Cereals pp 157-181 | Cite as

Rye (Secale cereale L.)

  • H.H. GeigerEmail author
  • T. MiedanerEmail author
Part of the Handbook of Plant Breeding book series (HBPB, volume 3)


Rye (Secale cereale L.) is mainly a European cereal with about 75% of the global production growing in Russia, Belarus, Poland, Germany, and Ukraine. It has the best overwintering ability, and the highest tolerance to drought, salt, or aluminium stress from all small-grain cereals. Harvest is used for bread making, feed, and in growing demands for ethanol and biomethane production as a renewable energy source. Hybrid rye is competitive to triticale and wheat also on better soils and grown in Germany on about 70% of the total rye acreage. Rye developed in the Middle East as a secondary crop, cultivated rye has its greatest diversity in landraces and populations from Central and East Europe. Their utility for breeding has considerably increased by progress in marker-based introgression of donor chromosome segments. Resistance breeding is presently focused on leaf and stem rust (Puccinia recondita, P. graminis f.sp. secalis), ergot (Claviceps purpurea), and Fusarium diseases. Leaf blotch (Rhynchosporium secalis) and soilborne viruses might gain more attention in the future. Main breeding goals are grain yield, straw shortness, lodging resistance, high kernel weight, tolerances to pre-harvest sprouting and abiotic stresses. Population varieties comprise open-pollinated and synthetic varieties. Both are derived from self-incompatible breeding populations which are steadily improved by recurrent half- or full-sib selection. Open pollinated varieties (OPVs) constitute selected fractions of those populations whereas synthetic varieties are composed of specifically selected parents from which they can identically be reconstituted. Most modern population varieties contain germplasm from two or more genetically distant gene pools. Hybrid breeding is based on self-fertile gene pools and cytoplasmic genic male sterility (CMS) is used as hybridizing mechanism. Long-lasting breeding cycles are needed for the development of seed parent lines since testcrossing is only possible after the inbred lines have been converted to CMS analogues by repeated backcrossing. Options to speed up this process are discussed. Development of restorer lines is straightforward once effective restorer genes have been introduced to the respective breeding populations. Recurrent improvement of fertility restoration is most efficiently accomplished by recombining selected inbred lines after the first or second testcrossing stage. Commercial hybrid seed production requires well-skilled farmers, careful seed processing, and deliberate logistics since rye produces huge amounts of pollen which may be transported over long distances. Even the slightest genetic contamination of the CMS pre-basis and basis seed production may render the respective seed lots worthless for subsequent multiplication. To reduce the cost of the final step of seed production, the CMS seed parent and the pollinator parent are grown as a mixture in a 95:5 ratio. Thus, only about 95% of the certified seed consists of true hybrid seed. Whereas the remainder 5% are randomly intermated plants of the pollinator. However, the latter generally are poor competitors and therefore do not impair the yielding performance of the ‘hybrid’ stand. In the last decades, population and hybrid breeding led to substantial progress in grain yield and other traits.


General Combine Ability Specific Combine Ability Fusarium Head Blight Resistance Heterotic Group Seed Parent 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Adolf, K. and Winkel, A. (1985) A new source of spontaneous sterility in winter rye – preliminary results. In: Proceedings of Eucarpia Meeting of the Cereal Section on Rye. 11–13 June 1985, Svalöv, Sweden, pp. 293–306.Google Scholar
  2. Altpeter, F. and Korzun, V. (2007) Rye. In: E.C. Pua and M.R. Davey (Eds.), Biotechnology in Agriculture and Forestry, Vol. 59, Transgenic Crops IV. Springer Berlin, Heidelberg, Germany, pp. 107–117.Google Scholar
  3. Anonymous (2006) Erntebericht zur Qualität des deutschen Roggens. Bundesforschungsanstalt für Ernährung und Lebensmittel (BfEL), Institut für Getreide, Kartoffel- und Stärketechnologie, Detmold, Germany.Google Scholar
  4. Becker, H.C., Geiger, H.H. and Morgenstern, K. (1982) Performance and phenotypic stability of different hybrid types in winter rye. Crop Sci. 22, 340–344.Google Scholar
  5. Boros, D. (2007) Quality aspects of rye for feed purposes. In: Proceedings of International Symposium on Rye Breeding & Genetics. 28–30 June 2006, Groß Lüsewitz, Germany, Vortr. Pflanzenzuechtg. 71, 80–85.Google Scholar
  6. Crow, J.F. and Kimura, M. (1970) An Introduction to Population Genetics Theory. Harper and Row, New York.Google Scholar
  7. de Vicente, M.C. and Tanksley S.D. (1993) QTL analysis of transgressive segregation in an interspecific tomato cross. Genetics 134, 585–596.Google Scholar
  8. Eshed, Y., Abu-Abied, M., Saranga, Y. and Zamir, D. (1992) A genome-wide search for wild-species alleles that increase horticultural yield of processing tomatoes. Theor. Appl. Genet. 93, 877–886.Google Scholar
  9. Falke, K.C., Susic, Z., Hackauf, B., Korzun, V., Schondelmaier, J., Wilde, P., Wehling, P., Wortmann, H., Mank, J., Rouppe van der Voort, J., Maurer, H., Miedaner, T. and Geiger, H. H. (2008) Establishment of introgression libraries in hybrid rye (Secale cereale L.) from an Iranian primitive rye accession as a new tool for rye breeding and genomics. Theor Appl Genet 117, 641–652.Google Scholar
  10. Falke, K.C., Wilde, P. and Miedaner, T. (2009) Rye introgression lines as source of alleles for pollen-fertility restoration in Pampa CMS. Plant Breed (in press).Google Scholar
  11. FAO (2006) FAOSTAT database. Internet resource: (verified Jan 18, 2007).Google Scholar
  12. Flehinghaus-Roux, T., Deimling, S. and Geiger, H.H. (1995) Anther-culture ability in Secale cerale L. Plant Breed. 114, 259–261.Google Scholar
  13. Feil, B. and Schmid, J.E. (2002) Dispersal of maize, wheat and rye pollen: A contribution to determining the necessary isolation distances for cultivation of transgenic crops. Shaker, Aachen.Google Scholar
  14. Geiger, H.H. (1972) Wiederherstellung der Pollenfertilität in cytoplasmatisch männlich sterilem Roggen. Theor. Appl. Genet. 42, 32–33.Google Scholar
  15. Geiger, H.H. (1982) Züchtung synthetischer Sorten. III. Einfluß der Vermehrungsgeneration und des Selbstungsanteils. Vortr. Pflanzenzüchtung 1, 41–72.Google Scholar
  16. Geiger, H.H. (1988) Epistasis and heterosis. In: B.S. Weir (Ed.), Proceeding of Second International Conference on Quantitative Genetics. 31 May – 5 June 1987, Raleigh, NC, Sinauer Assoc. Inc., Sunderland, MA, USA, pp. 395–399.Google Scholar
  17. Geiger, H.H., Schumacher, A.E. and Billenkamp, N. (1988) Häufigkeiten von vertikalen Resistenzen und Virulenzen im Roggen-Mehltau-Pathosystem. Vortr. Pflanzenzüchtung 13, 5–17.Google Scholar
  18. Geiger, H.H. (2006) Strategies of hybrid rye breeding. In: Proceedings of International Symposium on Rye Breeding & Genetics. 28–30 June 2006, Groß Lüsewitz, Germany, p. 16.Google Scholar
  19. Geiger, H.H. and Schnell, F.W. (1970) Cytoplasmic male sterility in rye (Secale cereale L.). Crop Sci. 10, 590–593.Google Scholar
  20. Geiger, H.H., Yuan, Y., Miedaner, T. and Wilde, P. (1995) Environmental sensitivity of cytoplasmic genic male sterility (CMS) in Secale cereale L. In: U. Kück and G. Wricke (Eds.), Genetic Mechanisms for Hybrid Breeding. Adv. Plant Breed. 18, 7–17.Google Scholar
  21. Geiger, H.H. and Miedaner, T. (1999) Hybrid rye and heterosis. In: J.G. Coors and S. Pandey (Eds.), Genetics and Exploitation of Heterosis in Crops. Crop Science Society. America, Madison, Wisconsin, USA, pp. 439–450.Google Scholar
  22. Gordillo, G.A. and Geiger, H.H. (2008a) Optimization of DH-line based recurrent selection procedures in maize under a restricted annual loss of genetic variance. Euphytica 161, 141–154.Google Scholar
  23. Hackauf, B. and Wehling, P. (2002) Identification of microsatellite polymorphisms in an expressed portion of the rye genome. Plant Breed. 121, 17–25.Google Scholar
  24. Haussmann, B.I.G., Parzies, H.K., Presterl, T., Sušić, Z. and Miedaner, T. (2004) Plant genetic resources in crop improvement (Review). Plant Genet. Resour. 2, 3–21.Google Scholar
  25. Hepting, L. (1978) Analyse eines 7 × 7-Sortendialles zur Ermittlung geeigneten Ausgangsmaterials für die Hybridzüchtung bei Roggen. Z. Pflanzenzüchtg. 80, 188–197.Google Scholar
  26. Kastirr, U., Wortmann, H., Schmiedchen, B., Rabenstein, F. and Kühne, T. (2006) Occurrence of soil-borne viruses in rye and prospects for improving resistance to these viruses. In: Proceedings of International Symposium on Rye Breeding & Genetics. 28–30 June 2006, Groß Lüsewitz, Germany, p. 34.Google Scholar
  27. Klyuchko, P.F. and Belousov, A.A. (1972) Results of a genetic study of cytoplasmic male sterility in winter rye (in Russian). Genetika 8(7), 9–15.Google Scholar
  28. Kobyljanskij, V.D. (1971) The production of sterile analogues of winter rye, sterility, maintainers and fertility restorers (in Russian). Tr. Prikl. Bot. Genet. Sel. 44, 76–85.Google Scholar
  29. Lamkey, K.R. and Edwards, J.W. (1999) Quantitative genetics of heterosis. In: J.G. Coors and S. Pandey (Eds.), The Genetics and Exploitation of Heterosis in Crops. ASA, CSSA, SSSA, Madison, WI, pp. 31–48.Google Scholar
  30. Łapiński, M. (1972) Cytoplasmic-genic type of male sterility in Secale montanum Guss. Wheat Inf. Serv. 35, 25–28.Google Scholar
  31. Łapiński, M. and Stojałowski, S. (2001) Occurrence of male sterility-inducing cytoplasm in rye (Secale spp.) populations. Pl. Breed. Seed Sci. 48(2), 7–23.Google Scholar
  32. Lundqvist, A. (1956) Self-incompatibility in rye. I. Genetic control in the diploid. Hereditas 42, 293–348.Google Scholar
  33. Madej, L. (1976) The genetical characteristics of three sources of male sterility in rye (Secale cereale L.). Hod. Rósl. Aklim. i Nasienn., Warszawa 20, 157–174.Google Scholar
  34. Madej, L., Raczynska-Bojanowska, K. and Rybka, K. (1990) Variability of the content of soluble non-digestible polysaccharides in rye inbred lines. Plant Breed. 104, 334–339.Google Scholar
  35. Miedaner, T. and Geiger, H.H. (1996) Estimates of combining ability for resistance of winter rye to Fusarium culmorum head blight. Euphytica 89, 339–344.Google Scholar
  36. Miedaner, T., Ludwig, W.F. and Geiger, H.H. (1995) Inheritance of foot rot resistance in winter rye. Crop Sci. 35, 388–393.Google Scholar
  37. Miedaner, T., Glass, C., Dreyer, F., Wilde, P., Wortmann, H. and Geiger, H.H. (2000) Mapping of genes for male-fertility restoration in ‘Pampa’ CMS winter rye (Secale cereale L.). Theor. Appl. Genet. 101, 1226–1233.Google Scholar
  38. Miedaner, T., Gey, A.-K., Sperling, U. and Geiger, H.H. (2002) Quantitative-genetic analysis of leaf-rust resistance in seedling and adult-plant stages of inbred lines and their testcrosses in winter rye. Plant Breed. 121, 475–479.Google Scholar
  39. Miedaner, T., Wortmann, H. and Geiger, H.H. (2003) Genetics of deoxynivalenol (DON) contamination caused by Fusarium head blight in hybrid rye. Pl. Breed. Seed Sci. 48, 69–78.Google Scholar
  40. Miedaner, T., Wilde, P. and Wortmann, H. (2005) Combining ability of non-adapted sources for male-fertility restoration in Pampa CMS of hybrid rye. Plant Breed. 124, 39–43.Google Scholar
  41. Miedaner, T., Sušić, Z., Seggl, A., Hackauf, B., Korzun, V., Schondelmaier, J., Wilde, P., Wortmann, H., Rouppe van der Voort, J., Wehling, P. and Geiger, H.H. (2006) Entwicklung und Evaluierung einer Introgressionsbibliothek bei Roggen. Ber. Tag. Vereinig. Pflanzenzüchter und Saatgutkaufleute Österreichs, Gumpenstein/Austria 57: Im Druck.Google Scholar
  42. Mirdita, V. (2006). Genetische Variation für Resistenz gegen Mutterkorn (Claviceps purpurea [Fr.] Tul.) bei selbstinkompatiblen und selbstfertilen Roggenpopulationen. Diss. Univ. Hohenheim. Internet resource: (verified Jan 08, 2007).Google Scholar
  43. Mirdita, V., Dhillon, B.S., Geiger, H.H. and Micdaner, T. (2008) Genetic variation for resistance to ergot (Claviceps purpurea [Fr.] Tul.) among full-sib families of winter rye (Secale cereale L.). Theor. Appl. Genet. 118, 85–90.Google Scholar
  44. Nalborczyk, E., Nalborczyk, T. and Wawrzonowska, B. (1981) Models of photosynthetic activity in cereals. In: G. Akoyunoglou (Ed.), Photosynthesis VI. Photosynthesis and Productivity, Photosynthesis and Environment, pp. 97–105. Balaban International Science Services, Philadelphia, Pa.Google Scholar
  45. Ossent, H.P. (1938) Zehn Jahre Roggenzüchtung in Müncheberg. Züchter 10, 255–261.Google Scholar
  46. Persson, K. and von Bothmer, R. (2000) Assessing the allozyme variation in cultivars and Swedish landraces of rye (Secale cereale L.). Hereditas 132, 7–17.Google Scholar
  47. Persson, K., von Bothmer, R., Gullord, M. and Gunnarsson, E. (2006) Phenotypic variation and relationships in landraces and improved varieties of rye (Secale cereale L.) from northern Europe. Genet. Resour. Crop Evol. 53 (4), 857–866.Google Scholar
  48. Podyma, W. (2003) Rye genetic resources in Europe. Pl. Breed. Seed Sci. 48 (2/2), 37–44.Google Scholar
  49. Roux, S.R., Miedaner, T., Geiger, H.H., Knopf, E., Wilde, P. and Wortmann, H. (2003) Combining ability vs. population performance of genetic resources in rye. Pl. Breed. Seed Sci. 48, 45–48.Google Scholar
  50. Rode, J., Schumann, E., Weber, E., Wilde, P. and Wortmann, H. (2005) Rye breeding for bioethanole production. Proceedings of 11th International Conference On Renewable Resources and Plant Biotechnology. NAROSSA, 06–07 June 2005, Poznan, Polen.Google Scholar
  51. Schnell, F.W. (1982) A synoptic study of the methods and categories of plant breeding. Z. Pflanzenzüchtg. 89, 1–18.Google Scholar
  52. Singh, R.K., Geiger, H.H., Diener, C. and Morgenstern, K. (1984) Effect of number of parents and synthetic generation on the performance of self-incompatible and self-fertile rye populations. Crop Sci. 24, 306–309.Google Scholar
  53. Stojałowski, S., Łapiński, M. and Masojć, P. (2004) RAPD markers linked with restorer genes for the C-source of cytoplasmic male sterility in rye (Secale cereale L.). Plant Breed. 123, 428–433.Google Scholar
  54. Stracke, S., Schilling, A.G., Förster, J., Weiss, C., Glass, C., Miedaner, T. and Geiger, H.H. (2003) Development of PCR-based markers linked to dominant genes for male-fertility restoration in Pampa CMS of rye (Secale cereale L.). Theor. Appl. Genet. 106, 1184–1190.Google Scholar
  55. Sušić, Z. (2005). Experimental and simulation studies on introgressing genomic segments from exotic into elite germplasm of rye (Secale cereale L.) by marker-assisted backcrossing. Ph.D. thesis, University of Hohenheim, Germany.Google Scholar
  56. Tanksley, S.D. and Nelson, J.C. (1996) Advanced backcross QTL analysis: a method for the simultaneous discovery and transfer of valuable QTL from unadapted germplasm into elite breeding lines. Theor. Appl. Genet. 92, 191–203.Google Scholar
  57. Tenhola-Roininen, T., Immonen, S. and Tanhuanpää, P. (2006) Rye doubled haploids as a research and breeding tool – a practical point of view. Plant Breed. 125, 584–590.Google Scholar
  58. Tomerius, A. (2001) Optimizing the development of seed-parent lines in hybrid rye breeding. Diss. Univ. Hohenheim, Stuttgart. Internet resource: (verified Jan 08, 2007).Google Scholar
  59. Tomerius, A., Miedaner, T. and Geiger, H.H. (2008) A model calculation approach towords the optimization of a standard scheme of seed-parent line development in hybrid rye breeding. Plant Breed. 127, 433–440.Google Scholar
  60. Walsh, B. (2004) Population- and quantitative-genetic models of selection limits. Plant Breed. Rev. 24, 177–225.Google Scholar
  61. Wehmann, F., Geiger, H.H. and Loock, A. (1991) Quantitative-genetic basis of sprouting resistance in rye. Plant Breed. 106, 196–203.Google Scholar
  62. Wilde, F., Korzun, V., Ebmeyer, E., Geiger, H.H. and Miedaner, T. (2007) Comparison of phenotypic and marker-based selection for Fusarium head blight resistance and DON content in spring wheat. Mol. Breed. 19, 357–370..Google Scholar
  63. Winkel, A., Müller, H.W. and Gabow, G. (1979) Über die gegenwärtigen Möglichkeiten zur Schaffung von Hybridsorten und zur Nutzung von Sterilitätssystemen in der Roggenzüchtung. Tag.-Ber., Akad. Landwirtsch.-Wiss. DDR, Berlin 168, 171–177.Google Scholar
  64. Wolski, T. (1970) Studies on breeding of rye. Genetica Pol., Warszawa/Poznań 11, 1–26.Google Scholar
  65. Wricke, G. (1969) Untersuchungen zur Vererbung der Selbstfertilität beim Roggen (Secale cereale). Theor. Appl. Genet. 39, 371–378.Google Scholar
  66. Wricke, G. (1978) Pseudo-Selbstkompatibilität beim Roggen und ihre Ausnutzung in der Züchtung. Z. Pflanzenzüchtg. 81, 140–148.Google Scholar
  67. Wricke, G. (1979) Degree of self-fertilization under free pollination in rye populations containing self-fertility gene. Z. Pflanzenzüchtg. 82, 281–285.Google Scholar
  68. Wricke, G. and Weber, W.E. (1986) Quantitative Genetics and Selection in Plant Breeding. deGruyter, Berlin.Google Scholar
  69. Zamir, D. (2001) Improving plant breeding with exotic genetic libraries. Nat. Rev. Genet. 2, 983–989.Google Scholar

Copyright information

© Springer Science + Business Media, LLC 2009

Authors and Affiliations

  1. 1.University of HohenheimInstitute of Plant Breeding, Seed Science, and Population GeneticsStuttgartGermany
  2. 2.University of HohenheimInstitute of Plant Breeding, Seed Science, and Population GeneticsStuttgartGermany

Personalised recommendations