• A.M. Oliveira BrettEmail author
Part of the Nanostructure Science and Technology book series (NST)


Bioelectrochemistry is an interdisciplinary subject that deals with the aspects of electrochemistry and electroanalysis characterizing biological processes at the molecular level and relevant to the mechanisms of biological regulation of cells [1]. Nanotechnology has been first used to refer to the ability to engineer materials precisely at the scale on nanometers [2]. Nanotechnology is thus defined as the design and fabrication of materials, devices, and systems with control at nanometer dimensions. So its essence is therefore size and control at the nanometer scale.



Financial support from Fundação para a Ciência e Tecnologia (FCT), POCI (co-financed by the European Community Fund FEDER), and ICEMS (Research Unit 103) are gratefully acknowledged.


  1. 1.
    C.M.A. Brett, A.M.C.F. Oliveira Brett, Electrochemistry. Principles, methods and applications, Chapter 17, Bioelectrochemistry, Oxford University Press, 1993, 430.Google Scholar
  2. 2.
    N. Taniguchi, On the basic concept of nano-technology, Proc. Intl. Conf. Prod. Eng. Tokyo, Part II.Google Scholar
  3. 3.
    G. Binnig, H. Rohrer, Scanning Tunneling Microscopy. Helv. Phys. Acta, 1982, 55, 726–735.Google Scholar
  4. 4.
    S. Myhra, A review of enabling technologies based on scanning probe microscopy relevant to bioanalysis. Biosen. Bioelect., 2004, 190, 1345–1354.CrossRefGoogle Scholar
  5. 5.
    A.A.G. Requicha, Nanorobots, NEMS, and nanoassembly. Proc. IEEE, 2003, 91(11), 1922–1933.Google Scholar
  6. 6.
    J. Riu, A. Maroto, F.X. Rius, Nanosensors in environmental analysis. Talanta, 2006, 69, 288–301.CrossRefGoogle Scholar
  7. 7.
    C.M.A. Brett, The Role of Nanoelectrochemistry in Nanotechnology. Nanotechnol. Percept., 2006, 2, 205.Google Scholar
  8. 8.
    P. Kohli, M. Wirtz, C.R. Martin, Nanotube Membrane Based Biosensors. Electroanalysis, 2004, 16, 9–18.CrossRefGoogle Scholar
  9. 9.
    C. Amatore, S. Arbault, I. Bonifas, Y. Bouret, M. Erard, M. Guille, Dynamics of Full Fusion During Vesicular Exocytotic Events: Release of Adrenaline by Chromaffin Cells. ChemPhysChem, 2003, 4, 101–108.CrossRefGoogle Scholar
  10. 10.
    C. Amatore, S. Arbault, I. Bonifas, Y. Bouret, M. Erard, A.G. Ewing, L.A. Sombers, Correlation Between Vesicle Quantal Size and Fusion Pore Release in Chromaffin Cell Exocytosis. BioPhys. J., 2005, 88, 4411–4420.CrossRefGoogle Scholar
  11. 11.
    A.M. Oliveira Brett, J.A.P. Piedade, A.M. Chiorcea, Voltammetry and AFM imaging of picomoles of adsorbed adriamycin onto glassy carbon and HOPG electrode surfaces. J. Electroanal. Chem., 2002, 538–539, 267–276.Google Scholar
  12. 12.
    F.A. Armstrong, Insights from protein film voltammetry into mechanisms of complex biological electron-transfer reactions. Dalton Trans., 661–671, (2002).Google Scholar
  13. 13.
    F. Baymann, N.L. Barlow, C. Aubert, B. Schoepp-Cothenet, G. Leroy, F.A. Armstrong, Voltammetry of a 'protein on a rope'. FEBS Lett., 2003, 539, 91–94.CrossRefGoogle Scholar
  14. 14.
    G.-J. Yang, K. Wang, J.-J. Xu, H.-Y. Chen, Determination of Theophylline in Drugs and Tea on Nanosized Cobalt Phthalocyanine Particles Modified Carbon Paste Electrode. Anal. Lett., 2004, 37, 629–643.CrossRefGoogle Scholar
  15. 15.
    S.S. Smith, Nucleoprotein assemblies, in: Encyclopedia of Nanoscience and Technology, H.S. Nalwa (Ed.), 2003, Vol. X, 1–10.Google Scholar
  16. 16.
    N.C. Seeman, Nanotechnology and the double helix. Scientific American, 2004, 290, 35–43.CrossRefGoogle Scholar
  17. 17.
    C. Whitehouse, D. Gidalevitz, M. Cahuzac, R.E. Koeppe II, A. Nelson, Interaction of Gramicidin Derivatives with Phospholipid Monolayers. Langmuir, 2004, 20, 9291–9298.CrossRefGoogle Scholar
  18. 18.
    B.A. Cornell, G. Krishna, P.D. Osman, R.D. Pace, L. Wieczorek, Tethered-bilayer lipid membranes as a support for membrane-active peptides. Biochem. Soc. Trans., 2001, 29, 613–617.Google Scholar
  19. 19.
    Z. Siwy, L. Troffin, P. Kohli, L.A. Baker, C. Trautmann, C.R. Martin, Protein Biosensors Based on Biofunctionalized Conical Gold Nanotubes. J. Am. Chem. Soc., 2005, 127, 5000–5001.CrossRefGoogle Scholar
  20. 20.
    D.B. Allred, M. Sarikaya, F. Baneyx, D.T. Schwartz, Electrochemical Nanofabrication Using Crystalline Protein Masks. Nano Lett., 2005, 5(4), 609–613.CrossRefGoogle Scholar
  21. 21.
    M. Handrea, M. Sahre, A. Neubauer, U.B. Sleytr, W. Kautek, Electrochemistry of nano-scale bacterial surface protein layers on gold. Bioelectrochemistry, 2003, 61, 1–8.CrossRefGoogle Scholar
  22. 22.
    W. Saenger, Principles of Nucleic Acid Structure, in: Springer Advanced Texts in Chemistry, Ch. R. Cantor (Ed.), Springer-Verlag, New York, 1984.Google Scholar
  23. 23.
    R.F. Service, Biology offers nanotechs a helping hand. Science, 2002, 298, 2322–2323.CrossRefGoogle Scholar
  24. 24.
    H. Yan, X. Zhang, Z. Shen, N.C. Seeman, A robust DNA mechanical device controlled by hybridization topology, Nature, 2002, 415, 62–65.CrossRefGoogle Scholar
  25. 25.
    I. Willner, Biomaterials for sensors, fuel cells, and circuitry. Science, 2002, 298, 2407–2408.CrossRefGoogle Scholar
  26. 26.
    A.M. Oliveira Brett, S.H.P. Serrano, J.A.P. Piedade, Electrochemistry of DNA, Comprehensive Chemical Kinetics, in: Applications of Kinetic Modeling, R.G. Compton, G. Hancock (Eds.), Elsevier, Oxford, UK, 1999, vol. 37, chapter 3, 91–119.CrossRefGoogle Scholar
  27. 27.
    A.M. Oliveira Brett, DNA-based biosensors, in: Comprehensive Analytical Chemistry. Biosensors and Modern Specific Analytical Techniques, L. Gorton, (Ed.), 2005, vol. 44, chapter 4, 179–208.Google Scholar
  28. 28.
    I. Willner, Biomaterials for sensors, fuel cells, and circuitry. Science, 2002, 298, 2407–2408.CrossRefGoogle Scholar
  29. 29.
    A.M. Oliveira Brett, M. Vivan, I.R. Fernandes, J.A.P. Piedade, Electrochemical detection of in situ adriamycin oxidative damage to DNA. Talanta, 2002, 56, 959–970.CrossRefGoogle Scholar
  30. 30.
    E. Palecek, M. Fojta, M. Tomschik, J Wang, Electrochemical biosensors for DNA hybridization and DNA damage. Biosens. Bioelectron., 1998, 13, 621-628.CrossRefGoogle Scholar
  31. 31.
    M. Mascini, I. Palchetti, G Marrazza, DNA electrochemical biosensors. Fresenius J. Anal. Chem., 2001, 369, 15–22.Google Scholar
  32. 31.
    D.R. Meldrum, Sequencing genomes and beyond. Science, 2001, 292, 515–517.CrossRefGoogle Scholar
  33. 32.
    H.G. Hansma, I. Revenko, K. Kim, D.E. Laney, Atomic force microscopy of long and short double-stranded, single-stranded and triple-stranded nucleic acids, Nucleic Acids Res., 1996, 24713–24720.Google Scholar
  34. 33.
    A.-M. Chiorcea Paquim, T.S. Oretskaya, A.M. Oliveira Brett, Adsorption of synthetic homo- and hetero-oligodeoxynucleotides onto highly oriented pyrolytic graphite. Atomic force microscopy characterization. Biophys. Chem., 2006, 121, 131–141.Google Scholar
  35. 34.
    M. Östblom, B. Liedberg, L.M. Demers, C.A. Mirkin, On the Structure and Desorption Dynamics of DNA Bases Adsorbed on Gold: A Temperature-Programmed Study. J. Phys. Chem. B, 2005, 109, 15150–15160.CrossRefGoogle Scholar
  36. 35.
    A. Turberfield, DNA as an engineering material. Phys. World, 2003, 16, 43–36.Google Scholar
  37. 36.
    N.C. Seeman, DNA in a material world. Nature, 2003, 421, 427–431.CrossRefGoogle Scholar
  38. 37.
    C. Dekker, M.A. Ratner, Electronic properties of DNA. Phys. World, 2001, 14, 29–33.Google Scholar
  39. 38.
    S.H. Park, H. Yan, J.H. Reif, T.H. LaBean, G. Finkelstein, Electronic nanostrutures templated on self-assembled DNA scaffolds. Nanotechnology, 2004, 15, S525–S527.CrossRefGoogle Scholar
  40. 39.
    D. Liu, S.H. Park, J.H. Reif, T.H. LaBean, DNA nanotubes self-assembled from triple-crossover tiles as templates for conductive nanowires. Proc. Nac. Acad. Scien., 2004, 101, 717–722.Google Scholar
  41. 40.
    S.H. Park, P. Yin, Y. Liu, J.H. Reif, T.H. LaBean, H. Yan, Programmable DNA Self-Assemblies for Nanoscale Organization of Ligands and Proteins. Nano Lett., 2005, 5, 729–733.CrossRefGoogle Scholar
  42. 41.
    J. Wang, Nanomaterial-based amplified transduction of biomolecular interactions. Small, 2005, 11, 1036–1043.CrossRefGoogle Scholar
  43. 42.
    E. Katz, I. Willner, J. Wang, Electroanalytical and Bioelectroanalytical Systems Based on Metal and Semiconductor Nanoparticles. Electroanalysis, 2004, 16, 3–160.CrossRefGoogle Scholar
  44. 43.
    E. Katz, I. Willner, Integrated nanoparticle-biomolecule hybrid systems: synthesis, properties, and applications. Angew. Chem. Int. Ed., 2004, 43, 6042–6108.CrossRefGoogle Scholar
  45. 44.
    S. Iijima, Helical microtubules of graphitic carbon. Nature, 1991, 354, 56–58.CrossRefGoogle Scholar
  46. 45.
    K. Gong, Y. Yan, M. Zhang, S. Xiong, L. Mao, Electrochemistry and electroanalytical applications of carbon nanotubes: a review. Anal. Sci., 2005, 21, 1383–1393.CrossRefGoogle Scholar
  47. 46.
    E. Katz, I. Willner, Biomolecule-functionalized carbon nanotubes: applications in nanobioelectronics. Chem. Phys. Chem., 2004, 5, 1084–1104.CrossRefGoogle Scholar
  48. 47.
    J. Wang, Carbon-Nanotube Based Electrochemical Biosensors: A Review. Electroanalysis, 2005, 17, 7–14.CrossRefGoogle Scholar
  49. 48.
    X. Yu, S.N. Kim, F. Papadimitrakopoulo, J.F. Rusling, Protein immunosensor using single-wall carbon nanotube forests with electrochemical detection of enzyme labels. Mol. Biosyst., 2005, 1, 70–78.CrossRefGoogle Scholar
  50. 49.
    S. Hou, J. Wang, C.R. Martin, Template-Synthesized Protein Nanotubes. Nano Lett., 2005, 5, 231–234.CrossRefGoogle Scholar
  51. 50.
    S. Hou, J. Wang, C.R. Martin, Template-Synthesized DNA Nanotubes. J. Am. Chem. Soc., 2005, 127, 8586–8587.CrossRefGoogle Scholar
  52. 51.
    M. Yemini, M. Reches, J. Rishpon, E. Gazit, Novel Electrochemical Biosensing Platform Using Self-Assembled Peptide Nanotubes. Nano Lett., 2005, 5, 183–186.CrossRefGoogle Scholar
  53. 52.
    M. Reches, E. Gazit, Formation of closed-cage nanostructures by self-assembly of aromatic dipeptides. Nano Lett., 2004, 4, 581–585.CrossRefGoogle Scholar
  54. 53.
    M. Yemini, M. Reches, E. Gazit, J. Rishpon, Peptide Nanotube-Modified Electrodes for Enzyme-Biosensor Applications. Anal. Chem., 2005, 77, 5155–5159.CrossRefGoogle Scholar
  55. 54.
    I. Willner, E. Katz, Magnetic control of electrocatalytic and bioelectrocatalytic processes. Angew. Chem. Int. Ed. 2003, 42, 4576–4588.CrossRefGoogle Scholar
  56. 55.
    E. Katz, R. Baron, I. Willner, Magnetoswitchable electrochemistry gated by alkyl-chain-functionalized magnetic nanoparticles: control of diffusion and surface confined electrochemical processes. J. Am. Chem. Soc., 2005, 127, 4060–4070.CrossRefGoogle Scholar
  57. 56.
    J. Wang, R. Polsky, D. Xu, Silver-Enhanced Colloidal Gold Electrochemical Stripping Detection of DNA Hybridization. Langmuir, 2001, 17, 5739–5741.CrossRefGoogle Scholar
  58. 57.
    J. Wang, Nanoparticles-based electrochemical DNA detection. Anal. Chim. Acta, 2003, 500, 247–257.CrossRefGoogle Scholar
  59. 58.
    A.-N. Kawde, J. Wang, Amplified electrical transduction of DNA hybridization based on polymeric beads loaded with multiple gold nanoparticles tags. Electroanalysis, 2004, 16, 101–107.CrossRefGoogle Scholar
  60. 59.
    P.E. Sheehan, L.J. Whitman, Detection Limits for Nanoscale Biosensors. Nano Lett., 2005, 5, 803–807.CrossRefGoogle Scholar
  61. 60.
    R. Feynman, Nanotechnology. Caltech's Eng. Sci., 1960, XXIII, 22–36.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Departamento de QuímicaUniversidade de CoimbraCoimbraPortugal

Personalised recommendations