochem. 73:791–836.CrossRefGoogle Scholar
  12. 12.
    Silverman, S.K. (2005) In vitro selection, characterization, and application of deoxyribozymes that cleave RNA. Nucleic Acids Res. 33:6151–6163.CrossRefGoogle Scholar
  13. 13.
    Mandal, M. and Breaker, R.R. (2004) Gene regulation by riboswitches. Nat. Rev. Mol. Cell Biol. 5:451–463.CrossRefGoogle Scholar
  14. 14.
    Tucker, B.J. and Breaker, R.R. (2005) Riboswitches as versatile gene control elements. Curr. Opin. Struct. Biol. 15:342–348.CrossRefGoogle Scholar
  15. 15.
    Winkler, W.C. (2005) Riboswitches and the role of noncoding RNAs in bacterial metabolic control. Curr. Opin. Chem. Biol. 9:594–602.CrossRefGoogle Scholar
  16. 16.
    Winkler, W.C. and Breaker, R.R. (2005) Regulation of bacterial gene expression by ribos-witches. Annu. Rev. Microbiol. 59:487–517.CrossRefGoogle Scholar
  17. 17.
    Sullenger, B.A. and Gilboa, E. (2002) Emerging clinical applications of RNA. Nature (Lond.) 418:252–258.CrossRefGoogle Scholar
  18. 18.
    Nimjee, S.M., Rusconi, C.P., Sullenger, B.A. (2005) Aptamers: an emerging class of therapeutics. Annu. Rev. Med. 56:555–583, 553 plates.CrossRefGoogle Scholar
  19. 19.
    Lee, J.F., Stovall, G.M. and Ellington, A.D. (2006) Aptamer therapeutics advance. Curr. Opin. Chem. Biol. 10:282.CrossRefGoogle Scholar
  20. 20.
    Famulok, M., Hartig, J.S. and Mayer, G. (2007) Functional aptamers and aptazymes in biotechnology, diagnostics, and therapy. Chem. Rev. (Washington, DC) 107:3715–3743.Google Scholar
  21. 21.
    Cho, E.J., Rajendran, M. and Ellington, A.D. (2005) Aptamers as emerging probes for macro-molecular imaging. Top. Fluoresc. Spectrosc. 10:127–155.Google Scholar
  22. 22.
    Famulok, M. (2005) Allosteric aptamers and aptazymes as probes for screening approaches. Curr. Opin. Mol. Ther. 7:137.Google Scholar
  23. 23.
    Blank, M. and Blind, M. (2005) Aptamers as tools for target validation. Curr. Opin. Chem. Biol. 9:336–342.CrossRefGoogle Scholar
  24. 24.
    Famulok, M. and Mayer, G. (2005) Intramers and aptamers: applications in protein-function analyses and potential for drug screening. ChemBioChem 6:19–26.CrossRefGoogle Scholar
  25. 25.
    Ravelet, C. and Peyrin, E. (2006) Recent developments in the HPLC enantiomeric separation using chiral selectors identified by a combinatorial strategy. J. Separ. Sci. 29:1322–1331.CrossRefGoogle Scholar
  26. 26.
    Lu, Y. and Liu, J. (2007) Smart nanomaterials inspired by biology: dynamic assembly of error-free nanomaterials in response to multiple chemical and biological stimuli. Acc. Chem. Res. 40:315–323.CrossRefGoogle Scholar
  27. 27.
    Lu, Y. and Liu, J. (2006) Functional DNA nanotechnology: emerging applications of DNAzymes and aptamers. Curr. Opin. Biotechnol. 17:580–588.CrossRefGoogle Scholar
  28. 28.
    Katz, E. and Willner, I. (2004) Nanobiotechnology: integrated nanoparticle—biomolecule hybrid systems: synthesis, properties, and applications. Angew. Chem. Int. Ed. 43:6042–6108.CrossRefGoogle Scholar
  29. 29.
    Feldkamp, U. and Niemeyer, C.M. (2006) Rational design of DNA nanoarchitectures. Angew. Chem. Int. Ed. 45:1856–1876.CrossRefGoogle Scholar
  30. 30.
    Famulok, M., Mayer, G. and Blind, M. (2000) Nucleic acid aptamers: from selection in vitro to applications in vivo. Acc. Chem. Res. 33:591–599.CrossRefGoogle Scholar
  31. 31.
    Rajendran, M. and Ellington, A.D. (2002) Selecting nucleic acids for biosensor applications. Comb. Chem. High Throughput Screen. 5:263–270.Google Scholar
  32. 32.
    Hesselberth, J., Robertson, M.P., Jhaveri, S. and Ellington, A.D. (2000) In vitro selection of nucleic acids for diagnostic applications. Rev. Mol. Biotechnol. 74:15–25.CrossRefGoogle Scholar
  33. 33.
    Breaker, R.R. (2002) Engineered allosteric ribozymes as biosensor components. Curr. Opin. Biotechnol. 13:31–39.CrossRefGoogle Scholar
  34. 34.
    Lu, Y. (2002) New transition metal-dependent DNAzymes as efficient endonucleases and as selective metal biosensors. Chem. Eur. J. 8:4588–4596.CrossRefGoogle Scholar
  35. 35.
    Navani, N.K. and Li, Y. (2006) Nucleic acid aptamers and enzymes as sensors. Curr. Opin. Chem. Biol. 10:272–281.CrossRefGoogle Scholar
  36. 36.
    Yang, L. and Ellington, A.D. (2006) Prospects for the de novo design of nucleic acid biosensors. Fluoresc. Sens. Biosens. 5:41, 43.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Yi Lu
    • 1
  • Yingfu Li
    • 2
  1. 1.Department of ChemistryUniversity of Illinois at Urbana-ChampaignUSA
  2. 2.Department of Biochemistry and Biomedical SciencesMcMaster UniversityHamiltonCanada

Personalised recommendations