Potential Mechanism for Transition Between Acute Hypercapnia During Sleep to Chronic Hypercapnia During Wakefulness in Obstructive Sleep Apnea

  • Kenneth I. Berger
  • Robert G. Norman
  • Indu Ayappa
  • Beno W. Oppenheimer
  • David M. Rapoport
  • Roberta M. Goldring
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 605)

This paper presents a series of experiments, both in patients and computer models, investigating the transition from acute to chronic hypercapnia in OSA. The data demonstrate that acute hypercapnia during periodic breathing occurs due to either reduction in magnitude of inter-event ventilation and/or reduction in interevent ventilatory duration relative to duration of the preceding event. The transition between acute hypercapnia during sleep and chronic sustained hypercapnia during wakefulness may be determined by an interaction between respiratory control and renal handling of HCO3

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ayappa, I., Berger, K.I., Norman, R.G., Oppenheimer, B.W., Rapoport, D.M. and Goldring, R.M. (2002) Hypercapnia and ventilatory periodicity in obstructive sleep apnea syndrome. Am. J. Respir. Crit. Care Med. 166, 1112–1115.CrossRefPubMedGoogle Scholar
  2. Berger, K.I., Ayappa, I., Sorkin, I. B., Norman, R.G., Rapoport, D.M. and Goldring, R.M. (2002) Post-event ventilation as a function of CO2 load during respiratory events in obstructive sleep apnea. J. Appl. Physiol. 93, 917–924.PubMedGoogle Scholar
  3. Berger, K.I., Ayappa, I., Sorkin, I.B., Norman, R.G., Rapoport, D.M. and Goldring, R.M. (2000) CO2 homeostasis during periodic breathing in obstructive sleep apnea. J. Appl. Physiol. 88, 257–264.PubMedGoogle Scholar
  4. Gledhill, N., Beirne, G.J. and Dempsey, J.A. (1975) Renal response to short-term hypocapnia in man. Kidney Int. 8, 376–384.CrossRefPubMedGoogle Scholar
  5. Goldring, R.M., Heinemann, H.O. and Turino, G.M. (1975) Regulation of alveolar ventilation in respiratory failure. Am. J. Med. Sci. 269, 160–170.CrossRefPubMedGoogle Scholar
  6. Javaheri, S., Colangelo, G., Lacey, W. and Gartside, P.S. (1994) Chronic hypercapnia in obstructive sleep apnea-hypopnea syndrome. Sleep 17, 416–423.PubMedGoogle Scholar
  7. Nattie, E. (1999) CO2, brainstem chemoreceptors and breathing. Prog. Neurobiol. 59, 299–331.CrossRefPubMedGoogle Scholar
  8. Norman, R.G., Goldring, R.M., Clain, J.M., Oppenheimer, B.W., Charney, A.N., Rapoport, D.M. and Berger, K.I. (2006) Transition from acute to chronic hypercapnia in patients with periodic breathing: predictions from a computer model. J. Appl. Physiol. 100, 1733–1741.CrossRefPubMedGoogle Scholar
  9. Polack, A., Haynie, G.D., Hays, R.M. and Schwarz, W.B. (1961) Effects of chronic hypercapnia on electrolytes and acid-base equilibrium. I. Adaptation. J. Clin. Invest. 40, 1223–1237.CrossRefGoogle Scholar
  10. Rapoport, D.M., Garay, S.M., Epstein, H. and Goldring, R.M. (1986) Hypercapnia in the obstructive sleep apnea syndrome. A re-evaluation of the “Pickwickian syndrome”. Chest 89, 627–635.CrossRefPubMedGoogle Scholar
  11. Rapoport, D.M., Norman, R.G. and Goldring, R.M. (1993) CO2 homeostasis during periodic breathing: predictions from a computer model. J. Appl. Physiol. 75, 2302–2309.PubMedGoogle Scholar
  12. Severinghaus, J.W. (1998) Hans Loeschcke, Robert Mitchell and the medullary CO2 chemoreceptors: a brief historical review. Respir. Physiol. 114, 17–24.CrossRefPubMedGoogle Scholar
  13. Tenney, S.M. (1957) Respiratory control in chronic pulmonary emphysema: a compromise adaptation. J. Maine Med. Ass. 48, 375.PubMedGoogle Scholar

Copyright information

© Springer 2008

Authors and Affiliations

  • Kenneth I. Berger
  • Robert G. Norman
  • Indu Ayappa
  • Beno W. Oppenheimer
  • David M. Rapoport
  • Roberta M. Goldring

There are no affiliations available

Personalised recommendations