Molecular Biology

  • Zoya IgnatovaEmail author
  • Karl-Heinz Zimmermann
  • Israel Martínez-Pérez


Genetic information is passed with high accuracy from the parental organism to the offspring and its expression governs the biochemical and physiological tasks of the cell. Although different types of cells exist and are shaped by development to fill different physiological niches, all cells have fundamental similarities and share common principles of organization and biochemical activities. This chapter gives an overview of general principles of the storage and flow of genetic information. It aims to summarize and describe in a broadly approachable way, from the point of view of molecular biology, some general terms, mechanisms and processes used as a base for the molecular computing in the subsequent chapters.


Gibbs Free Energy Master Equation Genetic Code Wobble Base Pair Beta Pleated Sheet 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Ambrogelly A, Palioura S, Soll D (2007) Natural expansion of the genetic code. Nat Chem Biol 3:29–35CrossRefGoogle Scholar
  2. 2.
    Bock A, Forchhammer K, Heider J, Baron C (1991) Selenoportein synthesis: an expansion of the genetic code. Trends Biochem Sci 16:463–467CrossRefGoogle Scholar
  3. 3.
    Breslauer KJ, Frank R, Blö;cker H, Marky LA (1986) Proc Natl Acad Sci 83:3746–3750Google Scholar
  4. 4.
    Brett D, Pospisil H, Valcárcel J, Reich J, Bork P (2001) Alternative splicing and genome complexity. Nature Gen 30: 29–30CrossRefGoogle Scholar
  5. 5.
    Bundschuh R, Gerland U (2006) Dynamics of intramolecular recognition: base-pairing is DNA/RNA near and far from equilibrium. Eur Phys J 10:319–329Google Scholar
  6. 6.
    Coffin JM (1996). Retroviridae. In: Fields BN, Knipte DM, Howley PM (eds.) Fields Virology Raven PublGoogle Scholar
  7. 7.
    Collier J, Shapiro L (2007) Spatial complexity and control of a bacterial cell cycle. Curr Opin Biotechnol 18:333-340CrossRefGoogle Scholar
  8. 8.
    Gibson M, Bruck J (2000) Efficient exact stochastic simulation of chemical systems with many species and many channels. J Phys Chem A 104:1876–1889CrossRefGoogle Scholar
  9. 9.
    Gillespie D (1976) A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. J Phys Chem 22:403–434MathSciNetGoogle Scholar
  10. 10.
    Gillespie D (1977) Exact stochastic simulation of coupled chemical reactions. J Phys Chem 81:2340–2361CrossRefGoogle Scholar
  11. 11.
    Hewitt L, Kasche V, Lummer K, Lewist RJ, Murshudov GN, Verma GN (2000) Structure of a slow processing precursor penicillin acylase from Escherichia coli reveals the linker peptide blocking the active cleft. J Mol Biol 302:887–898CrossRefGoogle Scholar
  12. 12.
    Hohsaka T, Sisido M (2002). Incorporation of non-natural amino acids into proteins. Curr Opin Chem Biol 6:809–815CrossRefGoogle Scholar
  13. 13.
    Jimenez-Sanchez A (1995) On the origin and evolution of the genetic code. J Mol Evol 41:712–716CrossRefGoogle Scholar
  14. 14.
    Kelly E, Russell SJ (2007) History of oncolytic viruses: genesis to genetic engineering. Mol Ther 15:651–659CrossRefGoogle Scholar
  15. 15.
    Kopelman R (1988) Fractal reaction kinetics. Science 241:1620–1626CrossRefGoogle Scholar
  16. 16.
    Lee SW, Mao C, Flynn CE, Belcher AM (2002) Ordering of quantum dots using genetically engineered viruses. Science 296:892–895CrossRefGoogle Scholar
  17. 17.
    Mattick JS, Makunin IV (2006) Non-coding RNA, Hum Mol Gen 15:17–29CrossRefGoogle Scholar
  18. 18.
    McMahon BJ (2005) Epidemiology and natural history of hepatitis B. Semin Liver Dis 25:3–8CrossRefGoogle Scholar
  19. 19.
    Nam KT, Kim DW, Yoo PJ, Chiang CY, Meethong N, Hammond PT, Chiang YM, Belcher AM (2006) Virus-enabled synthesis and assembly of nanowires for lithium ion battery electrodes. Science 312:885–888CrossRefGoogle Scholar
  20. 20.
    Noad R, Roy P (2003) Virus-like particles as immunogens. Trends Microbiol 11:438–444CrossRefGoogle Scholar
  21. 21.
    Ryu WS (2003) Molecular aspects of hepatitis B viral infection and the viral carcinogenesis. J Biochem Mol Biol 36:138–143Google Scholar
  22. 22.
    SantaLuica J Jr, Hicks D (2004) The thermodynamics of DNA structural motifs. Annu Rev Biomol Struct 33:415–440CrossRefGoogle Scholar
  23. 23.
    Savageau MA (1995) Michaelis-Menten mechanism reconsidered: implications of fractal kinetics. J Theor Biol 176:115–24CrossRefGoogle Scholar
  24. 24.
    Schnell S, Turner TE (2004) Reaction kinetics in intracellular environments with macromolecular crowding: simulations and rate laws. Prog Biophys Mol Biol 85:235–260CrossRefGoogle Scholar
  25. 25.
    Tijssen K (1993) Laboratory techniques in biochemistry and molecular biology. Elsevier, AmsterdamGoogle Scholar
  26. 26.
    Varani G, McClain W (2000) The G × U wobble base pair. A fundamental building block of RNA structure crucial to RNA function in diverse biological systems. EMBO Rep 1:18–23CrossRefGoogle Scholar
  27. 27.
    Vaha-Koskela MJ, Heikkila JE, Hinkkanen AE (2007) Oncolytic viruses in cancer therapy. Cancer Lett 254:178–216CrossRefGoogle Scholar
  28. 28.
    Wagner E (2007) Programmed drug delivery: nanosystems for tumor targeting. Expert Opin Biol Ther 7:587–593CrossRefGoogle Scholar
  29. 29.
    Wilkinson DJ (2006) Stochastic modelling for systems biology. Chapman & Hall, New YorkzbMATHGoogle Scholar
  30. 30.
    Xie J, Schultz PG (2006) A chemical toolkit for proteins – an expanded genetic code. Nat Rev Mol Cell Bio 7:775–782CrossRefGoogle Scholar

Copyright information

© Springer-Verlag US 2008

Authors and Affiliations

  • Zoya Ignatova
    • 1
    Email author
  • Karl-Heinz Zimmermann
    • 2
  • Israel Martínez-Pérez
    • 2
  1. 1.Cellular BiochemistryMax Planck Institute of BiochemistryMunichGermany
  2. 2.Institute of Computer TechnologyHamburg University of TechnologyGermany

Personalised recommendations