Advertisement

Error analysis of subpixel edge localisation

  • Patrick Mikulastik
  • Raphael HÖver
  • Onay Urfalioglu
Chapter
Part of the Multimedia Systems and Applications Series book series (MMSA, volume 31)

Summary

In this work we show analytically and in real world experiments that an often used method for estimating subpixel edge positions in digital camera images generates a biased estimate of the edge position. The influence of this bias is as great as the uncertainty of edge positions due to camera noise. Many algorithms in computer vision rely on edge positions as input data. Some consider an uncertainty of the position due to camera noise. These algorithms can benefit from our calculation by adding our bias to their uncertainty.

Keywords

Subpixel accuracy Edge detection Parabolic Regression 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Canny, J.F.: A computational approach to edge detection. IEEE Transactions on Pattern Analysis and Machine Intelligence 8(1986) 679–698CrossRefGoogle Scholar
  2. 2.
    Kakarala, R., Hero, A.: On achievable accuracy in edge localization. In: IEEE International Conference on Acoustics, Speech, and Signal Processing. Volume 4. (1991) 2545–2548Google Scholar
  3. 3.
    Koplowitz, J., Greco, V.: On the edge location error for local maximum and zerocrossing edge detectors. IEEE Transactions on Pattern Analysis and Machine Intelligence 16(1994)Google Scholar
  4. 4.
    Tagare, H.D., deFigueiredo, R.J.: On the localization performance measure and optimal edge detection. IEEE Transactions on Pattern Analysis and Machine Intelligence 12(1990)Google Scholar
  5. 5.
    Verbeek, P.W., van Vliet, L.J.: On the location error of curved edges in lowpass filtered 2-d and 3-d images. IEEE Transactions on Pattern Analysis and Machine Intelligence 16(1994)Google Scholar
  6. 6.
    Suzuki, K., Horiba, I., Sugie, N.: Neural edge enhancer for supervised edge enhancement from noisy images. IEEE Transactions on Pattern Analysis and Machine Intelligence 25(2003)Google Scholar
  7. 7.
    Qian, R.J., Huang, T.S.: Optimal edge detection in two-dimensional images. IEEE Transactions on Image Processing 5(1996)Google Scholar
  8. 8.
    Kisworo, M., Venkatesh, S., West, G.: Modeling edges at subpixel accuracy using the local energy approach. IEEE Transactions on Pattern Analysis and Machine Intelligence 16(1994)Google Scholar
  9. 9.
    Rockett, P.: The accuracy of sub-pixel localisation in the canny edge detector. Proc. British Machine Vision Conference (1999)Google Scholar
  10. 10.
    Mikulastik, P.: Genauigkeitsanalyse von Kantenpunkten fuer Stereokamerasysteme. In: Niccimon, Das Niedersaechsische Kompetenzzentrum fuer die Mobile Nutzung. Shaker Verlag (2006) 135–143 ISBN 3-8322-5225-2.Google Scholar
  11. 11.
    Mech, R.: Schaetzung der 2D-Form bewegter Objekte in Bildfolgen unter Nutzung von Vorwissen und einer Aperturkompensation. PhD thesis, University of Hannover, Germany (2003) ISBN 3-18-373210-6.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Patrick Mikulastik
    • 1
  • Raphael HÖver
    • 1
  • Onay Urfalioglu
    • 1
  1. 1.Information Technology Laboratory (LFI)Leibniz University of HannoverHannover

Personalised recommendations