Keywords

low voltage high-resolution scanning electron microscopy radiation damage 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adachi K, Houjou K, Katoh M, Kanaya K (1976) High-resolution shadowing for electron microscopy by sputter deposition, Ultramicrosc. 2:17–29Google Scholar
  2. Adams WW, Price G, Krause SJ (1990) Imaging of polymer single crystals in low voltage, high-resolution scanning electron microscopy, .Proc. XIIth ICEM Mtg. 1106–1107Google Scholar
  3. Aebi U, Jarnik M, Reichelt R, Engel A (1990) Structural analysis of the nuclear pore complex by conventional and scanning transmission electron microscopy, (CTEM/STEM), EMSA Bull. 20 2:69–76Google Scholar
  4. Albrecht RM and Hodges GM (1988) Biotechnology and Bioapplications of Colloidal-Gold, SMI International: Chicago, ILGoogle Scholar
  5. Albrecht RM, Simmons SR, Prudent JR, Erickson CM (1988) High-resolution SEM of colloidal-gold labels, Proc. EMSA, 46:214–215Google Scholar
  6. Albrecht RM, Goodman SL, Simmons SR (1989) Distribution and movement of membrane associated platelet glycoproteins: use of colloidal-gold with correlative video enhanced light microscopy, low-voltage high-resolution scanning electron microscopy and high voltage transmission electron microscopy, Am.J. Anat. 185:149–164CrossRefGoogle Scholar
  7. Anger K, Lischke B, Sturm M (1983) Material surfaces for electron-optical equipment, Scanning 5:39–44Google Scholar
  8. Apkarian RP, Wright ER, Seredyuk VA, Eustis S, Lyon LA, Conticello VP,Menger FM (2003) In-lens cryo-high-resolution scanning electronmi croscopy: methodologies for molecular imaging of self-assembled organic hydrogels. Microsc. Microanal. 9-4:286–295.CrossRefGoogle Scholar
  9. Armstrong DA, Luo S, Joy DC (1990) Re-examining mechanisms of radiation damage in organic specimens, Proc. ICEM Mtg. 12:812–813Google Scholar
  10. Arnold WH, Singh B, Phan K (1989) Linewidth metrology requirements for submicron lithography, Solid State Tech. 32-4:139–145Google Scholar
  11. Arro E, Collins VP, Brunk UT (1981) High-resolution SEM of cultured cells: Preparatory procedures, Scanning Electron Microsc. II, 159–168Google Scholar
  12. Atwood D and Barton R (1989) Proc. of the Workshop on X-ray Microimaging for the Life Sciences, Berkeley, CA, Lawrence Berkeley Lab, University of California-Berkeley, Lawrence Berkeley Laboratory, Berkeley, California, LBL Report No. 27660Google Scholar
  13. Autrata R, Schauert P, Kvapil JS, Kvapil J (1978)A single crystal of YAG - new fast scintillator in SEM, J. Phys.E: Sci.Instrum. II, 707–708Google Scholar
  14. Autrata R, Schauer P, Kvapil JS, Kvapil J (1983) Single-crystal aluminates—new generation of scintillators for scanning electron microscopes and transparent screens for electron optical devices, Scanning Electron Microsc. II, 489–500Google Scholar
  15. Autrata R (1989) Backscattered electron imaging using single crystal scintillator detectors, Scanning Microsc. 3:739–763Google Scholar
  16. Autrata R (1990) New configurations of single-crystal scintillator detectors in SEM, Proc. XIIth ICEM Mtg, 376–377Google Scholar
  17. Bachmann L, Becker R, Leupold G, Barth M, Guckenberger R, Baumeister W (1985) Decoration and shadowing of freeze-eched catalase crystals, Ultramicrosc. 16:305–320CrossRefGoogle Scholar
  18. Ball MD and McCartney DG (1981) The measurement of atomic number and composition in a SEM using backscattered detectors, J. Microsc. 124:57–68Google Scholar
  19. Ballard DB (1972) Comparison and evaluation of specimens for resolution standards, Scanning Electron Microsc. 1972, 121–128Google Scholar
  20. Barth JE, Jansen GH, Kruit P (1990) Low voltage diffraction limited probe current: Limits due to e-e interactions in intermediate cross-over, Proc. XIIth ICEM Mtg. 394–395Google Scholar
  21. Bauer B, Speidel R (1981) Influence of energy on spread of field-emitted electrons on resolution in the scanning transmission electron microscope (STEM), Ultramicrosc. 6:281–286Google Scholar
  22. Becker RP and Sogard M,(1979) Visualization of subsurface structures in cells and tissues by backscattered electron imaging, Scanning Electron Microsc. 1979, II, 835–870Google Scholar
  23. Bell PB, Lindroth M, Fredriksson BA (1989) Preparationof cytoskeletons for high-resolution scanning and scanning transmission electron microscopy, Scanning Microsc. Supplement 3, 117–135Google Scholar
  24. Bendayan M (1984) Protein-A gold electron microscopic immunocytochemistry: methods, applications and limitations, J. Elec.Microsc.Tech. 1:243–270CrossRefGoogle Scholar
  25. Bendayan M (1987) Introduction of the protein-G gold complex for high-resolution immunocytochemistry, J. Elec.Microsc.Tech. 6:7–13CrossRefGoogle Scholar
  26. Bennett MH and Guller GE (1986) In process inspection and metrology of semiconductor wafers with the use of an automated low voltage SEM, Microbeam Anal. 21:649–652Google Scholar
  27. Black DR and Ballard DB (1982) Sputter coated carbon specimens for SEM performance testing, Proc.EMSA 40:750–751Google Scholar
  28. Boersch H (1954) Experimentele bestimmung der energieverteilung in thermisch ausgloesten elektronen strahlen, Z.Phys. 139:139Google Scholar
  29. Booy FP and Pawley JB (1993) Cryo-crinkling: what happens to carbon films on copper grids at low temperature, Ultramicroscopy, 43:273–280CrossRefGoogle Scholar
  30. Boyde A (1971) A review of problems of interpretation of the SEM image with special regard to methods of specimen preparation, Scanning Electron Microsc. 1971, 1–8Google Scholar
  31. Boyde A, Jones SJ, Pawley JB (1974) Some practical applications of real-time TV speed stereo SEM in hard tissue research, Scanning Electron Microsc. III:109–115Google Scholar
  32. Boyde A, Maconnachie E (1979) Volume changes during preparation of mouse embryonic tissue for scanning electron microscopy, Scanning 2:149–163Google Scholar
  33. Boyde A, Maconnachie E (1981) Morphological correlations with dimensional change during SEM specimen preparation, Scanning Electron Microsc. IV:27–34Google Scholar
  34. Alan Boyde, (2003), The real response of bone to exercise, J. Anat. 203:173CrossRefGoogle Scholar
  35. Boyes ED (1984a) High-resolution, low voltage scanning electron microscopy (LVSEM). Inst.Phys.Conf.Ser. 68:485–488Google Scholar
  36. Boyes ED (1984b) High-resolution at low voltage: The SEM philosopher’s stone? Proc.EMSA 42:446–450Google Scholar
  37. Brandis EK, DeStafeno J, Flitch R, Landengerger R (1984) Low voltage SEM, auger, and XPS of surface contaminants, Proc. EMSA 42:458–459Google Scholar
  38. Braten T (1978) High-resolution scanning electron microscopy in biology: artifacts caused by the nature and mode of application of the coating material, J. Microsc. 113:53–59PubMedGoogle Scholar
  39. Breese JF (1982) Quantitative investigations in semiconductor devices by electron beam induced current mode: A review, Scanning Electron Microsc. IV, 1487–1500Google Scholar
  40. Broers AN (1974) Recent advances in SEM with lanthanum hexaboride cathodes, Scanning Electron Microsc. 10–18Google Scholar
  41. Broers AN, Panessa BJ, Gennaro JF (1975) High-resolution scanning electron microscopy of bacteriophage 3D and T4, Science 189:637–639PubMedCrossRefGoogle Scholar
  42. Broers AN (1982) Resolution in surface scanning electron microscopy of bulk materials, Ultramicrosc. 8:137–144CrossRefGoogle Scholar
  43. Brunner M, Schmid R (1986) Charging effects in low voltage scanning electron microscope metrology, Scanning Electron Microsc. II, 377–382Google Scholar
  44. Brunner M, Schmid R (1987) Characteristics of an electric/magnetic quadrupole detector for low voltage scanning electron microscopy, Scanning Microsc. IV:1501–1506Google Scholar
  45. Buchanan R (1982) New SEM lens gives sharpest micrographs yet, Industrial Res. Dev. Aug., 92–95Google Scholar
  46. Buchanan R, Menzel E (1984) Some recent development in low voltage E beam testing of IC’s, Proc.EMSA 42:460–464Google Scholar
  47. Castaing R, Guiniert A (1949) Application of electron probes to metallographic analysis (in French), Proc. ICEM Mtg. 1:60–63Google Scholar
  48. Catalano JF (1976) SEM on charge injection semiconductor devices, Scanning Electron Microsc. 1976; I: 521–528Google Scholar
  49. Catto CJD, Smith KCA (1973) Resolution limits in the surface scanning electron microscope, J. Microsc. 98:417–435Google Scholar
  50. Cheng PC and Jan GJ (1987) X-ray Microscopy, Heidelberg, Germany: Springer-Verlag, 415pp.Google Scholar
  51. Chiu W, Downing KH, Hobbs LW, Shuman H, Talmon Y (1988) The EMSA committee on cryoelectron microscopy technology, EMSA Bulletin 18-1:16–25Google Scholar
  52. Chiu W, Baker ML, Jiang W, Zhou ZH, (2002) Deriving folds of macromolecular complexes through electron cryomicroscopy and bioinformatics approaches. Curr Opin Struct Biol. 12-2:263–9.CrossRefGoogle Scholar
  53. Clarke DR (1970) Review: Image contrast in the scanning electron microscope, J. Material Sci. 5:689–708CrossRefGoogle Scholar
  54. Coates DG (1969) Pseudo-kikuchi oritntation analysis in the scanning electron microscope, Scanning Electron Microsc. 29–40Google Scholar
  55. Cosslett VE (1954) X-ray microscopy, Med.Biol.Illus. 4:95–103PubMedGoogle Scholar
  56. Cosslett VE (1978) Radiation damage in the high-resolution electron microscopy of biological materials: A review, J. Microsc. 113-2:113–129Google Scholar
  57. Cowley JM (1990) High-resolution scanning electron microscopy of surfaces, Proc. XIIth ICEM Mtg. 296–297Google Scholar
  58. Crewe AV (1973) Production of electron probes using a fieldemission source, In: Progress in Optics XI, ed. Wolf, E : North Holland, 225–246Google Scholar
  59. Crewe AV (1985) Towards the ultimate scanning electron microscope, Scanning Electron Microsc. 1985; II:467–472Google Scholar
  60. Crewe AV, Eggenberger DN, Wall J, Welter LM (1968) Electron gun using field emission sources, Rev.Sci.Inst. 39:576–583CrossRefGoogle Scholar
  61. Crewe AV, Isaacson M, Johnson D (1971) A high-resolution electron spectrometer for use in transmission scanning electron microscopy, Rev.Sci.Inst. 42-4:441–420Google Scholar
  62. Crewe AV, Lin PSD (1976) The use of backscattered electrons for image purposes in a scanning electron microscope, Ultramicrosc. 1:231–238Google Scholar
  63. Danilatos GD (1988) Foundations of environmental scanning electron microscopy, In: Advances in Electronics and Electron Physics, ed. Hawkes, P NY: Academic Press, 109Google Scholar
  64. Diehl P, McCartney MR, Smith DJ (1990) Effects of electron irradiation on alkaline earth fluorides, Proc. XIIth ICEM Mtg. 4:794–795Google Scholar
  65. Dilly PN (1980) Enhanced contrast of cilia using low accelerating voltages as an aid to low power survey and counting, Scanning 3:283–284Google Scholar
  66. Dodson TA, Joy DC (1990) Fast fourier transform techniques for measuring SEM resolution. Proc. XIIth ICEM Mtg. 406–407Google Scholar
  67. Downing KH (1991) Spot-scan imaging in transmission electron microscopy, Science, 251(4989):53-59Google Scholar
  68. Duncumb P (1957) In: X-ray Microscopy it and it Microradiography, ed. Cosslett, VE, Engstrom, A and Pattee, HH, NY: Academic Press, p. 435.Google Scholar
  69. Echlin P (1971) The examination of biological material at low temperatures, Scanning Electron Microsc. 1:225–232Google Scholar
  70. Echlin P (1991) Recent advances in specimen coating techniques for electron microscopy, Scanning Electron Microscopy, 1:225–232Google Scholar
  71. Echlin P (1992) Low-Temperature Microscopy and Analysis. Plenum Press: New York and London.Google Scholar
  72. Erlandsen SL, Gould PR, Frethem C, Wells CL, Pawley JB, Hamilton DW (1989a) Membrane fixation for high-resolution low voltage SEM: Studies on Giardia, rat spermatozoa, and mouse macrophages. Scanning 11:169–175Google Scholar
  73. Erlandsen SL, Bemrick WJ, Pawley J (1989b) High-resolution electron microscopic evidence for the filamentous structure of the cyst wall in Giardia muris and Giardia duodenalis. J. Parasitology 75:787–797CrossRefGoogle Scholar
  74. Erlandsen SL, Frethem C, Autrata R (1990a) Workshop on high-resolution immunocytochemistry of cell surfaces using field emission SEM, J. Histochem.Cytochem. 38:1779–1780Google Scholar
  75. Erlandsen SL, Sherlock LA, Bemrick WJ (1990b) The detection of Giardia muris and Giardia lamblia cysts by immunofluorescence in animal tissues and fecal samples subjected to cycles of freezing and thawing. J. Parasitology 76:267–271CrossRefGoogle Scholar
  76. Erlandsen SL, Bemrick WJ, Schupp DE, Shields JM, Jarroll EL, Sauch JF, Pawley JB (1991) High-resolution immunogold localization of Giardia cyst wall antigens using field emission SEM sixth secondary and backscatter electron imaging, J. Histochem.Cytochem. 38:625–632Google Scholar
  77. Erlandsen SL, Russo AP, Turner JN (2004), Evidence for Adhesive Activity of the Ventrolateral Flange in Giardia lamblia, J. Eukaryot. Microbiol. 51-1:73–80CrossRefGoogle Scholar
  78. Evans AC, Franks J (1981) Specimen coating for high-resolution scanning electron microscopy, Scanning 4:169–174Google Scholar
  79. Everhart TE, Thornley RFM (1960) Wide-band detector formicro-ampere low-energy electron current, J. Sci.Inst. 37:246–248CrossRefGoogle Scholar
  80. Everhart TE, Wells OC, Oatley CW (1959) Factors affecting contrast and resolution in the scanning electron microscope, J. Elec.Cont. 7:97–111CrossRefGoogle Scholar
  81. Faulk WP, Taylor GM (1971) An immuno colloid method for the electron microscope, Immunocytochem, 8:1081–1083CrossRefGoogle Scholar
  82. Ferguson VL, Bushby AJ, and Boyde A (2003) Nanomechanical properties and mineral concentration in articular calcified cartilage and subchondral bone, J. Anat. 203:191–202PubMedCrossRefGoogle Scholar
  83. Fourie JT, (1981) Electric effects in contamination and electron beam etching, Scanning Electron Microsc. 1981; I:155–162Google Scholar
  84. Franks J, Clay CS, Peace GW (1980) Ion beam thin film deposition, Scanning Electron Microsc. I:155–162Google Scholar
  85. Frosien J, Plies E, Anger K (1989) Compound magnetic and electrostatic lenses for low voltage applications. J. Vac.Sci.Technol. B7 6:1874CrossRefGoogle Scholar
  86. Gerace L, Burke B (1988) Functional organization of the nuclear envelope, Ann.Rev.Biochem. 4:335–374Google Scholar
  87. Gerlach RL, MacDonald NC (1976) Recent advances in scanning auger instrumentation, Scanning Electron Microsc. I:199–206Google Scholar
  88. Glaeser RM (1971) Limitations to significant information in biological electron microscopy as a result of radiation damage. J. Ultrastruct.Res. 36:466PubMedCrossRefGoogle Scholar
  89. Glaeser RM (1975) Radiation damage and biological electron microscopy, In: Physical Aspects of Electron Microscopy and Microbeam Analysis, ed. Siegel, BM and Beaman, DR. NY: Wiley and Sons, 205–230Google Scholar
  90. Goodman SL, Park K, and Albrecht RM (1990) A correlative approach to colloidal-gold labeling with video enhanced light microscopy, low voltage scanning electron microscopy and high voltage electron microscopy, In: Colloidal-Gold: Methods and Applications, ed. Hayat, MA, Van Nostrand Reinhold, NY, 369–409Google Scholar
  91. Gray J, Corey D, Ellis G, Sokol R (1989) Microchannel plate-based detection systems for scanning electron microscopy, Proc.EMSA 47:762–767Google Scholar
  92. Haggis GH (1987) Freeze-fracture of cell nuclei for high-resolution SEM and deep-etch TEM, Proc. Electron Microsc. Soc. Am. 45:560–564Google Scholar
  93. Haggis GH, Pawley JB (1988) Freeze-fracture of 3T3 cells for high-resolution scanning electron microscopy. J. Microsc. 150:211–218PubMedGoogle Scholar
  94. Hainfeld J (1977) Understanding and using field emission sources, Scanning Electron Microsc. I:591–604Google Scholar
  95. Hashimoto N, Todokoro H, Fukuhara S, Senoo K (1982) Process characterization of MOS devides by scannnig electron microscopy with 0.5-1kV electrons, Jpn. J. Appl. Phys. I (Japan) 21:199–203Google Scholar
  96. Hasselbach J, Reike U, Straub M (1983) An imaging secondary electron detector for the scanning electron microscope, Scanning Electron Microsc. II:467–478Google Scholar
  97. Hayes TL (1973) Scanning Electron Microscopy, In: Advanced Techniques in Biological Electron Microscopy, ed. Koehler, JK, Heidelberg: Springer-Verlag, 154–209Google Scholar
  98. Hayes TL (1980) Biophysical aspects of scanning electron microscopy, Scanning Electron Microsc. I:1–10Google Scholar
  99. Hefter J (1987) Morphological characterizations of materials using low voltage scanning electron microcsopy, Scanning Microsc. 1:13–21Google Scholar
  100. Helbig JF, Rydgren RD, Kotorman L (1987) Channel plate detection in low energy scanning electron microscopy, Scanning Microsc. IV:1491–1499Google Scholar
  101. Hermann R, Pawley J, Nagatani T, Müller M (1988) Double-axis rotary shadowing for high-resolution scanning electron microscopy, Scanning Electron Microsc. II:1215–1230Google Scholar
  102. Herter P, Tresp G, Hentschel H, Zierold K, Walther P (1991) High-resolution SEM of frozen-hydrated and freeze substituted kidney tissue, J. Microsc. 161-2:375–385Google Scholar
  103. Heuser JE (1979) Quick-freeze, deep-etch preparation of samples for 3D electron microscopy, Trends Biochem. Sci. 6:64–68Google Scholar
  104. Hobbs LW (1979) Radiation effects in analysis of inorganic specimens by TEM, In: Introduction to Analytical Electron Microscopy, ed. Hren, JJ, Goldstein, JI and Joy, DC, NY: Plenum Press, 437–480Google Scholar
  105. Holy J, Simerly C, Paddock S, Schatten G (1991) Three-dimensional imaging of fertilization and early development, J. EM Tech. 17:384–400Google Scholar
  106. Horisberger M, Rosset J (1977) Colloidal-gold: a useful maker for transmission and scanning electron microscopy, J. Histochem.Cytochem. 25:295–305Google Scholar
  107. Horisberger M (1979) Evaluation of colloidal-gold as a cytochemical marker for transmission and scanning electron microscopy, Biol.Cellulaire 36:253–58Google Scholar
  108. Hren J (1986), Barriers to AEM: Contamination and etching, In: Principles of Analytical Microscopy, eds. Joy, D, Romig, AD and Goldstein, J, NY-London: Plenum Press, 353–375Google Scholar
  109. Humphreys CJ, Bullough TJ, Devenish RW, Maher DM, Turner PS (1990) The interaction of electron beams with solids - some new effects, Proc. XIIth ICEM Mtg. 4:788–789Google Scholar
  110. Ichinokawa T (1990) Scanning low energy electron diffraction microscopy combined with scanning tunnling microscopy, Proc. XIIth ICEM Mtg. 303–303Google Scholar
  111. Ingram P, Morosoff N, Pope L, Allen F, Tisher C (1976) Some camparisons of the techniques of sputter (coating) and evaporative coating for scanning electron microscopy, Scanning Electron Microsc. I:75–82Google Scholar
  112. Irino S, Murakami T, Fujita T, Nagatani T, Kaneshige T (1978) Microdissection of tannin-osmium impregnated specimens in the scanning electron microscope: Demonstration of arterial terminals in human spleen, Scanning Electron Microsc. I:111–116Google Scholar
  113. Isaacson M, Langmore JP (1974) Determination of the non-localization of the inelastic scattering of electrons by electron microscopy, Optik 41:92–96Google Scholar
  114. Jakubowicz A (1987) Theory of electron beam induced current and cathodoluminescence contrasts from structural defects of semiconductor crystals: Steady-state and time-resolved, Scanning Microsc. 1-2:515–533Google Scholar
  115. Johnson TJA (1985a) Aldehyde fixatives: Quantification of acid-producing reactions, J. EM Tech. 2:129–138Google Scholar
  116. Johnson TJA (1985b) Glutaraldehyde fixation chemistry: A scheme for rapid crosslinking and evidence for rapid oxygen consumption, In: Science of Biological Specimen Preparation, ed. Johari, O, AMF O’hare (Chicago) IL: Scanning Electron Microscopy, Inc., 51–62Google Scholar
  117. Jones AV (1989) High-resolution at low voltage: A new approach, Proc. EMSA 47:76–77Google Scholar
  118. Jones SJ, Boyde A, and Ali NN (2004)The resorption of biological and non-biological substrates by cultured avian and mammalian osteoclasts, Anat. and Embryol, 170-3:247–256Google Scholar
  119. Joy DC, Newbury DE, Myklebust RL (1982) The role of fast secondary electrons in degrading spatial resolution in the analytical electron microscope, J. Microsc. 128-II: RP1-RP2Google Scholar
  120. Joy DC (1984) Resolution in low voltage SEM, Proc. EMSA 42:444–445Google Scholar
  121. Joy DC (1985) Resolution in low voltage scanning electron microscopy, J. Microsc. 140-3:283–292Google Scholar
  122. Joy DC (1987) A note on charging in low voltage SEM, Microbeam Anal. 22:83–86Google Scholar
  123. Joy DC (1991a) Contrast in high-resolution scanning electron microscope images, J. Microsc. 161-2:343–355Google Scholar
  124. Joy DC (1991b) LVSEM, In: Electron Microscopy and Microanalysis 1987, ed. Brown, LM, Institute of Physics Conference Series, 175–180Google Scholar
  125. Joy DC and Pawley JB (1993) high-resolution Scanning Electron Microscopy, Ultramicrosc., 47:80–100Google Scholar
  126. Keery WJ, Leedy KO, Galloway KF (1976) Electron beam effects on microelectronic devices, Scanning Electron Microsc. I:507–514Google Scholar
  127. Kellenberger E (1991) The potential of cryofixation and freeze substitution: Observations and theoretical considerations, J. Microsc. 161, II:183–203Google Scholar
  128. Kelley RO, Dekker RA, Bluemink JG (1973) Ligand-mediated osmium binding: Its applications in coating biological specimens for SEM, J. Ultrastr.Res. 45:254–258CrossRefGoogle Scholar
  129. Kemmenoe BH, Bullock GR (1983) Structure analysis of sputter-coated and ion-beam sputter-coated films: A comparative study, J. Microsc. 132-2:153–163Google Scholar
  130. Kersker M, Neilsen C, Otsuji H, Miyokawa T, Nakagawa S (1989) The JSM-890 ultra high-resolution scanning electron microscope, Proc. EMSA 47:88–89Google Scholar
  131. Kimoto S and Hashimoto H (1966) Stereoscopic observation in scanning microscopy using multiple detectors, In: The ElectronMicroprobe, Proc. Symp. held in Washington, D.C., October, 1964, eds. Heinrich, KFJ and Wittry, DB, New York, NY: John Wiley and Sons,480–489Google Scholar
  132. Kiseleva E, Drummond SP, Goldberg MW, Rutherford SA, Bagley S, Allen TD and Wilson KL (2004). A stable actin-dependent filament network links nuclear pore complexes to nucleoli and Cajal bodies. J Cell Sci; 117: 2481–2490.PubMedCrossRefGoogle Scholar
  133. Knoll M (1935) Aufladepotentiel und sekundaremission electronenbestrahlter korper, Z. Phys. 16:467–475Google Scholar
  134. Koike H, Ueno K, Suzuki M (1971) Scanning device combined with conventional electron microscope, Proc.EMSA 29:28–29Google Scholar
  135. Kosuge T, Hashimoto H, Sato M and Komoto S (1970) Quality of the secondary electron image at low accelerating voltage, In: Microscopie Electronique, ed. Favard, P. Paris: Society Francaise de Microscopie Electronique, 201–202Google Scholar
  136. Kotera M, Muarat K, Nagami K (1981) Monte Carlo simulation of a 1-10 keV electron scattering on a gold target, J. Appl.Phys. 52-2:997–1003CrossRefGoogle Scholar
  137. Krause SJ, Maracas GN, Varhue WJ, Joy DC (1989) Low voltage, high-resolution scanning electron microscopy of semiconductors, Proc. EMSA 47:82–83Google Scholar
  138. Kubotsu A, Ueda M (1980) A new conductive treatment of the specimen for scanning electron microscopy, J. Electron Microsc. 29-1:45–53Google Scholar
  139. Langford LA, Coggeshall RE (1980) The use of potassium ferricyanide in nural fixation, The Anatomical Record 197:297–303PubMedCrossRefGoogle Scholar
  140. Langmuir DB (1937) Theoretical limitations of cathode-ray tubes, Proc. IRE 24-8:977–991CrossRefGoogle Scholar
  141. Leamy HJ, Kimerling LC, Ferris SD (1978) Electron beam induced current, Scanning Electron Microsc. 1978, I: 717–726Google Scholar
  142. LeFloch H, Franceschi JL, Gourand T, Launay P (1987) Digital image acquisition in scanning electron microscopy, Scanning 9:26–30Google Scholar
  143. LeGressus C, Durand JP, Massignon D, Deacon OL (1983) Electron channelling effect on secondary electron image contrast, Scanning Electron Microsc. II:537–542Google Scholar
  144. Lepault J, Erk I, Nicolas G, Ranck JL (1991) Time resolved cryo-electron microscopy of vitrified muscular components, J. Microsc. 161-1:47–59Google Scholar
  145. Levi-Setti R, Wang YL, Crow G (1984) High spatial resolution SIMS with the UC-HRL scanning ionmicroprobe, J. Phys. (Paris) 45, C9-197-C9-205CrossRefGoogle Scholar
  146. Li H, DeRosier DJ, Nicholson WV, Nogales E, and Downing KH (2002) Microtubule structure at 8 Å resolution. Structure 10:1317–1328PubMedCrossRefGoogle Scholar
  147. Lim SS, Ris H, Schnasse B (1987) Pigment granules in goldfish xanthophores are attached to intermediate filaments, J. Cell Biol. 105, 37aGoogle Scholar
  148. Lindroth M, Bell PB, Fredriksson BA (1988) Comparison of the effects of critical point drying and freeze-drying on cytoskeletons and microtubules, J. Microsc. 151-2:103–114Google Scholar
  149. Lindroth M, Sundgren JE (1989) Ion-beam-sputtered and magnetron-sputtered thin films on cytoskeletons: A high-resolution TEM study, Scanning 11:243–253Google Scholar
  150. Liu J, Cowley JM (1988) High-resolution secondary electron imaging in a scanning transmission electron microscopy instrument, Scanning Microsc. 2-1:65–81Google Scholar
  151. MacDonald NC (1971) Auger electron spectroscopy for scanning electron microscopy Scanning Electron Microsc I:89–96Google Scholar
  152. Malecki M, Ris H (1991) Preparation of cell suspensions for ultrastructural studies, Scanning 13-1:82–83Google Scholar
  153. Malecki M, Walther P (1991) High pressure freezing of cell aggregates for LVSEM, Scanning 13-1:68–69Google Scholar
  154. Martin JP, Jenkinson G, Bulgin D (1985) Quantitative scanning electron microscopy using integrated digital image store for on-line image analysis, Scanning 7:239-242Google Scholar
  155. Martin TF (1989) Cell cracking: permeabilizing cells to macromolecular probes. In Methods in Enzymology, Academic Press, New York. 168:225–233Google Scholar
  156. McMullan D (1953b) The scanning electron microscope and the electron-optical examination of surfaces, Electron. Eng.(England) 25:46–50Google Scholar
  157. McMullan D (1990) The prehistory of scanned image microscopy, Part 2: The scanning electron microscope, Proc. Roy. Microsc. Soc. 25:189–194Google Scholar
  158. McMullin PG (1976) Quality evaluation of the GaAs-AlGaAs heterostructure wafers using the electron beam induced current technique, Scanning Electron Microsc. I:543–550Google Scholar
  159. Menzel E, Buchanan R (1985) Some recent developments in low voltage E-beam testing of ICs, J. Microsc. 140-3:331–349Google Scholar
  160. Menzel E, Kubalek E (1982) Fundamentals of electron beam testing of integrated circuits, Scanning 5:103–122Google Scholar
  161. Miyokawa T, Norioka S, Goto S (1988) Development of a conical anode FE gun for low voltage SEM, Proc. EMSA 46:978–979Google Scholar
  162. Miyoshi M, Isikawa M, Okumura K (1982) Effects of electron beam testing on the short channel metal oxide semiconductor characteristics, Scanning Electron Microsc. 1982, IV:1507–1514Google Scholar
  163. Moll SH, Healey F, Sullivan B, Johnson W (1979) Further development of the converted backscattered electron detector, Scanning Electron Microsc. II:149–154Google Scholar
  164. Morandi C, Vanzi M, Bianco F, Neri R (1989) A PC-AT-based system for the acquisition of SEM images, Scanning 11:81–85Google Scholar
  165. Mullerova I (2001) Imaging of specimens at optimized low and very low energies in scanning electron microscopes. Scanning. 23-6:379–94.Google Scholar
  166. Müller M (1992) The Integrating Power of Cryofixation Based Electron Microscopy in Biology. Acta Microscopica. 1:37–44.Google Scholar
  167. Müller M, Hermann R (1990) Towards high-resolution SEM of biological materials, Proc. XIIth ICEM Mtg. 4–5Google Scholar
  168. Munger B, Mumaw V (1976) Specimen preparation for SEM study of cells and cell organelles in uncoated preparations, Scanning Electron Microsc. I:275–280Google Scholar
  169. Murakami T, Jones AL (1980) Conductive staining of biological specimens for non-coated scanning electron microscopy: Double coat staining by tannin-osmium and osmium-thiocarbohydrazide-osmium methods, Scanning Electron Microsc. I:221–226Google Scholar
  170. Murata K, Kawata H, Nagami K (1987) Electron scattering of in low voltage scanning electron microscopy targets, Scann.Microsc.Suppl. I:83–91Google Scholar
  171. Murphy J (1978) Non-coating techniques to render biological specimens conductive, Scanning Electron Microsc. II:175–194Google Scholar
  172. Murphy J (1980) Non-coating techniques to render biological specimens conductive: 1980 update, Scanning Electron Microsc. I:209–220Google Scholar
  173. Nagatani T and Saito S (1986a) Instrumentation for ultra high-resolution scanning electron microscopy, In: Electron Microscopy 1986, ed. Imura T, 2101–2108Google Scholar
  174. Nagatani T, Saito S (1986b) Instrumentation for ultra high-resolution scanning electron microscopy, Proc. XIIth ICEM Mtg. 2101–2104Google Scholar
  175. Nagatani T, Sato M, Osumi M (1990) Development of an ultra high-resolution low voltage (LV) SEM with an optimized "in-lens" design, Proc. XIIth ICEM Mtg. 388–389Google Scholar
  176. Newbury DE,Marinenko RB, Brught DS, Myklebust RL (1988) Computer-aided imaging: Quantitative compositional mapping with the electron probe microanalyzer, Scanning 10: 213–255Google Scholar
  177. Nixon WC (1955) Improved resolution with x-ray projection microscope, Nature 175:1078–1079PubMedCrossRefGoogle Scholar
  178. Nomura S, Komoda T, Kameryo T, Nakaizumi V (1973) Stable field emission gun with an electronic feedback system, Scanning Electron Microsc. 65–72Google Scholar
  179. Oatley CW, Everhart TE (1957) The examination of p-n junctions with the scanning electron microscope, J. Electronics II, 6:568–570CrossRefGoogle Scholar
  180. Oatley CW, Nixon WC and Pease RFW (1965) Scanning Electron Microscopy, In: Advances in Electronics and Electron Physics, New York, NY: Academic Press, 181–247Google Scholar
  181. Oatley CW (1972) The Scanning Electron Microscope, Part I: The Instrument, Cambridge, UK:The University Press, 1–194Google Scholar
  182. Oatley CW (1975) The tungsten filament gun in the scanning electron microscope, J. Phys. E.: Sci. Inst. 8:1–5Google Scholar
  183. Oatley CW (1982) The early history of the scanning electron microscope, J. Appl. Phys. 53-2: R1-R13CrossRefGoogle Scholar
  184. Ogura K, Ono A, Kersker MM,(1989a) Reduction in contamination using a specimen heating holder in an ultrahigh-resolution SEM, Proc.EMSA 47:724–725Google Scholar
  185. Ogura K, Adachi S, Satoh T, Watebe T, Kersher MM (1989b) Magnetron sputter coating for ultra high-resolution scanning electron microscopy (Simultaneous coating of platinum and tungsten using a magnetron sputter coater), Proc. EMSA 47:80–81Google Scholar
  186. Ohama J, Ono A, Harada Y, Gotoh S (1986) An ultra high-resolution SEM equipped with strongly excited objective lens and field emission gun, Proc. XIth ICEM Mtg. 373–374Google Scholar
  187. Ohshita A, Shimoyana H, Maruse S (1978) Brightness in the hot cathode electron gun at high emission densities, J. Electron Microsc. 27-4:253–257Google Scholar
  188. Ohtsuka A, Murakami T, Irino S, Jones AL (1981) Mounting of biological microsamples on protein coats for TaOTO non-coated scanning electron microscopy, Scanning Electron Microsc. II:83–86Google Scholar
  189. Orloff J (1981) A comparison of lanthanum hexaboride, cold field emission and thermal field emission electron guns for low voltage scanning electron microscopy, Scanning Electron Microsc. II:83–86Google Scholar
  190. Orloff J (1985) Thermal field emission for low voltage scanning electron microscopy, J. Microsc. 140, III:303–311Google Scholar
  191. Osumi M, Yamada N, Nagatani T (1988a) High-resolution low voltage SEM of cell wall regeneration of yeast Saccharomyces pombe protoplasts, Proc.EMSA 46:208–209Google Scholar
  192. Osumi M, Baba M, Naito N, Taki A, Yamada N, Nagatani T (1988b) High-resolution low voltage scanning electron microscopy of uncoated yeast cells fixed by the freeze-substitution method, J. Electron Microsc.37-1:17–30Google Scholar
  193. Osumi M, Yamada N, Kobori H, Taki A, Naito N, Baba M, Nagatani T (1989) Cell wall formation in regenerating protoplasts of Schizosaccharomyces pombe: Study by high-resolution low voltage scanning electron microscopy, J. Electron Microsc. 38-6:437–468Google Scholar
  194. Osumi M, Yamada N, Kobori H (1990) Biological application of ultrahigh-resolution low voltage scanning electron microscope, S-900LV: Ultrastructure of glucal fibrils of the reverting protoplast in fission yeast, Hitachi Instrument News, Electron Microscopy Edition 19:38–39Google Scholar
  195. Osumi M, Yamada N, Yaguchi H, Kobori H, Takashi Nagatani T, and Sato M (1995) Ultrahigh-resolution Low-voltage SEM Reveals Ultrastructureof the Glucan Network Formation from Fission Yeast Protoplast, J.Elect. Microsc. 44:198–206Google Scholar
  196. Osumi M, Konomi M, Sugawara T, Takagi T, and Baba M (2006) High-pressure freezing is a powerful tool for visualization of Schizosaccharomyces pombe cells: ultra-low temperature and low-voltage scanning electron microscopy and immunoelectron microscopy, J. Electron Microsc. 55-2: 75–88.CrossRefGoogle Scholar
  197. Pawley JB (1972) Charging artifacts in the scanning electron microscope. Scanning Electron Microsc. I:153–160Google Scholar
  198. Pawley JB (1974) Performance of SEM scintillator materials, Scanning Electron Microsc. 27–34Google Scholar
  199. Pawley JB (1978) Design and performance of presently available TV-rate stereo SEM systems. Scanning Electron Microscopy. I:l57–66Google Scholar
  200. Pawley JB (1984a) SEM at low beam voltage, Proc. EMSA 42:440–444Google Scholar
  201. Pawley JB (1984b) Low voltage scanning electron microscopy, J. Microsc. 136:45–68Google Scholar
  202. Pawley JB (1985a) Low voltage scanning electron microscopy in electron optical systems, Scanning Electron Microsc. 253–272Google Scholar
  203. Pawley JB (1985b) Strategy for locating and eliminating sources of main frequency magnetic stray field, Scanning 7:43–46Google Scholar
  204. Pawley JB (1987a) Use of pseudo-stereo techniques to detect stray field in the SEM, Scanning 9-3:134–136Google Scholar
  205. Pawley JB (1987b) Low voltage scanning electron microscopy, Microbeam Anal. 22:83–86Google Scholar
  206. Pawley JB (1990) Practical Aspects of high-resolution LVSEM, Scanning, 12:247–252,Google Scholar
  207. Pawley JB (1992) LVSEM for high-resolution Topographic and Density Contrast Imaging. in Advances in Electronics and Electron Physics,ed. Hawkes PW and Kazan, B, Academic Press, New York 83:203–274,Google Scholar
  208. Pawley JB (1997) Development of Field-emission Scanning Electron Microscopy for Imaging Biological Surfaces, Scanning, 19-5:324–336Google Scholar
  209. Pawley JB, ed. (2006) Handbook of Biological Confocal Microscopy, 3rd edition, Springer/Plenum NYGoogle Scholar
  210. Pawley J, Hayes TL, Hook G (1978) Preliminary studies of coated complementary freeze-fractured yeast membranes viewed directly in the SEM, Scanning Electron Microsc. II:683–690Google Scholar
  211. Pawley JB, Norton JT (1978) A chamber attached to the SEM for fracturing and coating frozen biological specimens, J. Microsc. 112:169–182PubMedGoogle Scholar
  212. Pawley JB, Hook G, Hayes TL, Lai C (1980) Direct scanning electron microscopy of frozen-hydrated yeast, Scanning 3-3:219–226Google Scholar
  213. Pawley JB, Wall J (1982) A low voltage SEM optimized for high-resolution topographical imaging, Proc. EUREM 1:383–384Google Scholar
  214. Pawley JB, Ris H (1987) Structure of the cytoplasmic filament system in freeze-dried whole mounts viewed by HVEM, J. Microsc. 13:319–332Google Scholar
  215. Pawley JB, Albrecht RM (1988) Imaging colloidal-gold labels in LVSEM, Scanning 10:184–189Google Scholar
  216. Pawley JB, Erlandsen SL (1989) The case for low voltage high-resolution scanning electron microscopy of biological specimens, Scann.Microsc.Suppl. 3:163–178Google Scholar
  217. Pawley JB, Walther P, Shih SJ, Malecki M (1991) Early results using high-resolution, low voltage, low temperature SEM, J. Microsc. 162-2:327–335Google Scholar
  218. Pease RFW, Hayes TL (1966) Scanning electron microscopy of biological material, Nature 210:1049PubMedCrossRefGoogle Scholar
  219. Pease RFW, Nixon WC (1965) High-resolution SEM, J. Sci.Instrum. 42:31–35CrossRefGoogle Scholar
  220. Pease RFW, Hayes TL, Camp AS, Amer NM (1966) Electron microscopy of living insects, Science 154:1185–1186PubMedCrossRefGoogle Scholar
  221. Pease RFW, Nixon WC (1968) EM of sprouting seeds, Proc.EMSA 26:88–89Google Scholar
  222. Peters KR (1979) Scanning electron microscopy at macromolecular resolution in low energy mode on biological specimens coated with ultra thin metal films, Scanning Electron Microsc. II:133–148Google Scholar
  223. Peters KR (1980) Penning sputtering of ultra thin metal films for high-resolution electron microscopy, Scanning Electron Microsc. I:143–154Google Scholar
  224. Peters KR (1982) Conditions required for high quality high magnification images in secondary electron scanning electron microscopy, Scanning Electron Microsc. IV:1359–1372Google Scholar
  225. Peters KR (1985) Working at higher magnifications in scanning electron microscopy with secondary and backscattered electrons on metal coated biological specimens and imaging macromolecular cell membrane structures, Scanning Electron Microsc. IV:1519–1544Google Scholar
  226. Peters KR (1986a) Rationale for the application of thin, continuous metal films in high magnification electron microscopy, J. Microsc. 142:25–34Google Scholar
  227. Peters KR (1986b) Metal coating thickness and image quality in scanning electron microscopy, Proc. EMSA 44:664–667Google Scholar
  228. Peters KR (1988) Current state of biological high-resolution scanning electron microscopy, Proc. EMSA 46:180–181Google Scholar
  229. Peters KR (1989) Ultra high-resolution SEM at high voltage images individual Fab fragments applied as molecular label to cell surface receptors, Proc. EMSA 47:71–72Google Scholar
  230. Peters (1991) Scanning electron microscopy: Contrast at high magnification, In: Microbeam Analysis 1984, ed. Romig AD and Goldstein JJ, 77–80Google Scholar
  231. Peters KR, Fox MD (1990) Ultra-high-resolution cinematic digital 3D imaging of the cell surface by field emission scanning electron microscopy, Proc. XIIth ICEM Mtg. 12–13Google Scholar
  232. Pfeiffer HC (1972) Basic limitations of probe forming systems due to electron-electron interactions, Scanning Electron Microsc. 113–120Google Scholar
  233. Polasko KJ, Yau YW, Pease RFW (1983) Low energy electron beam lithography, Optical Eng. 22:195–198Google Scholar
  234. Postek MT (1987) Resolution and measurement in the scanning electron microscope, Proc.EMSA 45:534–535Google Scholar
  235. Postek MT, Keery WJ, Frederick NV (1990a) Development of a low-profile high-efficiency microchannel-plate detector system for SEM imaging and metrology, Scanning/90 Abst. FACMS Inc., 53Google Scholar
  236. Postek MT, Keery WJ, Frederick NV (1990b) Low-profile microchannel-plate electron detector system for SEM, Proc. XIIth ICEM Mtg. 378–379Google Scholar
  237. Read NC, Jeffree CE (1991) Low temperature scanning electron microscopy in biology, J. Microsc. 161-I:47Google Scholar
  238. Reimer L (1979) Electron-specimen interactions, Scanning Electron Microsc. II:111–124Google Scholar
  239. Ris H (1985) The cytoplasmic filament system in critical point dried whole mounts and plastic-embedded sections, J. Cell Biol. 100:1474–1487PubMedCrossRefGoogle Scholar
  240. Ris H (1988) Application of LVSEM in the analysis of complex intracellular structures, Proc. EMSA 46:212–213Google Scholar
  241. Ris H (1989) Three-dimensional imaging of cell ultrastructure with high-resolution low voltage SEM, Inst.Phys.Conf.Ser. 98 (Chp.16), 657–662Google Scholar
  242. Ris H (1990) Application of low voltage, high-resolution SEM in the study of complex intracellular structures,Proc. XIIth ICEM Mtg. 18–19Google Scholar
  243. Ris H (1991) The three-dimensional structure of the nuclear pore complex as seen by high voltage electron microscopy and high-resolution low voltage scanning electron microscopy, EMSA Bull. 21-1:54–56Google Scholar
  244. Ris H (1997) High-resolution field-emission scanning electron microscopy of nuclear pore complex. Scanning 19:368–375PubMedCrossRefGoogle Scholar
  245. Ris H and Pawley JB (1989) Analysis of complex three-dimensional structures involved in dynamic processes by high voltage electron microscopy and low voltage high-resolution scanning electron microscopy, In: it Microscopy of it Subcellular it Dynamics, ed. Pattner, H Boca Raton, FL: CRC Press, 309–323Google Scholar
  246. Ris H, Malecki M (1993) High-resolution field-emission scanning electron-microscope imaging of internal cell structures after epon extraction from sections—a new approach to correlative ultrastructural and immunocytochemical studies. J Struct Biol 111:148–157Google Scholar
  247. Robards AW and Sleytr UB (1985) Low Temperature Methods in Biological Electron Microscopy, Amsterdam: ElsevierGoogle Scholar
  248. Robinson VNE (1974) The construction and uses of an efficent backscattered electron detector for SEM, J. Phys.E: Sci.Instrum. 7:650–652CrossRefGoogle Scholar
  249. Roderick Y, Lim H, Aebi U, Stoffler D (2006) From the trap to the basket: getting to the bottom of the nuclear pore complex, Chromosoma 115:15–26CrossRefGoogle Scholar
  250. Rosencwaig A (1982) Thermal wave imaging, Science 218:223–228PubMedCrossRefGoogle Scholar
  251. Studer D, Michel M, Müller M, (1989) High-pressure freezing comes of age. Scanning Microsc 3, Suppl 3:253–268Google Scholar
  252. Russell PE (1984) Microchannel plates as specialized scanning electron microscopy detectors, Scanning Electron Microsc. 197–200Google Scholar
  253. Russell PE (1988) Low voltage SEM for metrology and inspection, Microbeam Anal. 23:463–465Google Scholar
  254. Russell PE, Mancuso JF (1985) Microchannel plate detector for low voltage scanning electron microscopes, J. Microsc. 140 III:323–330Google Scholar
  255. Saito S, Nakaizumi Y, Mori H, Nagatani T (1982) A field emission SEM controlled by microprocessor, EMI I, (Deutsch Gessellschaft fur Electronenmikroscopy e.V.) 379, 380Google Scholar
  256. Salpeter MM, Marchaterre M, Harris R (1988) Distribution of extrajunctional acetylcholine receptors on a vertebrate muscle:Evaluated by using a scanning electron microscope autoradiographic procedure, J. Cell Biol. 106:2087–2093PubMedCrossRefGoogle Scholar
  257. Sato M, Nakaizumi Y, Yamada M, Nagatani T (1990) Development of a low accelerating voltage SEM (S-900H), Hitachi Instrument News, Electron Microscopy Edition 19:45–49Google Scholar
  258. Schmid R, Brunner M, (1986) Design and application of a quadrupole detector for low voltage scanning electron microscopy, Scanning 8-6:294–299Google Scholar
  259. Seiler H (1976) Determination of the "information depth" in the SEM, Scanning Electron Microsc. I:9–16Google Scholar
  260. Sewell PB, Ramachandran KN (1978) Grid aperture contamination in electron guns using directly heated lanthanum hexaboride sources, Scanning Electron Microsc. I:221–232Google Scholar
  261. Shaffner TH, Hearle JWS (1976) Recent advances in understanding specimen charging, Scanning Electron Microsc. I:61–70Google Scholar
  262. Shao Z, Crewe AV (1987) Chromatic aberration effects in small electron probes, Ultramicrosc. 23:169CrossRefGoogle Scholar
  263. Shao Z, Crewe AV (1988) A study on the optimization of aperture in an aberrated probe forming system, Optik, 79-3:105–110Google Scholar
  264. Shao Z, Crewe AV (1989) On the resolution of the low-energy reflection microscope based on wave electron optics, Ultramicrosc. 31:199CrossRefGoogle Scholar
  265. Sitte H, Edelman L and Neumann K (1987) Cryofixation without pretreatment at ambient pressure. In: Cryotechniques in Biological Electron Microscopy, eds. Steinbrecht, RA and Zierold, K, Berlin: Springer, 87–113Google Scholar
  266. Smith KCA (1956) The scanning electron microscope and its fields of application, PhD thesis, Engineering School, Cambridge University, UK.137–138Google Scholar
  267. Speth AJ, Fang FF (1965) Effects of low energy electron irradiation on Si-insulated gate FETs, Appl.Phys.Let. 7:6CrossRefGoogle Scholar
  268. Statham PJ (1988) Pitfalls and advances in quantitative elemental mapping, Scanning 10: 245–252Google Scholar
  269. Studer D, Michel M and Müller M (1989) High pressure freezing comes of age, Scanning Microscopy, Suppl. 3, 1989: The Science of Biological Specimen Preparation for Microscopy and Microanalysis, eds. Albrecht RM and Ornberg RL, Chicago (AMF O’Hare), IL: Scanning Microscopy Intl., 253–269Google Scholar
  270. Sugiyama N, Ikeda S, Uchikawa Y (1986) Low voltage SEM inspection of micro electronic devices, J. Electron Microsc. (Japan) 35 1:9–18Google Scholar
  271. Sugiyama N, Ikeda S, Uchikawa Y (1988) SEM voltage contrast mechanism of passivated devices, Scanning 10-1:3–8Google Scholar
  272. Swanson LW, Rathkey DS (1989) A comparison of Schottky emission and cold field emission cathodes, Proc.EMSA 47:90–91Google Scholar
  273. Szedon JR, Sandor JE (1965) The effect of low energy electron irradiation of metal-oxide-semiconductor structures, Appl.Phys.Let. 6-9:181–182Google Scholar
  274. Talmon Y (1984) Radiation damage to organic inclusions in ice, Ultramicrosc. 14:305–316CrossRefGoogle Scholar
  275. Tamura N, Saito H, Ohyama J, Aihara R, Kabaya A, (1988) Field emission SEM using strongly excited objective lens, Proc.EMSA 68:69–70Google Scholar
  276. Tanaka K (1980) Scanning electron microscopy of intracellular structures, In: International Review of Cytology, NY: Academic Press, 97–115Google Scholar
  277. Tanaka K (1981) Demonstration of intracellular structures by high-resolution scanning electron microscopy, Scanning Electron Microsc. II:1–8Google Scholar
  278. Tanaka K (1990) High-resolution scanning electron microscopy in biology, Proc. XIIth ICEM Mtg. 14–15Google Scholar
  279. Thompson-Coffe C, Coffe G, Schatten H, Mazia D, and Schatten G (1996) Cold-Treated Centrosome: Isolation of the Centrosomes from Mitotic Sea Urchin Eggs, Production of an Anticentrosomal Antibody, and Novel Ultrastructural Imaging. Cell Motil. Cytoskel. 33: 197–207.CrossRefGoogle Scholar
  280. Thon F (1965) Z.Naturforsch 20a:154Google Scholar
  281. Thornhill JW, MacKintosh IM (1965) Application of the scanning electron microscope to semiconductor device structures, Microelectronics and Reliability (GB) 4:96–100Google Scholar
  282. Thornley RFM (1960) Recent developments in scanning electron microscopy, Proc.EUREM 173–176Google Scholar
  283. Thornley RFM, Cartz L (1962) Direct examination of ceramic surfaces with the scanning electron microscope, J. Am.Ceram.Soc. 45:425–428CrossRefGoogle Scholar
  284. Todokoro H, Fukuhara S, Sakitani Y (1980) Low acceleration SEM, Proc.EMSA 38:70–71Google Scholar
  285. Todokoro H, Fukuhara S, Komoda T (1983) Stroboscopic scanning electron microscopy with 1 keV electrons, Scanning Electron Microsc. II:561–568Google Scholar
  286. Tuggle DW, Watson SG (1984) A low voltage field emission column with a Schottky emitter, Proc.EMSA 42:454–457Google Scholar
  287. Tuggle DW, Swanson LW, Gesley MA (1986) Current density distribution in a chromatically limited electron probe,J. Vac.Sci.Tech. 4-1:131–134Google Scholar
  288. Vanderburgh DJ, Ackerley CA, Lynn DH, Anderson RC (1987) The use of silver nitrate staining and backscattered electron imaging to visualize nematode sensory structures, Scanning Microsc. 1-IV: 1881–1886Google Scholar
  289. Venables JA, Harland CJ,(1973) Electron backscattering patterns - A new technique for obtaining crystallographic information in the SEM, Phil.Mag. 27:1193–1200CrossRefGoogle Scholar
  290. Vermeulen JP (2004) 12 Years Zeiss Gemini FESEM Technology. Imaging Microsc. Spring. 34–35Google Scholar
  291. Volbert B (1984) Low voltage scanning electron microscopy and its applications, Electron Opt.Rep. 31:44–53Google Scholar
  292. von Ardenne M (1938) The scanning electron microscope: Practical construction (in German), Z.Phys. 19:407–416Google Scholar
  293. Walker CGH, Prutton M, Dee JC, ElGomati MM, Cowham MJ (1989) An ultra high vacuum compatible backscattered electron detector, Inst.Phys.Conf.Ser. 98 (Chpt. 12),555–558Google Scholar
  294. Wall JS (1980) Contamination in the SETM at ultra high vacuum, Scanning Electron Microsc. I:99–106Google Scholar
  295. Walther P, Hentschel J, Herter P, Müller T, Zierold K (1990a) Imaging of intramembranous particles in frozen-hyrated cells (Saccharomyces cerevisiae) by high-resolution cryo SEM, Scanning 12:300–307Google Scholar
  296. Walther P, Herter P, Hentschel J, Hentschel H (1990b) High-resolution scanning electron microscopy of kidney tissue using cryo-techniques, Proc. XIIth ICEM Mtg. 8–9Google Scholar
  297. Walther P, Autrata R, Chen Y, Pawley JB (1991) Backscattered electron imaging for high-resolution surface SEM with a new type YAG detector, Scanning Microsc. 5: 301–310PubMedGoogle Scholar
  298. Walther TC, Fornerod M, Pickersgill H, Goldberg M, Allen TD and Mattaj IW (2001) The nucleoporin Nup153 is required for nuclear pore basket formation, nuclear pore complex anchoring and import of a subset of nuclear proteins The EMBO Journal 20: 5703–5714Google Scholar
  299. Walther TC, Pickersgill HS, Cordes VC, Goldberg MW, Allen TD, Mattaj IW, Fomerod M (2002) The cytoplasmic filaments of the nuclear pore complex are dispensable for selective nuclear protein import, J. Cell Biol, 158-1:63–77CrossRefGoogle Scholar
  300. Waltzthony D, Moor H, Gross H (1981) Ice crystals specifically decorate hydrophilic sites on freeze-fractured model membranes, Ultramicrosc. 6:259–266Google Scholar
  301. Wang YL, Raval A, Levi-Setti R (1989) Dendritic oxide growth on the surface of liquid gallium, Scanning Microsc. 3 III:731–737Google Scholar
  302. Watabe T, Hoshino T, Harada Y (1978) The visibility of individual ferritin particles in a scanning electron microscope with a field emission gun, Ultramicrosc. 3:19–27CrossRefGoogle Scholar
  303. Wells OC (1974) Resolution of the topographic image in the SEM, Scanning Electron Microsc. 1–8Google Scholar
  304. Wells OC (1975) Scanning Electron Microscopy, New York, NY:McGraw HillGoogle Scholar
  305. Wells OC (1978) Note on signal-to-noise ratio (SNR) in the scanning electron microscope, Scanning Electron Microsc. I:99–302Google Scholar
  306. Wells OC (1979) Effects of collector take-off angle and energy filtering on the BSE image in the SEM, Scanning 2:199–216Google Scholar
  307. Wells OC, Oatley CW (1959) Factors affecting contrast and resolution in the SEM, J. Electron Control 7:97–111Google Scholar
  308. Wells OC, Bremer CG (1970) Collector turret for scanning electron microscope, Rev.Sci.Inst. 41:1034–1037CrossRefGoogle Scholar
  309. Wells OC, Broers AN, Bremer CG (1973) Method for examining solid specimens with improved resolution in the scanning electron microscope (SEM), Appl.Phys.Let. 23-6:353–355CrossRefGoogle Scholar
  310. Welter LM, Coates VJ, (1974) High-resolution scanning electron microscopy at low accelerating voltages, Scanning Electron Microsc. 59–66Google Scholar
  311. Wepf, R, Gross,H (1990) Pr/Ir/C, A powerful coating material for high-resolution SEM, Proc. XIIth ICEM Mtg. 6–7Google Scholar
  312. Wepf R, Amrein M, Burkli U, Gross H (1991) Platinum-iridium-carbon, a high-resolution shadowing material for TEM, STM and SEM of biological macromolecular structures, J. Microsc. 163:51–65PubMedGoogle Scholar
  313. Wergin WP and Pawley JB (1980) Recording and projecting stereo pairs ofscanning electron micrographs, Scanning Electron Microscopy I:239–249Google Scholar
  314. Wight SA, and Zeissler CJ (1999) Direct Measurement of Electron Beam Scattering in the Environmental Scanning Electron Microscope Using Phosphor Imaging Plates, Scanning, 22: 167–172CrossRefGoogle Scholar
  315. Wildhaber I, Gross H, Moor H (1985) Comparitive studies of very thin shadowing films produced by atom beam sputtering and electron beam evaporation, Ultramicrosc. 16:312–330Google Scholar
  316. Winkler H, Wildhaber I, Gross H, (1985) Decoration effects on the surface of a regular protein layer, Ultramicrosc. 16:331–339CrossRefGoogle Scholar
  317. Wolf ED, Everhart TE (1969) Annular diode detector for high angular resolution pseudo-kikuchi patterns, Scanning Electron Microsc. 41–44Google Scholar
  318. Yamada S, Ito T, Gouhara K, Uchikawa Y (1991) Electron count imaging in SEM, Scanning 13:165–171Google Scholar
  319. Yamazaki S, Kawawoto H, Saburi K, Naktasuka H, Buchanan R (1984) Improvement in SEM gun brightness at low-kV using an intermediate extraction electrode, Scanning Electron Microsc. I: 23–28Google Scholar
  320. Yamazaki S, Sato T, Aota S, Buchanan R (1989) Dual stage SEM with thermal field-emission gun, Proc.EMSA 47:94–95Google Scholar
  321. Yokota Y, Hashimoto H, Yamaguchi T (1990) Electron radiation damage of natural zeolites at room and low temperature, Proc. XIIth ICEM Mtg. 4:808–809Google Scholar
  322. Zach J, Rose H (1986) Efficient detection of secondary electrons in low voltage scanning electron microscopy, Scanning 8-6:285–293Google Scholar
  323. Zach J (1989) Design of a high-resolution low voltage scanning electron microscope, Optik 83-1:30–40Google Scholar
  324. Zobacova J, and Frank L (2003) Specimen charging and detection of signal from non-conductors in a cathode lens-equipped scanning electron microscope. Scanning 25-3:150–156.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • James B. Pawley

There are no affiliations available

Personalised recommendations