A Rationale for Repression and/or Loss of Motility by Pathogenic Yersinia in the Mammalian Host

  • Scott A. Minnich
  • Harold N. Rohde
Part of the Advances In Experimental Medicine And Biology book series (AEMB, volume 603)

Pathogenic yersiniae either repress flagella expression under host conditions (Yersinia enterocolitica and Yersinia pseudotuberculosis) or have permanently lost this capability by mutation (Yersinia pestis). The block in flagella synthesis for the enteropathogenic Yersinia centers on fliA (σF) repression. This repression ensures the downstream repression of flagellin structural genes which can be cross-recognized and secreted by virulence type III secretion systems. Y. pestis carries several flagellar mutations including a frame shift mutation in flhD, part of the flagellar master control operon. Repression of flagellins in the host environment may be critical because they are potent inducers of innate immunity. Artificial expression of flagellin in Y. enterocolitica completely attenuates virulence, supporting the hypothesis that motility is a liability in the mammalian host.


Yersinia Enterocolitica Yersinia Pestis Flagellar Gene Flagellin Gene Yersinia Pseudotuberculosis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aldridge, P. and Hughes, K.T. (2002) Regulation of flagellar assembly. Curr. Opin. Microbiol. 5, 160-165.CrossRefPubMedGoogle Scholar
  2. Anderson, D.M., Fouts, D.E., Collmer, A. and Schneewind, O. (1999) Reciprocal secretion of proteins by the bacterial type III machines of plant and animal pathogens suggests univer-sal recognition of mRNA targeting signals. Proc. Natl. Acad. Sci. USA. 96, 12839-12843.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Chain, P.S.G., Carniel, E., Larimer, F.W., Lamerdin, J., Stoutland, P.O., Regala, W.M., Georgescu, A.M., Vergez, L.M., Land, M.L., Motin, V.L., Brubaker, R.R., Fowler, J., Hinnebusch, J., Marceau, M., Medigue, C., Simonet, M., Chenal-Francisque, V., Souza, B., Dacheux, D., Elliott, J.M., Derbise, A., Hauser, L.J. and Garcia, E. (2004) Insights into the evolution of Yersinia pestis through whole-genome comparison with Yersinia pseudotu-berculosis. Proc. Natl. Acad. Sci. USA 101, 13826-13831.CrossRefPubMedPubMedCentralGoogle Scholar
  4. Chan, S.S., Breslauer, K.J., Hogan, M.E., Kessler, D.J., Austin, R.H., Ojemann, J., Passner, J.M. and Wiles, N.C. (1990) Physical studies of DNA premelting equilibria in duplexes with and without homo dA.dT tracts: correlations with DNA bending. Biochemistry. 29, 6161-6171.CrossRefPubMedGoogle Scholar
  5. Clarke, M. B. and Sperandio, V. (2005) Transcriptional regulation of flhDC by QseBC and sigma (FliA) in enterohaemorrhagic Escherichia coli. Mol. Microbiol. 57, 1734-1749.CrossRefPubMedGoogle Scholar
  6. Cornelis, G. R., Sluiters, C., Delor I., Geib, D., Kaniga, K., Lambert de Rouvroit, C., Sory, M.P., Vanooteghem, J.C. and Michiels, T. (1991) AymoA, a Yersinia enterocolitica chro-mosomal gene modulating the expression of virulence functions. Mol. Microbiol. 5, 1023-1034.CrossRefPubMedGoogle Scholar
  7. Feng P., Sugasawara R.J. and Schantz, A. (1990) Identification of a common enterobacterial flagellin epitope with a monoclonal antibody. J. Gen. Microbiol. 136, 337-342.CrossRefPubMedGoogle Scholar
  8. Haller, J.C., Carlson, S., Pederson, K.J., and Pierson, D.E. (2000) A chromosomally encoded type III secretion pathway in Yersinia enterocolitica is important in virulence. Mol. Microbiol. 36, 1436-1446.CrossRefPubMedGoogle Scholar
  9. Horne, S.M. and Pruss, B.M. (2006) Global gene regulation in Yersinia enterocolitica: effect of FliA on the expression levels of flagellar and plasmid-encoded virulence genes. Arch. Microbiol. 185, 115-126.CrossRefPubMedGoogle Scholar
  10. Julio, S.M., Heithoff, D.M., Sinsheimer, R.L., Low, D.A. and Mahan, M.J. (2002) DNA adenine methylase overproduction in Yersinia pseudotuberculosis alters YopE expression and secretion and host immune responses to infection. Infect. Immun. 70, 1006-1009CrossRefPubMedPubMedCentralGoogle Scholar
  11. Kapatral, V. and Minnich, S.A. (1995) Co-ordinate, temperature-sensitive regulation of the three Yersinia enterocolitica flagellin genes. Mol Microbiol. 17(1):49-56.CrossRefPubMedGoogle Scholar
  12. Kapatral, V., Olson, J.W., Pepe, J.C., Miller, V.L. and Minnich, S.A. (1996) Temperature-dependent regulation of Yersinia enterocolitica Class III flagellar genes. Mol. Microbiol. 19, 1061-1071CrossRefPubMedGoogle Scholar
  13. Kubori, T., Matsushima, Y., Nakamura, D., Uralil, J., Lara-Tejero, M., Sukhan, A., Galan, J.E. and Aizawa, S.I. (1998) Supramolecular structure of the Salmonella typhimurium type III protein secretion system. Science. 280, 602-605.CrossRefPubMedGoogle Scholar
  14. Kutsukake, K. (1997) Autogenous and global control of the flagellar master operon, flhD, in Salmonella typhimurium. Mol. Gen. Genet. 254, 440-448.CrossRefPubMedGoogle Scholar
  15. Mcnab, R.M. (2004) Type III flagellar protein export and flagellar assembly. Biochim. Biophys. Acta. 1694, 207-217.CrossRefGoogle Scholar
  16. Michiels T. and Cornelis, G.R. (1991) Secretion of hybrid proteins by the Yersinia Yop export system. J. Bacteriol. 173, 1677-1685.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Montminy S.W., Khan, N., McGrath, S., Walkowicz, M.J., Sharp, F., Conlon, J.E., Fukase, K., Kusumoto, S., Sweet, C., Miyake, K., Akira, S., Cotter, R.J., Goguen, J.D. and Lien, E. (2006) Virulence factors of Yersinia pestis are overcome by a strong lipopolysaccharide response. Nat. Immunol. 7, 1066-1073CrossRefPubMedGoogle Scholar
  18. Ramakrishnan G., Zhao J.L. and Newton A. (1991) The cell cycle-regulated flagellar gene flbF of Caulobacter crescentus is homologous to a virulence locus (lcrD) of Yersinia pestis. J. Bacteriol. 173, 7283-7292CrossRefPubMedPubMedCentralGoogle Scholar
  19. Rohde, J.R., Fox, J.M. and Minnich, S.A. (1994) Thermoregulation in Yersinia enterocolitica is coincident with changes in DNA supercoiling. Mol. Microbiol. 12, 187-199.CrossRefPubMedGoogle Scholar
  20. Rohde J.R., Luan, X.S., Rohde, H., Fox J.M. and Minnich S.A. (1999) The Yersinia entero-colitica pYV virulence plasmid contains multiple intrinsic DNA bends which melt at 37 degrees C.J. Bacteriol. 181, 4198-4204Google Scholar
  21. Rosqvist, R., Magnusson, K.E. and Wolf-Watz, H. (1994) Target cell contact triggers expres-sion and polarized transfer of Yersinia YopE cytotoxin into mammalian cells. EMBO J. 13, 964-972.PubMedPubMedCentralGoogle Scholar
  22. Sanders, L.A, Van Way, S. and Mullin, D.A. (1992) Characterization of the Caulobacter crescentus flbF promoter and identification of the inferred FlbF product as a homolog of the LcrD protein from a Yersinia enterocolitica virulence plasmid. J. Bacteriol. 174, 857-866.CrossRefPubMedPubMedCentralGoogle Scholar
  23. Smith, J.M. (2000) Genetic Regulation of type III secretion systems in Yersinia enterocolitica. Ph.D. Dissertation, University of IdahoGoogle Scholar
  24. Steiner, T.S. (2006) How flagellin and toll-like receptor 5 contribute to enteric enfection. Infect. Immun. 2006 Nov 21; [Epub ahead of print]Google Scholar
  25. Young G.M., Schmiel D.H. and Miller V.L. (1999) A new pathway for the secretion of virulence factors by bacteria: the flagellar export apparatus functions as a protein-secretion system. Proc. Natl. Acad. Sci. USA 96, 6456-6461.CrossRefPubMedPubMedCentralGoogle Scholar
  26. Young, B.M. and Young, G.M. (2002) Evidence for targeting of Yop effectors by the chromosomally encoded Ysa type III secretion system of Yersinia enterocolitica. J. Bacteriol. 184, 5563-5571.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Scott A. Minnich
    • 1
  • Harold N. Rohde
    • 1
  1. 1.Department of Microbiology, Molecular Biology, and BiochemistryUniversity of IdahoMoscowUSA

Personalised recommendations