Abstract
Spectral tuning is a diverse topic, both with regard to mechanism and with regard to biological significance. We have touched upon a related topic already when dealing with quantum dots in Chapter 5. In organisms, spectral tuning can be achieved both by chemical means (choice of pigment) and by physical means. The latter aspect is treated towards the end of the chapter in a section on structural color. As for the functional aspect, spectral tuning has significance for photosynthesis, vision, bioluminescence, and coloration both for protection and signalling in various contexts.
Keywords
Color Vision Structural Color Visual Pigment Soap Film Chromatic Adaptation
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Preview
Unable to display preview. Download preview PDF.
References
- Bhoo, S.-H., Davis, S.D., Walker, J., Karniol, B. and Vierstra, R.D. (2001) Bacteriophytochromes are photochromic histidine kinasis using a biliverdin chromophore. Nature 414, 776–779.PubMedCrossRefGoogle Scholar
- Björn, G.S. (1979) Action spectra for conversions of phycochrome b, a reversibly photochromic pigment in a blue-green alga, and its separation from other pigments. Physiol. Plant. 46, 281–286.CrossRefGoogle Scholar
- Björn, G.S. (1980) Photoreversibly photochromic pigments from blue-green algae (cyanobacteria). Diss. Lund University, CODEN LUNBDS/(NBFB-1009)/1–28/(1980).Google Scholar
- Björn, L.O. (1976) Why are plants green? Relationships between pigment absorption and photosynthetic efficiency. Photosynthetica 19, 121–129.Google Scholar
- Björn, L.O. (1979) Photoreversibly photochromic pigments in organisms: properties and roles in biological light perception. Quart. Revs. Biophys. 12, 1–23.Google Scholar
- Björn, L.O. (1985a) Varför håller växterna inte färgen? Forskning Framsteg, 85 (6), 40–46.Google Scholar
- Björn, L.O. (1985b) Växternas ljusperception. Svensk Bot. Tidskr. 79, 249–264.Google Scholar
- Björn, L.O. and Björn, G.S. (1980) Yearly review: Photochromic pigments and photoregulation in blue-green algae. Photochem. Photobiol. 32, 849–852.Google Scholar
- Björn, G.S., Braune, W. and Björn, L.O. (1985) Light-induced, dark reversible colour shift in petals of Phlox. Physiol. Plant. 64, 445–448.CrossRefGoogle Scholar
- Bowmaker, J.K., Heath, L.A., Wilkie, S.E. and Hunt, D.M. (1997) Visual pigments and oil droplets from six classes of photoreceptor in the retinas of birds. Vision Res. 37, 2183–2194.PubMedCrossRefGoogle Scholar
- Britt, S.G., Feiler, R., Kirschfeld, K. and Zuker, C.S. (1993) Spectral tuning of rhodopsin and metarhodopsin in vivo. Neuron 11, 29–39.PubMedCrossRefGoogle Scholar
- Caveney, S. (1971) Cuticle reflectivity and optical activity in scarab beetles: The rôle of uric acid. Proc. R. Soc. London B 178, 205–225.Google Scholar
- Chittka, L. 1996. Does bee color vision predate the evolution of flower color? Naturwissenschaft 83, 136–138.CrossRefGoogle Scholar
- Chittka, L. and Menzel, R. (1992) The evolutionary adaptation of flower colors and the insect pollinators’s color vision. J. Comp. Physiol. A. 171, 171–181.CrossRefGoogle Scholar
- Chittka, L. and Dornhaus, A. (1999), Comparisons in physiology and evolution, and why bees can do the things they do. http://www.ciencia.cl/CienciaAlDia/volumen2/numero2/articulos/articulo5-eng.html.Google Scholar
- Chittka, L., Thomson, J.D. and Waser, N.M. (1999) Flower constancy, insect psychology, and plant evolution. Naturwiss. 86, 361–377.CrossRefGoogle Scholar
- Cinque, G, Croce, R. and Bassi, R. (2000) Absorption spectra of chlorophyll a and b in Lhcb protein environment. Photosynthesis Res. 64, 233–242.CrossRefGoogle Scholar
- Cronin, T.W., Caldwell, R.L. and Marshall, J. (2001) Sensory adaptation—tunable colour vision in a mantis shrimp. Nature 411, 547–548.PubMedCrossRefGoogle Scholar
- Denton, E.J. and Land, M.F. (1971) Mechanism of reflection in silvery layers of fish and cephalopods. Proc. Roy. Soc. Lond. A 178, 43–61.Google Scholar
- Diakoff, S. and Scheibe, J. (1973) Action spectra for chromatic adaptation in Tolypothrix tenuis. Plant Physiol. 51, 382–385.PubMedGoogle Scholar
- Dominy, N.J. and Lucas, P.W. (2001) Ecological importance of trichromatic vision to primates. Nature 410, 363–367.PubMedCrossRefGoogle Scholar
- Douglas, R.H., Partridge, J.C., Dulai, K., Hunt, D., Mullineaux, C.W., Tauber, A.Y. and Hynninen, P.H. (1998) Science 393, 423–424.Google Scholar
- Douglas, R.H., Partridge, J.C., Dulai, K.S., Hunt, D.M, Mullineaux, C.W. and Hynninen, P.H. (1999) Enhanced retinal longwave sensitivity using a chlorophyll-derived photosensitiser in Malacoseus niger, a deep-sea dragon fish with far red bioluminescence. Vision Res. 39, 2817–2832.PubMedCrossRefGoogle Scholar
- Fasick, J.I. and Robinson, P.R. (1998) Mechanism of spectral tuning in the dolphin visual pigments. Biochemistry 37, 433–438.PubMedCrossRefGoogle Scholar
- Fasick, J.I. and Robinson, P.R. (2000) Spectral-tuning mechanisms of marine mammal rhodopsins and correlations with foraging depth. Visual Neurosci. 17, 781–788.CrossRefGoogle Scholar
- Fasick, J.I., Cronin, T.W., Hunt, D.M. and Robinson, P.R. (1998) The visual pigments of the bottlenose dolphin (Tursiops truncatus). Visual Neurosci. 15,643–651.CrossRefGoogle Scholar
- Fernandez, H.R.C. (1978) Visual pigments of bioluminescent and nonbioluminescent deep-sea fishes. Vision Sci. 19,589–592.CrossRefGoogle Scholar
- Figueiredo, P., Lima, J.C., Santos, H., Wigand, M.-C., Brouillard, M., Macanita, A.L and Pina, F. (1994) Photochromism of the synthetic 4’,7-dihydroxyflavylium chloride. J. Am. Chem. Soc. 116, 1249–1254.CrossRefGoogle Scholar
- Fox, D.L. (1976) Animal biochromes and structural colors. University of California Press, Berkeley.Google Scholar
- Frank, H.A., Bautista, J.A,, Josue, J.S. and Young, A.J. (2000) Mechanism of nonphotochemical quenching in green plants: Energies of the lowest excited singlet states of violaxanthin and zeaxanthin. Biochemistry 39, 2831–2837.PubMedCrossRefGoogle Scholar
- Fuad, N., Day, D.A., Ryrie, I.J. and Thorne, S.W. (1983) Photobiochem. Photobiophys. 5, 255–262.Google Scholar
- Fujimoto, K., Hasegawa, J., Hayashi, S., Kato, S. and Nakatsuji, H. (2005) Mechanism of color tuning in retinal protein: SAC-CI and QM/MM study. Chem. Phys. Lett. 414, 239–242.CrossRefGoogle Scholar
- Fujita, Y. and Hattori, A. (1962) Photochemical interconversion between precursors of phycobilin chromoprotein in Tolypothrix tenuis. Plant Cell Physiol. 3, 209–220.Google Scholar
- Ghiradella, H. (1984) Structure of iridescent lepidopteran scales: Variations on several themes. Ann. Entomol. Soc. Am. 77,637–645.Google Scholar
- Ghiradella, H. (1985) Structure and development of iridescent lepidopteeran scales: The Papilionidae as a showcase family. Ann. Entomol. Soc. Am. 78, 252–264.Google Scholar
- Ghiradella, H. (1989) Structure and development of iridescent butterfly scales: Lattices and laminae. J. Morph. 202, 69–88.CrossRefGoogle Scholar
- Ghiradella, H. (1991) Light and color on the wing: Structural colors in butterflies and moths. Appl. Optics 30, 3492–3500.Google Scholar
- Ghiradella, H. (1994) Structure of butterfly scales: Patterning in an insect cuticle. Micr. Res. Tech. 27, 429–438.CrossRefGoogle Scholar
- Ghiradella, H. (1998) Hairs, bristles and scales. In: Harrison, F.W. and Locke, M. (eds) Microscopic anatomy of invertebrates, Vol. 11A Insecta. Wiley-Liss, New York, pp. 257–287.Google Scholar
- Gill, E.M. and Wittmershaus, B.P. (1999) Spectral resolution of low-energy chlorophylls in Photosystem I of Synechocystis sp. PCC 6803 through direct excitation. Photosynthesis Res. 61, 53–64.CrossRefGoogle Scholar
- Glazer, A.N. and Wedemayer, G.J. 1995. Cryptomonad biliproteins—an evolutionary perspective. Photosynthesis Res. 46, 93–105.CrossRefGoogle Scholar
- Goto, T. and Kondo, T. (1991) Structure and molecular stacking of anthocyanins—flower color variation. Angew. Chem. Int. Engl. 30, 17–33.CrossRefGoogle Scholar
- Gralak, B., Tayeb, G. and Enoch, S. (2001) Morpho butterfly wings color modelled with lamellar grating theory. Optics Express 9, 567–578.PubMedCrossRefGoogle Scholar
- Grossman, A.R., Bhaya, D. and He, Q. (2001) Tracking the ligh environment by cyanobacteria and the dynamic nature of light harvesting. J. Biol. Chem. 276, 11449–11452.PubMedCrossRefGoogle Scholar
- Halldal. P. (1968) Photosyntheic capacities and photosynthetic action spectra of endozoic algae of the massive coral. Favia. Biol. Bull. 134, 411–424.Google Scholar
- Hart, N.S., Partridge, J.C., Bennett, A.T.D. and Cuthill, I.C. (2000) Visual pigments, cone oil droplets and ocular media in four species of estrildid finch. J. Comp. Physiol. A, 186, 681–694.PubMedCrossRefGoogle Scholar
- Herring (1994) Reflective systems in aquatic animals. Comp. Biochem. Physiol. 109A, 513–546.Google Scholar
- Herring, P. (2002) The biology of the deep ocean. Oxford University Press, Oxford.Google Scholar
- Hinton, H.E. and Jarman, G.M. (1972) Physiological color change in the Hercules beetle. Nature 238, 160–161.CrossRefGoogle Scholar
- Hinton, H.E. and Jarman, G.M. (1973) Physilogical color change in the elytra of the Hercules beetle, Dynastes hercules.J. Insect Physiol. 19, 533–549.CrossRefGoogle Scholar
- Holzwarth, A.R. (1991) Structure-function relationships and energy transfer in phycobiliprotein antennae. Physiol. Plant. 83, 518–528.CrossRefGoogle Scholar
- Huxley (1968) A theoretical treatment of the reflexion of light by multilayer structures. J. Exp. Biol., 48, 227–245.Google Scholar
- Isayama, T., Alexeev, D., Makino, C.L., Washington, I., Nakanishi, K., and Turro, N.J. (2006) An accessory chromophore in red vision. Nature 443, 649.PubMedCrossRefGoogle Scholar
- Jacobs, G.H. 1992. Ultraviolet vision in vertebrates. Am. Zool., 32,544–554.Google Scholar
- Jensen, P. and Bunker, P.R. (2000) Computational molecular spectroscopy. John Wiley and Sons, Hoboken, NJ.Google Scholar
- Jordan, P., Fromme, P., Witt, H.T., Klukas, O., Saenger, W. and Krauβ, N. (2001) Three-dimensional structure of cyanobacterial photosystem I at 2.5 nm resolution. Nature 411, 909–917.PubMedCrossRefGoogle Scholar
- Karapetyan, N.V., Dorra, D., Schweitzer, G., Beszmertnaya, I.N. and Holzwarth, A.R. (1997) Fluorescence spectroscopy of the longwave chlorophylls in trimeric and monomeric photosystem I core complexes from the cyanobacterium Spirulina platensis. Biochemistry 36, 13830–13837.PubMedCrossRefGoogle Scholar
- Kehoe, D.M. and Grossman, A.R. (1996) Similarity of a chromatic adaptation sensor to phytochrome and to ethylene receptors. Science 273, 1409–1412.PubMedCrossRefGoogle Scholar
- Kehoe, D.M. and Grossman, A.R. (1997) New classes of mutants in complementary chromatic adaptation provide evidence for a novel four-step phosphorelay system. J. Bacteriol. 179, 3914–3921.PubMedGoogle Scholar
- Kehoe, D.M. and Grossman, A.R. (1998) Use of molecular genetics to investigate complementary chromatic adaptation: advances in transformation and complementation. Meth. Enzymol. 297, 279–290.Google Scholar
- Kehoe, D.M. and Gutu, A. (2006) Responding to color: the regulation of complementary chromatic adaptation. Annu. Rev. Plant Biol. 57, 127–150.PubMedCrossRefGoogle Scholar
- Kelber, A. (1999) Ovipositing butterflies use a red receptor to see green. J. Exp. Biol. 202, 2619–2630.PubMedGoogle Scholar
- Kiang, N.Y., Siefert, J., Govindjee and Blankenship, R.E. (2007) Spectral signatures of photosynthesis. I. Review of Earth organisms. Astrobiology 7, 252–274.PubMedCrossRefGoogle Scholar
- Kinoshita, S, Yoshioka, S, Fujii, Y, and Okamoto, N. (2002) Photophysics of structural color in the Morpho butterflies. Forma 17, 103–121.Google Scholar
- Kinoshita, S., and Yoshioka, S. (Eds.) (2005) Structural colors in biological systems. Osaka University Press, Osaka.Google Scholar
- Kleinschmidt, J. and Harosi, F. (1992) Proc. Natl. Acad. Sci USA, 89, 9181–9185.PubMedCrossRefGoogle Scholar
- Knipp, B., Müller, M., Metzler-Nolte, N., Balaban, T.S., Braslavsky, S.E. and Schaffner, K. (1998) NMR verification of helical conformations of phycocyanobilin in organic solvents. Helv. Chim. Acta 81, 881–888.CrossRefGoogle Scholar
- Knuttel, H. and Fiedler, K. (2001) Host-plant derived variation in ultraviolet wing-patterns influences mate selection by male butterflies. J. Exp. Biol. 204, 2447–2459.PubMedGoogle Scholar
- Kochendoerfer, G.G., Lin, S.W., Sakmar, T.P. and Mathies, R.A. (1999) How color visual pigments are tuned. Trends Biochem. Sci. 24, 300–305.PubMedCrossRefGoogle Scholar
- Kochubey, S.M. and Samokhval, E.G. (2000) Long-wavelength chlorophyll forms in Photosystem I from pea thylakoids. Photosynthesis Res. 63, 281–290.CrossRefGoogle Scholar
- Koehne, B., and Trissl, H.W. (1998) The cyanobacterium Spirulina platensis contains a long wavelength-absorbing pigment C-738 (F-760(77K)) at room temperature. Biochemistry 37, 5494–5500.PubMedCrossRefGoogle Scholar
- Koehne, B., Elli, G., Jennings, R.C., Wilhelm, C. and Trissl, H.-W. (1999) Spectroscopic and molecular characterization of a long wavelength absorbing antenna of Ostreobium sp. Biochim.Biophys. Acta 1412, 94–107.Google Scholar
- Land, E. (1964) The retinex theory of color vision. Sci. Am. 108–128.Google Scholar
- Land, M.F. (1966) A multilayer interference reflector in the eye of the scallop, Pecten maximus. J. Exp. Biol. 45, 433–447.Google Scholar
- Land, M.F. and Nilsson D.-E. (2002) Animal eyes. Oxford University Press, Oxford.Google Scholar
- Large, M.C.J., McKenzie, D.R., Parker, A.R., Steel, B.C., Ho, K., Bosi, S.G., Nicorovici, N. and McPhedran, R.C. (2001) The mechanism of light reflectance in silverfish. Proc. R. Soc. Lond. A 457, 511–518.Google Scholar
- Lazaroff, N. and Schiff (1962) Action spectrum for developmental photoinduction of the blue-green alga Nostoc muscorum. Science 137, 603–604.PubMedCrossRefGoogle Scholar
- Linanto, J. and Korppi-Tommola, J. (2000) Spectroscopic properties of Mg-chlorin, Mg-porphin and chlorophylls a,b,c(1), c(2), c(3) and d studied by semi-empirical and ab initio MO/CI methods. Phys. Chem. Chemical Phys. 2, 4962–4970.Google Scholar
- Lucas, P.W., Darvell, B., Lee. P.K.D., Yuen, T.D.B. and Choong, M.F. (1998) Colour cues for leaf food selection by long-tailed macaques (Macaca fascicularis) with a new suggestion for the evolution of trichomatic colour vision. Folia Primatol. 69, 139–152.PubMedCrossRefGoogle Scholar
- Lunau, K. (1996) Unidirectionality of floral colour changes. Plant Systematics Evol. 200, 125–140.CrossRefGoogle Scholar
- Lunau, K. (2004) Adaptive radiation and coevolution - pollination biology case studies. Organisms Diversity Evol. 4, 207–224.CrossRefGoogle Scholar
- Lythgoe, J.N. (1984) Visual pigments and environmental light. Vision Sci. 24, 1539–1550.CrossRefGoogle Scholar
- MacColl, R. (1998) Cyanobacterial phycobilisomes. J. Struct. Biol. 124,311–334.Google Scholar
- Maier, EJ. and Bowmaker, J.K. (1993) Color-vision in the passeriform bird, Leiothrix lutea—correlation of visual pigment absorbancy and oil droplet transmission with spectral sensitivity.J. Comp. Physiol. A 172, 295–301.CrossRefGoogle Scholar
- Makino, C.L., Groesbeek, M., Lugtenburg, J. and Baylor, D.A. (1999) Spectral tuning in salamander visual pigments studied with dehydroretinal chromophores. Biophys. J. 77,1024–1035.PubMedGoogle Scholar
- Marshall, J. and Oberwinkler, J. (1999) The colourful world of the mantis shrimp. Nature 401, 873–874.PubMedCrossRefGoogle Scholar
- Mason, CW (1926) Structural colors in insects. I. J. Phys. Chem. 30, 383–395.CrossRefGoogle Scholar
- Mason, CW (1927a) Structural colors in insects. II. J. Phys. Chem. 31, 321–354.CrossRefGoogle Scholar
- Mason, CW (1927b) Structural colors in insects. III. J. Phys. Chem. 31, 1856–1872.CrossRefGoogle Scholar
- Matsui, S., Seidou, M., Uchiyama, I., Sekiya, N., Hiraki, K., Yoshihara, K. and Kito, Y. (1988) 4-hydroxyretinal, a new visual pigment chromophore found in the bioluminescent squid, Watasenia scintillans. Biochim. Biophys. Acta, 966, 370–374.PubMedGoogle Scholar
- Mauzerall, D. (1976) Chlorophyll and photosynthesis. Pil. Trans. Roy. Soc. Lond. B 273, 287–294.CrossRefGoogle Scholar
- Miller, W.H., Mø ller, A.R. and Bernhard, C.G. (1966) The corneal nipple array. In: C.G. Bernhard (Ed.), The functional organgization of the compound eye. Pergamon Press, Oxford, pp. 21–33.Google Scholar
- Morehouse, N.I., Vukusic, P, and Rutkowski, R. (2007) Pterin pigment granules are responsible for both broadband light scattering and wavelength selective absorption in the wing scales of pierid butterflies. Proc. Roy. Soc. London B 274, 359–366.CrossRefGoogle Scholar
- Morris, R.B. (1975) Iridescence from diffraction structures in the wing scales of Callophrys rubi, the Green Hairstreak. Proc. R. Soc. Entomology A 48, 149–154.Google Scholar
- Murrell, J.N. (1963) The theory of the electronic spectra of organic molecules. Methuen, London. (German edition Elektronenspektren organischer Moleküle, Bibliographisches Institut Mannheim 1967).Google Scholar
- Nathans, J. (1990) Determinants of visual pigment absorbance: Identification of the retinylidene Schiff’s base counterion in bovine rhodopsin. Biochemistry 29, 9746–9752.PubMedCrossRefGoogle Scholar
- Nathans, J. (1992) Rhodopsin: Structure, function, and genetics. Biochemistry 31, 4923–4931.PubMedCrossRefGoogle Scholar
- Neitz, M., Neitz, J. and Jacobs, G.H. (1991) Spectral tuning of pigments underlying red-green color vision. Science 252, 971–974.PubMedCrossRefGoogle Scholar
- Neitz. J., Neitz, M. and Jacobs, G.H. (1993) More than three different cone pigments among people with normal color vision. Vision Res. 33, 117–122.PubMedCrossRefGoogle Scholar
- Neville, A.C. (1993) Biology of the Fibrous Composites. Cambridge University Press, Cambridge.Google Scholar
- Ohad, I., Clayton, R.K. and Bogorad, L. (1979) Photoreversible absorption changes in solutions of allophycocyanin purified from Fremyella diplosiphon: Temperature dependence and quantum efficiency. Proc. Natl. Acad. Sci. USA 76, 5655–5659.PubMedCrossRefGoogle Scholar
- Ohki, K. and Fujita, Y. (1978) Photocontrol of phycoerythrin formation in the blue-green alga Tolypothrix tenuis growing in the dark. Plant Cell Physiol. 19, 7–15.Google Scholar
- Öquist, G. (1969) Adaptations in pigment composition and photosynthesis by far red radiation in Chlorella pyrenoidosa. Physiol. Plant. 22, 516–528.CrossRefGoogle Scholar
- Osorio, D. and Vorobyev, M. (1996) Colour vision as an adaptation to frugivory in primates. Proc. R. Soc. Lond. B 263, 593–599.CrossRefGoogle Scholar
- Osorio, D., Marshall, N.J. and Cronine, T.W. (1997) Stomatopod photoreceptor spectral tuning as an adaptation for colour constancy in water. Vision Res. 37, 3299–3309.PubMedCrossRefGoogle Scholar
- PÅlsson, L.O., Flemming, C., Gobels, B., van Grondelle, R., Dekker, J.P. and Schlodder, E. (1998) Energy transfer and charge separation in photosystem I: P700 oxidation upon selective excitation of the long-wavelength antenna chlorophylls of Synechococcus elongatus. Biophys. J. 74, 2611-2622.PubMedCrossRefGoogle Scholar
- Parker, A.R. (1998) The diversity and implications of animal structural colours. J. Exp. Biol. 201, 2343–2347.PubMedGoogle Scholar
- Parker, A.R. (1999) Light-reflection strategies. Am. Sci. 87, 248–255.CrossRefGoogle Scholar
- Parker, A.R. (2000) 515 million years of structural color. J. Opt. A: Pure Appl. Opt. 2, R15-R28.CrossRefGoogle Scholar
- Parker, A.R., McPhedran, R.C., McKenzie, D.R., Botten, L.C., and Nicorovici, N.-A. P. (2001) Aphrodite’s iridescence. Nature 409, 36–37.PubMedCrossRefGoogle Scholar
- Parker, A.R., Welch, V.L., Driver, D., and Martini, N. (2003) An opal analogue discovered in a weevil. Nature 426, 786–787.PubMedCrossRefGoogle Scholar
- Peichl. L., Behrmann, G. and Kröger, H.H. (2001) For whales and seals the ocean is not blue: a visual pigment loss in marine mammals. Eur. J. Neurosci. 13, 1520–1528.PubMedCrossRefGoogle Scholar
- Peitsch, D., Fietz, A., Hertel, H., Desouza, J., Ventura, D.F. and Menzel, R. (1992) The spectral input systems of hymenopteran insects and their receptor-based color-vision. J. Comp. Physiol. A Sensory Neural Behav. Physiol. 170, 23–40.Google Scholar
- Pfaff, G. and Reynders, P. (1999) Angle-dependent optical effects from submicron structures of films and pigments. Chem. Rev. 99, 1963–1981.PubMedCrossRefGoogle Scholar
- Polívka, T., Herek, J.L., Zigmantas, D., Åkerlund, H.E. and Sundström, V. (1999) Direct observation of the (forbidden) S-1 state in carotenoids. Proc. Natl Acad. Sci. USA 96, 4914–4917.PubMedCrossRefGoogle Scholar
- Prum, R.O. (2006) Anatomy, physics and evolution of structural colors In: G.E. Hill and K.J. McGraw (Eds.), Bird coloration, Vol. 1, Mechanisms and measurements. Harvard University Press, Cambridge, MA, pp. 295–353.Google Scholar
- Regan, B.C., Julliot, C., Simmen, B., Viénot, F., Charles-Dominique, P. and Mollon, P. (1998) Frugivory and colour vision in Alouatta seniculus, a trichromatic platyrrhine monkey. Vision Res. 38, 3321–3327.PubMedCrossRefGoogle Scholar
- Ritz, T., Damjanovic’, A., Schulten, K, Zhang, J.P. and Koyama, Y. (2000) Efficient light harvesting through carotenoids. Photosynthesis Res. 66, 125–144.CrossRefGoogle Scholar
- Robinson, B.L. and Miller, J.N. (1970) Photomorphogenesis in the blue-green alga Nostoc commune. Physiol. Plantarum 23, 461–472.CrossRefGoogle Scholar
- Rutkowski, R.L., Macedonia, J.M., Morehouse, N., and Taylor-Taft, L. (2005) Pterin pigments amplify iridescent ultraviolet signal in males of the orange sulphur butterfly, Colias eurytheme. Proc. R. Soc. London B 272, 2329–2335.CrossRefGoogle Scholar
- Scharnagl, C. and Fischer, S.F. (1993) Reversible photochemistry in the a-subunit of phycoerythrocyanin: Characterisation of chromophore and protein by molecular dynamics and quantum chemical calculations. Photochem. Photobiol. 57, 63–70.Google Scholar
- Scheer, H. and Kufer, W. (1977) Studies on plant bile pigments, IV: Conformational studies on C-phycocyanin from Spirulina platensis. Z. Naturforsch. 32c,513–519.Google Scholar
- Scheibe, J. (1972) Photoreversible pigment: occurrence in a blue-green alga. Science 1976, 1037–1039.CrossRefGoogle Scholar
- Schelvis, J.P.M, van Noort, P.I., Aartsma, P.I. and van Gorkom, H.J. (1994) Energy transfer, charge separation and pigment arrangement in the reaction center of photosystem II. Biochim. Biophys. Acta 1184, 242–250.CrossRefGoogle Scholar
- Schneeweis, D.M. and Green, D.G. (1995) Spectral properties of turtle cones. Visual Neurosci. 12, 333–344.Google Scholar
- Schulten, K. and Karplus, M. (1972) On the origin of a low-lying forbidden transition in polyenes and related molecules. Chem. Phys. Lett. 14, 305–309.CrossRefGoogle Scholar
- Seki, T. and Vogt, K. (1998) Evolutionary aspects of the diversity of visual pigment chromophores in the class Insecta. Comp. Biochem. Physiol. B 119, 53–64.Google Scholar
- Sharpe, L.T., Stockman, A., Jägle, H. and Nathans, J. (1999) Opsin genes, cone photopigments, color vision, and color blindness. In: K.Gegenfurtner, and L.T. Sharpe (Eds.), Color vision: from genes to perception. Cambridge University Press, New York.Google Scholar
- Shubin, V.V., Murthy, S.D.S, Karapetyan, N.V. and Mohanty, P.S. (1991) Origin of the 77-K variable fluorescence at 758 nm in the cyanobacterium Spirulina platensis. Biochim. Biophys. Acta, 1060, 28–36.CrossRefGoogle Scholar
- Siitari, H., Honkavaara, J. and Viitala, J. (1999) Ultraviolet reflection of berries attracts foraging birds. A laboratory study with redwings (Turdus iliacus) and bilberries (Vaccinium myrtillus). Proc. R. Soc. Lond. B 266, 2125–2129.CrossRefGoogle Scholar
- Srinivasarao, M. (1999) Nano-optics in the biological world: Beetles, butterflies, birds, and moths. Chem. Rev. 99, 1935–1961.PubMedCrossRefGoogle Scholar
- Stavenga, D.G., Foletti, S., Palasantzas, G., and Arikawa, K. (2006) Light on the moth-eye corneal nipple array of butterflies. Proc. R. Soc. London B 273, 661–667.CrossRefGoogle Scholar
- Stavenga, D.G., Giraldo, M.A. and Hoenders, B.J. (2006) Reflectance and transmittance of light scattering scales stacked on the wings of pierid butterflies. Opt. Expr. 14, 4880–4890.CrossRefGoogle Scholar
- Stomp, M., Huisman, J., Stal, L.J., and Matthijs, H.C.P. (2007) Colorful niches of phototrophic microorganisms shaped by vibrations of the water molecule. ISME J. 1, 271–282.PubMedGoogle Scholar
- Tanimura, T., Isono, K. and Tsukahara, Y. (1986) 3-hydroxyretinal as a chromophore of Drosophila melanogaster visual pigment analyzed by high-pressure liquid-chromatography. Photochem. Photobiol. 43, 225–228.Google Scholar
- Thrash, R.J., Fang, H.L.-B. and Leroi, G.E. (1979) On the role of forbidden low-lying excited states of light-harvesting carotenoids in energy transfer in photosynthesis. Photochem. Photobiol. 29, 1049–1050.Google Scholar
- Vogelmann, T.C. and Scheibe, J. 1978. Action spectra for chromatic adaptation in the blue-green alga Fremyella diplosiphon. Planta 143, 233–239.CrossRefGoogle Scholar
- Vogt, K. (1983) Is the fly visual pigment a rhodopsin? Zschr Naturforsch. C, 38, 329–333.Google Scholar
- Vogt, K. and Kirschfeld, K. (1984) Chemical identity of the chromophores of fly visual pigment. Naturwiss. 71, 211–213.CrossRefGoogle Scholar
- Vorobyev, M., Osorio, D., Bennet, A.T.D., Marshall, N.J. and Cuthill, I.C. (1998) Tetrachromacy, oil droplets and bird plumage colours. J. Comp. Physiol. A Sensory Neural Behav. Physiol. 183, 621–633.CrossRefGoogle Scholar
- Vukusic, P., Sambles, J.R., Lawrence, C.R. and Wootton, R.J. (1999) Quantified interference and diffraction in single Morpho butterfly scales. Proc. R. Soc. Lond. B 266,1403–1411.CrossRefGoogle Scholar
- Vukusic, P., Sambles, J.R., and Ghiradella, H. (2000a) Optical classification of microstructure in butterfly wing scales. Photonics Sci. News 6, 61–66.Google Scholar
- Vukusic, P., Sambles, J.R. and Lawrence, C.R. (2000b) Colour mixing in wing scales of a butterfly. Nature 404, 457.Google Scholar
- Vukusic, P., and Hooper, I. (2005) Directionally controlled fluorescence emission in butterflies. Science 310, 1151.PubMedCrossRefGoogle Scholar
- Vukusic, P., Hallam, B., and Noyes, J. (2007) Brilliant whiteness in ultrathin beetle scales, Science 315, 348.PubMedCrossRefGoogle Scholar
- Wald, G. and Brown, P.K. (1958) Human rhodopsin. Science 127, 222–226.PubMedCrossRefGoogle Scholar
- Warrant, E. (2000) The eyes of deep-sea fishes and the changing nature of visual scenes with depth. Phil. Trans. R. Soc. Lond. 355, 1155–1159.CrossRefGoogle Scholar
- Weiss, C., Jr. (1972) The pi electron structure and absorption spectra of chlorophylls in solution. J. Mol. Spectrosc. 44, 37–80.CrossRefGoogle Scholar
- Welch, V.L., Vigneron, J.P. and Parker, A.R. (2005) The cause of colouration in the ctenophore, Beroë cucumis. Curr. Biol. 15, R985-R986.PubMedCrossRefGoogle Scholar
- Yokoyama, S. (1997) Molecular genetic basis of adaptive selection: Examples from color vision in vertebrates. Annu. Rev. Genet. 31, 315-336.PubMedCrossRefGoogle Scholar
- Yokoyama, S., Radlwimmer, F.B. and Blow, N.S. (2000) Ultraviolet pigments in birds evolved from violet pigments by a single amino acid change. Proc. Natl Acad. Sci. USA 97, 7366-7371.PubMedCrossRefGoogle Scholar
- Yoshida, A. (2002) Antireflection of butterfly and moth wings through microstructure. Forma, 17,75–89.Google Scholar
- Yoshioka, S., Nakamura, E, and Kinoshita, S. (2007) Origin of two-color iridescence in rock dove’s feather. J. Phys. Soc. Japan 76, 013801-1–013801-4.CrossRefGoogle Scholar
- Zhao, K.H. and Scheer, H. (1995) Type-I and Type-II reversible photochemistry of phycoerythrocyanobilin alpha-subunit from Mastigocladus laminosus both involve Z-isomerisation, E-isomerisation of phycoviolobilin chromophore and are controlled by sulphydryls in apoprotein. Biochim. Biophys. Acta 1228, 244–253.CrossRefGoogle Scholar
- Zhao, K.H., Haessner, R., Cmiel, E. and Scheer, H. (1995) Type I reversible photochemistry of phycoerythrocyanin involves Z/E-isomerisation of a-84 phycoviolobilin chromophore. Biochim. Biophys. Acta 1228, 235–243.CrossRefGoogle Scholar
- Zouni, A., Witt, H.T., Kern, J, Fromme, P, Krauβ, N., Saenger, W. and Orth, P. (2001) Crystal structure of photosystem II from Synechococcus elongatus at 3.8 Å resolution. Nature 409, 739–743.PubMedCrossRefGoogle Scholar
- Zucchelli, G., Jennings, R.C. and Garlaschi, F.M. (1990) The presence of long-wavelength chlorophyll a spectral forms in the light-harvesting chlorophyll a/b protein complex II. J. Photochem. Photobiol. B, Biol. 6, 381–394.CrossRefGoogle Scholar
Copyright information
© Springer Science+Business Media, LLC 2008