Molecular Genetics of Lung and Pleural Neoplasms

  • Philip T. Cagle
  • Jaishree Jagirdar
  • Helmut H. Popper


Molecular pathology involves study of nucleic acids, genes, and gene products.1, 2, 3, 4, 5, 6, 7, 8, 9 The development and progression of human cancers are linked to genetic instability and the accumulation of multiple genetic mutations, which can be investigated with the tools of molecular pathology.10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25 Molecular pathology provides a basis for understanding the biology of lung cancer,26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36 including its pathogenetic relationship to tobacco smoking,37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57 and increasingly is providing targets for therapeutic intervention. 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78 In this section, we briefly review the basic terminology and concepts, as an introduction or refresher to subsequent sections of this chapter, and we discuss nucleic acids, genes, and gene products; replication, translation, and transcription; posttranslational modifications of gene products and protein degradation; transcription factors, cell surface receptors and signaling pathways, the cell cycle, apoptosis, cell survival and DNA damage repair; mutations; and microRNAs and siRNAs.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Coleman WB, Tsongalis GJ, eds. The molecular basis of human cancer. Totowa, NJ: Humana Press, 2002.Google Scholar
  2. 2.
    Watson JD, Baker TA, Bell SP, Gann A, Levine M, Losick R, eds. Molecular biology of the gene. 5th ed. Menlo Park, CA: Benjamin Cummings, 2003.Google Scholar
  3. 3.
    Epstein RJ, ed. Human molecular biology: an introduction to the molecular basis of health and disease. Cambridge: Cambridge University Press, 2003.Google Scholar
  4. 4.
    Strachan T, Read A, eds. Human molecular genetics. 3rd ed. New York: Garland Science/Taylor and Francis Group, 2003.Google Scholar
  5. 5.
    Swansbury J, ed. Cancer cytogenetics: methods and protocols. Totowa, NJ: Humana Press, 2003.Google Scholar
  6. 6.
    Cooper GM, Hausman RE, eds. The cell: a molecular approach. 3rd ed. Washington, DC: ASM Press; Sunderland, MA: Sinauer Associates, 2004.Google Scholar
  7. 7.
    Farkas DH, ed. DNA from A to Z. Washington: AACC Press, 2004.Google Scholar
  8. 8.
    Killeen AA, ed. Principles of molecular pathology. Totowa, NJ: Humana Press, 2004.Google Scholar
  9. 9.
    Leonard DGB, ed. Molecular pathology in clinical practice. New York: Springer, 2007.Google Scholar
  10. 10.
    Fisher JC, Hollomon JH. A hypothesis for the origin of cancer foci. Cancer 1951;4:916–918.PubMedCrossRefGoogle Scholar
  11. 11.
    Fisher JC. Multiple-mutation theory of carcinogenesis. Nature 1958;181:651–652.PubMedCrossRefGoogle Scholar
  12. 12.
    Nowell PC. The clonal evolution of tumor cell populations. Science 1976;194:23–28.PubMedCrossRefGoogle Scholar
  13. 13.
    Croce CM. Chromosome translocations and human cancer. Cancer Res 1986;46:6019–6023.PubMedGoogle Scholar
  14. 14.
    Knudson AG, Jr. Genetics of human cancer. Annu Rev Genet 1986;20:231–251.PubMedCrossRefGoogle Scholar
  15. 15.
    Weinberg RA. Oncogenes, antioncogenes, and the molecular bases of multistep carcinogenesis. Cancer Res 1989;49:3713–3721.PubMedGoogle Scholar
  16. 16.
    Bishop JM. Molecular themes in oncogenesis. Cell 1991;64:235–248.PubMedCrossRefGoogle Scholar
  17. 17.
    Ames BN, Shigenaga MK, Gold LS. DNA lesions, inducible DNA repair, and cell division: three key factors in mutagenesis and carcinogenesis. Environ Health Perspect 1993;101(suppl 5):35–44.PubMedCrossRefGoogle Scholar
  18. 18.
    Cheng KC, Loeb LA. Genomic instability and tumor progression: mechanistic considerations. Adv Cancer Res 1993;60:121–156.PubMedCrossRefGoogle Scholar
  19. 19.
    Renan MJ. How many mutations are required for tumorigenesis? Implications from human cancer data. Mol Carcinog 1993;7:139–146.PubMedCrossRefGoogle Scholar
  20. 20.
    Coleman WB, Tsongalis GJ. Multiple mechanisms account for genomic instability and molecular mutation in neoplastic transformation. Clin Chem 1995;41:644–657.PubMedGoogle Scholar
  21. 21.
    Cairns J. Mutation and cancer: the antecedents to our studies of adaptive mutation. Genetics 1998;148:1433–1440.PubMedGoogle Scholar
  22. 22.
    Jackson AL, Loeb LA. The mutation rate and cancer. Genetics 1998;148:1483–1490.PubMedGoogle Scholar
  23. 23.
    Lengauer C, Kinzler KW, Vogelstein B. Genetic instabilities in human cancers. Nature 1998;396:643–649.PubMedCrossRefGoogle Scholar
  24. 24.
    Coleman WB, Tsongalis GJ. The role of genomic instability in human carcinogenesis. Anticancer Res 1999;19:4645–4664.PubMedGoogle Scholar
  25. 25.
    Schmutte C, Fishel R. Genomic instability: first step to carcinogenesis. Anticancer Res 1999;19:4665–4696.PubMedGoogle Scholar
  26. 26.
    Cagle PT. The cytogenetics and molecular genetics of lung cancer: implications for pathologists. In: Rosen PP, Fechner RE, eds. Pathology annual. East Norwalk, CT: Appleton and Lange, 1990:317–329.Google Scholar
  27. 27.
    Harris CC, Reddel R, Pfeifer A, et al. Role of oncogenes and tumour suppressor genes in human lung carcinogenesis. In: O’Neill IK, Chen J, Barsch H, eds. Relevance to human cancer of N-nitroso compounds, tobacco smoke and mycotoxins. Lyon: IARC, 1991:294–304.Google Scholar
  28. 28.
    Iman DS, Harris CC. Oncogenes and tumor suppressor genes in human lung carcinogenesis. Crit Rev Oncogen 1991;2:161–171.Google Scholar
  29. 29.
    Sozzi G, Miozzo M, Tagliabue E, et al. Cytogenetic abnormalities and overexpression of receptors for growth factors in normal bronchial epithelial and tumor samples of lung cancer patients. Cancer Res 1991;51:400–404.PubMedGoogle Scholar
  30. 30.
    Gazdar AF. Molecular markers for the diagnosis and prognosis of lung cancer. Cancer 1992;69:1592–1599.PubMedCrossRefGoogle Scholar
  31. 31.
    Cagle PT. Molecular pathology of lung cancer and its clinical relevance. In: Katzenstein A-L, Churg A, eds. Current topics in pulmonary pathology. Baltimore: Williams and Wilkins, 1993.Google Scholar
  32. 32.
    Cagle PT. Lung cancer. In: Kurzrock R, Talpaz M, eds. Molecular biology in cancer medicine. London: Martin Dunitz, 1999:367–378.Google Scholar
  33. 33.
    Hanahan D, Weinberg RA. The hallmarks of cancer. Cell 2000;100:57–70.PubMedCrossRefGoogle Scholar
  34. 34.
    Fong KM, Sekido Y, Minna J. The molecular basis of lung carcinogenesis. In: Coleman WB, Tsongalis GJ, eds. The molecular basis of human cancer. Totowa, NJ: Humana Press, 2002:379–405.Google Scholar
  35. 35.
    Fong KM, Sekido Y, Gazdar AF, Minna JD. Lung cancer. 9: Molecular biology of lung cancer: clinical implications. Thorax 2003;58:892–900.PubMedCrossRefGoogle Scholar
  36. 36.
    Sekido Y, Fong KM, Minna JD. Molecular genetics of lung cancer. Annu Rev Med 2003;54:73–87.PubMedCrossRefGoogle Scholar
  37. 37.
    Rodenhuis S, van de Wetering ML, Mooi WJ, Evers SG, van Zanwijk N, Bos JL. Mutational activation of the K-ras oncogene: a possible pathogenetic factor in adenocarcinoma of the lung. N Engl J Med 1987;317:929–935.PubMedGoogle Scholar
  38. 38.
    Belinsky SA, Devereux TR, Stoner GD, Anderson MW. Activation of the k-ras protooncogene in lung tumors from mice treated with 4-(N-methyl-N-nitrosamino)-1-(3-pyridyl)-1-butanone (NNK) or nitrosodimethylamine (NDMA). Proc AACR 1988;29:139.Google Scholar
  39. 39.
    Philips DH, Hewer A, Martin CN, Garner RC, King MM. Correlation of DNA adduct level in human lung with cigarette smoking. Nature 1988;336:790–792.CrossRefGoogle Scholar
  40. 40.
    Rodenhuis S, Slebos RJC, Boot AJM, et al. Incidence and possible clinical significance of K-ras oncogene activation in adenocarcinoma of the human lung. Cancer Res 1988;48:5738–5741.PubMedGoogle Scholar
  41. 41.
    Belinsky SA, Devereux TR, Maronpot RR, Stone G, Anderson MW. Relationship between the formation of promutagenic adducts and the activation of the K-ras protooncogene in lung tumors from A/J mice treated with nitrosamines. Cancer Res 1989;49:5305–5311.PubMedGoogle Scholar
  42. 42.
    Randerath R, Miller RH, Mittal D, Avitts TA, Dunsford HA, Randerath K. Covalent DNA damage in tissues of cigarette smoking as determined by 32p-postlabeling assay. J Natl Cancer Inst. 1989;81:341–347.PubMedCrossRefGoogle Scholar
  43. 43.
    You M, Candrian U, Maronpot R, Stoner G, Anderson M. Activation of the K-ras protooncogene in spontaneously occurring and chemically induced lung tumors of the strain A mouse. Proc Natl Acad Sci USA 1989;86:3070–3074.PubMedCrossRefGoogle Scholar
  44. 44.
    Chiba I, Takahashi T, Nau MM, et al. Mutations in the p53 gene are frequent in primary non-small cell lung cancer. Oncogene 1990;5:1603–1610.PubMedGoogle Scholar
  45. 45.
    Goodrow T, Reynolds S, Maronpot R, Anderson M. Activation of K-ras by codon 13 mutations in C57BL/6 X C3HAF1 mouse tumors induced by exposure to 1,3-butadiene. Cancer Res 1990;50:4818–4823.PubMedGoogle Scholar
  46. 46.
    Takahashi T, D’Amico D, Chiba I, Buchhagen DL, Minna JD. Identification of intronic point mutations as an alternative mechanism for p53 inactivation in lung cancer. J Clin Invest 1990;86:363–369.PubMedCrossRefGoogle Scholar
  47. 47.
    Brandt-Rauf PW. Advances in cancer biomarkers as applied to chemical exposures: the ras oncogene and p21 protein and pulmonary carcinogenesis. J Occup Med 1991;33:951–955.PubMedCrossRefGoogle Scholar
  48. 48.
    Hall PA, Ray A, Lemoine NR, Midgley CA, Krauz T, Lane DP. p53 immunostaining as a marker of malignant disease in diagnostic cytopathology. Lancet 1991;338:513.PubMedCrossRefGoogle Scholar
  49. 49.
    Hollstein M, Sidransky D, Vogelstein B, Harris CC. p53 mutations in human cancers. Science 1991;253:49–52.PubMedCrossRefGoogle Scholar
  50. 50.
    Lehman TA, Bennett WP, Metcalf RA, et al. p53 mutations, ras mutations, and p53-heat shock 70 protein complexes in human lung carcinoma cell lines. Cancer Res 1991;51:4090–4096.PubMedGoogle Scholar
  51. 51.
    Reynolds SH, Anderson MW. Activation of protooncogenes in human and mouse lung tumors. Environ Health Perspect 1991;93:145–148.PubMedCrossRefGoogle Scholar
  52. 52.
    Slebos RJC, Hruban RH, Dalesio O, Mooi WJ, Offerhaus JA, Rodenhuis S. Relationship between K-ras oncogene activation and smoking in adenocarcinoma of the human lung. J Natl Cancer Inst 1991;83:1024–1027.PubMedCrossRefGoogle Scholar
  53. 53.
    Sundaresan V, Reeve JG, Wilson B, Bleehen NM, Watson JV. Flow cytometric and immunohistochemical analysis of p62c-myc oncoprotein in the bronchial epithelium of lung cancer patients. Anticancer Res 1991;11:2111–2116.PubMedGoogle Scholar
  54. 54.
    Vahakangas KH, Samet JM, Metcalf RA, et al. Mutations of p53 and ras genes in radon-associated lung cancer from uranium miners. Lancet 1992;339:576–580.PubMedCrossRefGoogle Scholar
  55. 55.
    Westra WH, Offerhaus JA, Goodman SN, et al. Overexpression of the p53 tumor suppressor gene product in primary lung adenocarcinomas is associated with cigarette smoking. Am J Surg Pathol 1993;17:213–220.PubMedCrossRefGoogle Scholar
  56. 56.
    Denissenko MF, Pao A, Tang M, et al. Preferential formation of benzo[a]pyrene adducts at lung cancer mutational hotspots in P53. Science 1996;274:430–432.PubMedCrossRefGoogle Scholar
  57. 57.
    Tammemagi MC, McLaughlin JR, Bull SB. Meta-analyses of p53 tumor suppressor gene alterations and clinicopathological features in resected lung cancers. Cancer Epidemiol Biomarkers Prev 1999;8:625–634.PubMedGoogle Scholar
  58. 58.
    Gautam A, Densmore CL, Waldrep JC. Inhibition of experimental lung metastasis by aerosol delivery of PEI-p53 complexes. Mol Ther 2000;2:318–323.PubMedCrossRefGoogle Scholar
  59. 59.
    Sirotnak FM, Zakowski MF, Miller VA, Scher HI, Kris MG. Efficacy of cytotoxic agents against human tumor xenografts is markedly enhanced by coadministration of ZD1839 (Iressa), an inhibitor of EGFR tyrosine kinase. Clin Cancer Res 2000;6:4885–4892.PubMedGoogle Scholar
  60. 60.
    Arteaga CL, Johnson DH. Tyrosine kinase inhibitors-ZD1839 (Iressa). Curr Opin Oncol 2001;13:491–498.PubMedCrossRefGoogle Scholar
  61. 61.
    Ramesh R, Saeki T, Templeton NS, et al. Successful treatment of primary and disseminated human lung cancers by systemic delivery of tumor suppressor genes using an improved liposome vector. Mol Ther 2001;3:337–350.PubMedCrossRefGoogle Scholar
  62. 62.
    Kaliberov SA, Buchsbaum DJ, Gillespie GY, et al. Adenovirus-mediated transfer of BAX driven by the vascular endothelial growth factor promoter induces apoptosis in lung cancer cells. Mol Ther 2002;6:190–198.PubMedCrossRefGoogle Scholar
  63. 63.
    Kawabe S, Nishikawa T, Munshi A, Roth JA, Chada S, Meyn RE. Adenovirus-mediated mda-7 gene expression radiosensitizes non-small cell lung cancer cells via TP53-independent mechanisms. Mol Ther 2002;6:637–644.PubMedCrossRefGoogle Scholar
  64. 64.
    Raben D, Helfrich BA, Chan D, Johnson G, Bunn PA Jr. ZD1839, a selective epidermal growth factor receptor tyrosine kinase inhibitor, alone and in combination with radiation and chemotherapy as a new therapeutic strategy in non-small cell lung cancer. Semin Oncol 2002;29(1 suppl 4):37–46.PubMedCrossRefGoogle Scholar
  65. 65.
    Ranson M, Hammond LA, Ferry D, et al. Related ZD1839, a selective oral epidermal growth factor receptor-tyrosine kinase inhibitor, is well tolerated and active in patients with solid, malignant tumors: results of a phase I trial. J Clin Oncol 2002;20:2240–2250.PubMedCrossRefGoogle Scholar
  66. 66.
    Ito I, Began G, Mohiuddin I, et al. Increased uptake of liposomal-DNA complexes by lung metastases following intravenous administration. Mol Ther 2003;7:409–418.PubMedCrossRefGoogle Scholar
  67. 67.
    Mhashilkar AM, Stewart AL, Sieger K, et al. MDA-7 negatively regulates the beta-catenin and PI3K signaling pathways in breast and lung tumor cells. Mol Ther 2003;8:207–219.PubMedCrossRefGoogle Scholar
  68. 68.
    Janmaat ML, Giaccone G. The epidermal growth factor receptor pathway and its inhibition as anticancer therapy. Drugs Today (Barc) 2003;n39(suppl C):61–80.Google Scholar
  69. 69.
    Rossi G, Cavazza A, Marchioni A, et al. Kit expression in small cell carcinomas of the lung: effects of chemotherapy. Mod Pathol 2003;16:1041–1047.PubMedCrossRefGoogle Scholar
  70. 70.
    Brattstrom D, Wester K, Bergqvist M, et al. HER-2, EGFR, COX-2 expression status correlated to microvessel density and survival in resected non-small cell lung cancer. Acta Oncol 2004;43:80–86.PubMedCrossRefGoogle Scholar
  71. 71.
    Butnor KJ, Burchette JL, Sporn TA, Hammar SP, Roggli VL. The spectrum of Kit (CD117) immunoreactivity in lung and pleural tumors: a study of 96 cases using a single-source antibody with a review of the literature. Arch Pathol Lab Med 2004;128:538–543.PubMedGoogle Scholar
  72. 72.
    Lynch TJ, Bell DW, Sordella R, et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med 2004;350:2129–2139.PubMedCrossRefGoogle Scholar
  73. 73.
    Pelosi G, Barisella M, Pasini F, et al. CD117 immunoreactivity in stage I adenocarcinoma and squamous cell carcinoma of the lung: relevance to prognosis in a subset of adenocarcinoma patients. Mod Pathol 2004;17:711–721.PubMedCrossRefGoogle Scholar
  74. 74.
    Onn A, Herbst RS. Molecular targeted therapy for lung cancer. Lancet 2005;366:1507–1508.PubMedCrossRefGoogle Scholar
  75. 75.
    Ramalingam S, Belani CP. Molecularly-targeted therapies for non-small cell lung cancer. Expert Opin Pharmacother 2005;6:2667–2679.PubMedCrossRefGoogle Scholar
  76. 76.
    Silvestri GA, Rivera MP. Targeted therapy for the treatment of advanced non-small cell lung cancer: a review of the epidermal growth factor receptor antagonists. Chest 2005;128:3975–3984.PubMedCrossRefGoogle Scholar
  77. 77.
    Nemunaitis J, Meyers T, Senzer N, et al. Phase I trial of sequential administration of recombinant DNA and adenovirus expressing L523S protein in early stage non-small-cell lung cancer. Mol Ther 2006;13:1185–1191.PubMedCrossRefGoogle Scholar
  78. 78.
    Sato M, Vaughan MB, Girard L, et al. Multiple oncogenic changes (K-RAS(V12), p53 knockdown, mutant EGFRs, p16 bypass, telomerase) are not sufficient to confer a full malignant phenotype on human bronchial epithelial cells. Cancer Res 2006;66:2116–2128.PubMedCrossRefGoogle Scholar
  79. 79.
    Watson JD, Crick FH. Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid. Nature 1953;171:737–738.PubMedCrossRefGoogle Scholar
  80. 80.
    Thoma F, Koller T. Influence of histone H1 on chromatin structure. Cell 1977;12:101–107.PubMedCrossRefGoogle Scholar
  81. 81.
    Varshavsky AJ, Bakayev VV, Nedospasov SA, Georgiev GP. On the structure of eukaryotic, prokaryotic, and viral chromatin. Cold Spring Harb Symp Quant Biol 1978;42 (pt 1):457–473.PubMedGoogle Scholar
  82. 82.
    Tyler-Smith C, Willard HF. Mammalian chromosome structure. Curr Opin Genet Dev 1993;3:390–397.PubMedCrossRefGoogle Scholar
  83. 83.
    Lamond AI, Earnshaw WC. Structure and function in the nucleus. Science 1998;280:547–553.PubMedCrossRefGoogle Scholar
  84. 84.
    Goldberg S, Schwartz H, Darnell JE Jr. Evidence from UV transcription mapping in HeLa cells that heterogeneous nuclear RNA is the messenger RNA precursor. Proc Natl Acad Sci USA 1977;74:4520–4523.PubMedCrossRefGoogle Scholar
  85. 85.
    Hoffmann-Berling H. DNA unwinding enzymes. Prog Clin Biol Res 1982;102 (pt C):89–98.PubMedGoogle Scholar
  86. 86.
    Wang JC. DNA topoisomerases: why so many? J Biol Chem 1991;266:6659–6662.PubMedGoogle Scholar
  87. 87.
    Anderson HJ, Roberge M. DNA topoisomerase II: a review of its involvement in chromosome structure, DNA replication, transcription and mitosis. Cell Biol Int Rep 1992;16:717–724.PubMedCrossRefGoogle Scholar
  88. 88.
    Gasser SM, Walter R, Dang Q, Cardenas ME. Topoisomerase II: its functions and phosphorylation. Antonie Van Leeuwenhoek 1992;62:15–24.PubMedCrossRefGoogle Scholar
  89. 89.
    D’Incalci M. DNA-topoisomerase inhibitors. Curr Opin Oncol 1993;5:1023–1028.PubMedCrossRefGoogle Scholar
  90. 90.
    Ferguson LR, Baguley BC. Topoisomerase II enzymes and mutagenicity. Environ Mol Mutagen 1994;24:245–261.PubMedCrossRefGoogle Scholar
  91. 91.
    Larsen AK, Skladanowski A, Bojanowski K. The roles of DNA topoisomerase II during the cell cycle. Prog Cell Cycle Res 1996;2:229–239.PubMedGoogle Scholar
  92. 92.
    Kato S, Kikuchi A. DNA topoisomerase: the key enzyme that regulates DNA super structure. Nagoya J Med Sci 1998;61:11–26.PubMedGoogle Scholar
  93. 93.
    Wang JC. Cellular roles of DNA topoisomerases: a molecular perspective. Nat Rev Mol Cell Biol 2002;3:430–440.PubMedCrossRefGoogle Scholar
  94. 94.
    Gimenez-Abian JF, Clarke DJ. Replication-coupled topoisomerase II templates the mitotic chromosome scaffold? Cell Cycle 2003;2:230–232.PubMedGoogle Scholar
  95. 95.
    Leppard JB, Champoux JJ. Human DNA topoisomerase I: relaxation, roles, and damage control. Chromosoma 2005;114:75–85.PubMedCrossRefGoogle Scholar
  96. 96.
    Sharp PA. RNA splicing and genes. JAMA 1988;260:3035–3041.PubMedCrossRefGoogle Scholar
  97. 97.
    Gorlach M, Burd CG, Dreyfuss G. The mRNA poly(A)-binding protein: localization, abundance, and RNA-binding specificity. Exp Cell Res 1994;211:400–407.PubMedCrossRefGoogle Scholar
  98. 98.
    Fotedar R, Fotedar A. Cell cycle control of DNA replication. Prog Cell Cycle Res 1995;1:73–89.PubMedGoogle Scholar
  99. 99.
    Auerbach AD, Verlander PC. Disorders of DNA replication and repair. Curr Opin Pediatr 1997;9:600–616.PubMedCrossRefGoogle Scholar
  100. 100.
    Sharp SJ, Schaack J, Cooley L, Burke DJ, Soll D. Structure and transcription of eukaryotic tRNA genes. CRC Crit Rev Biochem 1985;19:107–144.PubMedCrossRefGoogle Scholar
  101. 101.
    Persson BC. Modification of tRNA as a regulatory device. Mol Microbiol 1993;8:1011–1016.PubMedCrossRefGoogle Scholar
  102. 102.
    Green R, Noller HF. Ribosomes and translation. Annu Rev Biochem 1997;66:679–716.PubMedCrossRefGoogle Scholar
  103. 103.
    Cech TR. Self-splicing of group I introns. Annu Rev Biochem 1990;59:543–568.PubMedCrossRefGoogle Scholar
  104. 104.
    Jacquier A. Self-splicing group II and nuclear pre-mRNA introns: how similar are they? Trends Biochem Sci 1990;15:351–354.PubMedCrossRefGoogle Scholar
  105. 105.
    Balvay L, Libri D, Fiszman MY. Pre-mRNA secondary structure and the regulation of splicing. Bioessays 1993;15:165–169.PubMedCrossRefGoogle Scholar
  106. 106.
    Sutherland GR, Richards RI. Simple tandem DNA repeats and human genetic disease. Proc Natl Acad Sci USA 1995;92:3636–3641.PubMedCrossRefGoogle Scholar
  107. 107.
    Horii A, Han HJ, Shimada M, et al. Frequent replication errors at microsatellite loci in tumors of patients with multiple primary cancers. Cancer Res 1994;54:3373–3375.PubMedGoogle Scholar
  108. 108.
    Loeb LA. Microsatellite instability: marker of a mutator phenotype in cancer. Cancer Res 1994;54:5059–5063.PubMedGoogle Scholar
  109. 109.
    Mao L, Lee DJ, Tockman MS, Erozan YS, Askin F, Sidransky D. Microsatellite alterations as clonal markers for the detection of human cancer. Proc Natl Acad Sci USA 1994;91:9871–9875.PubMedCrossRefGoogle Scholar
  110. 110.
    Merlo A, Mabry M, Gabrielson E, Vollmer R, Baylin SB, Sidransky D. Frequent microsatellite instability in primary small cell lung cancer. Cancer Res 1994;54:2098–2101.PubMedGoogle Scholar
  111. 111.
    Wooster R, Cleton-Jansen AM, Collins N, et al. Instability of short tandem repeats (microsatellites) in human cancers. Nat Genet 1994;6:152–156.PubMedCrossRefGoogle Scholar
  112. 112.
    Fong KM, Zimmerman PV, Smith PJ. Microsatellite instability and other molecular abnormalities in non-small cell lung cancer. Cancer Res 1995;55:28–30.PubMedGoogle Scholar
  113. 113.
    Miozzo M, Sozzi G, Musso K, et al. Microsatellite alterations in bronchial and sputum specimens of lung cancer patients. Cancer Res 1996;56:2285–2288.PubMedGoogle Scholar
  114. 114.
    Bocker T, Diermann J, Friedl W, et al. Microsatellite instability analysis: a multicenter study for reliability and quality control. Cancer Res 1997;57:4739–4743.PubMedGoogle Scholar
  115. 115.
    Dietmaier W, Wallinger S, Bocker T, Kullmann F, Fishel R, Ruschoff J. Diagnostic microsatellite instability: definition and correlation with mismatch repair protein expression. Cancer Res 1997;57:4749–4756.PubMedGoogle Scholar
  116. 116.
    Lothe RA. Microsatellite instability in human solid tumors. Mol Med Today 1997;3:61–68.PubMedCrossRefGoogle Scholar
  117. 117.
    Arzimanoglou, II, Gilbert F, Barber HR. Microsatellite instability in human solid tumors. Cancer 1998;82:1808–1820.PubMedCrossRefGoogle Scholar
  118. 118.
    Boland CR, Thibodeau SN, Hamilton SR, et al. A National Cancer Institute Workshop on Microsatellite Instability for cancer detection and familial predisposition: development of international criteria for the determination of microsatellite instability in colorectal cancer. Cancer Res 1998;58:5248–5257.PubMedGoogle Scholar
  119. 119.
    Boyer JC, Farber RA. Mutation rate of a microsatellite sequence in normal human fibroblasts. Cancer Res 1998;58:3946–3949.PubMedGoogle Scholar
  120. 120.
    Hanford MG, Rushton BC, Gowen LC, Farber RA. Microsatellite mutation rates in cancer cell lines deficient or proficient in mismatch repair. Oncogene 1998;16:2389–2393.PubMedCrossRefGoogle Scholar
  121. 121.
    Jackson AL, Chen R, Loeb LA. Induction of microsatellite instability by oxidative DNA damage. Proc Natl Acad Sci USA 1998;95:12468–12473.PubMedCrossRefGoogle Scholar
  122. 122.
    Johannsdottir JT, Jonasson JG, Bergthorsson JT, et al. The effect of mismatch repair deficiency on tumourigenesis; microsatellite instability affecting genes containing short repeated sequences. Int J Oncol 2000;16:133–139.PubMedGoogle Scholar
  123. 123.
    Kim WS, Park C, Hong SK, Park BK, Kim HS, Park K. Microsatellite instability(MSI) in non-small cell lung cancer(NSCLC) is highly associated with transforming growth factor-beta type II receptor(TGF-beta RII) frameshift mutation. Anticancer Res 2000;20:1499–1502.PubMedGoogle Scholar
  124. 124.
    Krieg PA, Melton DA. In vitro RNA synthesis with SP6 RNA polymerase. Methods Enzymol 1987;155:397–415.PubMedCrossRefGoogle Scholar
  125. 125.
    Lawyer FC, Stoffel S, Saiki RK, Myambo K, Drummond R, Gelfand DH. Isolation, characterization, and expression in Escherichia coli of the DNA polymerase gene from Thermus aquaticus. J Biol Chem 1989;264:6427–6437.PubMedGoogle Scholar
  126. 126.
    Studier FW, Rosenberg AH, Dunn JJ, Dubendorff JW. Use of T7 RNA polymerase to direct expression of cloned genes. Methods Enzymol 1990;185:60–89.PubMedCrossRefGoogle Scholar
  127. 127.
    Kollmar R, Farnham PJ. Site-specific initiation of transcription by RNA polymerase II. Proc Soc Exp Biol Med 1993;203:127–139.PubMedGoogle Scholar
  128. 128.
    Chou KC, Kezdy FJ, Reusser F. Kinetics of processive nucleic acid polymerases and nucleases. Anal Biochem 1994;221:217–230.PubMedCrossRefGoogle Scholar
  129. 129.
    Tabor S, Richardson CC. A single residue in DNA polymerases of the Escherichia coli DNA polymerase I family is critical for distinguishing between deoxy-and dideoxyribonucleotides. Proc Natl Acad Sci USA 1995;92:6339–6343.PubMedCrossRefGoogle Scholar
  130. 130.
    Lai CJ, Markoff LJ, Zimmerman S, Cohen B, Berndt JA, Chanock RM. Cloning DNA sequences from influenza viral RNA segments. Proc Natl Acad Sci USA 1980;77:210–214.PubMedCrossRefGoogle Scholar
  131. 131.
    Kotewicz ML, D’Alessio JM, Driftmier KM, Blodgett KP, Gerard GF. Cloning and overexpression of Moloney murine leukemia virus reverse transcriptase in Escherichia coli. Gene 1985;35:249–258.PubMedCrossRefGoogle Scholar
  132. 132.
    Biessmann H, Mason JM. Telomeric repeat sequences. Chromosoma 1994;103:154–161.PubMedCrossRefGoogle Scholar
  133. 133.
    Feng J, Funk WD, Wang SS, et al. The RNA component of human telomerase. Science 1995;269:1236–1241.PubMedCrossRefGoogle Scholar
  134. 134.
    Counter CM. The roles of telomeres and telomerase in cell life span. Mutat Res 1996;366:45–63.PubMedGoogle Scholar
  135. 135.
    Wellinger RJ, Sen D. The DNA structures at the ends of eukaryotic chromosomes. Eur J Cancer 1997;33:735–749.PubMedCrossRefGoogle Scholar
  136. 136.
    Chakhparonian M, Wellinger RJ. Telomere maintenance and DNA replication: how closely are these two connected? Trends Genet 2003;19:439–446.PubMedCrossRefGoogle Scholar
  137. 137.
    Bayne S, Liu JP. Hormones and growth factors regulate telomerase activity in ageing and cancer. Mol Cell Endocrinol 2005;240:11–22.PubMedCrossRefGoogle Scholar
  138. 138.
    Blackburn EH. Telomeres and telomerase: their mechanisms of action and the effects of altering their functions. FEBS Lett 2005;579:859–862.PubMedCrossRefGoogle Scholar
  139. 139.
    Blasco MA. Telomeres and human disease: ageing, cancer and beyond. Nat Rev Genet 2005;6:611–622.PubMedCrossRefGoogle Scholar
  140. 140.
    Boukamp P, Popp S, Krunic D. Telomere-dependent chromosomal instability. J Investig Dermatol Symp Proc 2005;10:89–94.PubMedCrossRefGoogle Scholar
  141. 141.
    Brunori M, Luciano P, Gilson E, Geli V. The telomerase cycle: normal and pathological aspects. J Mol Med 2005;83:244–257.PubMedCrossRefGoogle Scholar
  142. 142.
    Dong CK, Masutomi K, Hahn WC. Telomerase: regulation, function and transformation. Crit Rev Oncol Hematol 2005;54:85–93.PubMedCrossRefGoogle Scholar
  143. 143.
    Jacobs JJ, de Lange T. p16INK4a as a second effector of the telomere damage pathway. Cell Cycle 2005;4:1364–1368.PubMedGoogle Scholar
  144. 144.
    Opitz OG. Telomeres, telomerase and malignant transformation. Curr Mol Med 2005;5:219–226.PubMedCrossRefGoogle Scholar
  145. 145.
    Viscardi V, Clerici M, Cartagena-Lirola H, Longhese MP. Telomeres and DNA damage checkpoints. Biochimie 2005;87:613–624.PubMedCrossRefGoogle Scholar
  146. 146.
    Autexier C, Lue NF. The Structure and Function of Telomerase Reverse Transcriptase. Annu Rev Biochem 2006;75:493–517.PubMedCrossRefGoogle Scholar
  147. 147.
    Bhattacharyya MK, Lustig AJ. Telomere dynamics in genome stability. Trends Biochem Sci 2006;31:114–122.PubMedCrossRefGoogle Scholar
  148. 148.
    Pallen CJ, Tan YH, Guy GR. Protein phosphatases in cell signalling. Curr Opin Cell Biol 1992;4:1000–1007.PubMedCrossRefGoogle Scholar
  149. 149.
    Boulikas T. Control of DNA replication by protein phosphorylation. Anticancer Res 1994;14:2465–2472.PubMedGoogle Scholar
  150. 150.
    Berndt N. Protein dephosphorylation and the intracellular control of the cell number. Front Biosci 1999;4:D22–D42.PubMedCrossRefGoogle Scholar
  151. 151.
    Appella E, Anderson CW. Post-translational modifications and activation of p53 by genotoxic stresses. Eur J Biochem 2001;268:2764–2772.PubMedCrossRefGoogle Scholar
  152. 152.
    Fu M, Wang C, Wang J, Zafonte BT, Lisanti MP, Pestell RG. Acetylation in hormone signaling and the cell cycle. Cytokine Growth Factor Rev 2002;13:259–276.PubMedCrossRefGoogle Scholar
  153. 153.
    Obaya AJ, Sedivy JM. Regulation of cyclin-Cdk activity in mammalian cells. Cell Mol Life Sci 2002;59:126–142.PubMedCrossRefGoogle Scholar
  154. 154.
    Haglund K, Dikic I. Ubiquitylation and cell signaling. EMBO J 2005;24:3353–3359.PubMedCrossRefGoogle Scholar
  155. 155.
    Legube G, Trouche D. Regulating histone acetyltransferases and deacetylases. EMBO Rep 2003;4:944–947.PubMedCrossRefGoogle Scholar
  156. 156.
    Marmorstein R. Structural and chemical basis of histone acetylation. Novartis Found Symp 2004;259:78–98.PubMedCrossRefGoogle Scholar
  157. 157.
    Moore JD, Krebs JE. Histone modifications and DNA double-strand break repair. Biochem Cell Biol 2004;82:446–452.PubMedCrossRefGoogle Scholar
  158. 158.
    Peterson CL, Laniel MA. Histones and histone modifications. Curr Biol 2004;14:R546–R551.PubMedCrossRefGoogle Scholar
  159. 159.
    Quivy V, Calomme C, Dekoninck A, et al. Gene activation and gene silencing: a subtle equilibrium. Cloning Stem Cells 2004;6:140–149.PubMedCrossRefGoogle Scholar
  160. 160.
    Wang Y, Fischle W, Cheung W, Jacobs S, Khorasanizadeh S, Allis CD. Beyond the double helix: writing and reading the histone code. Novartis Found Symp 2004;259:3–17.PubMedCrossRefGoogle Scholar
  161. 161.
    Fraga MF, Esteller M. Towards the human cancer epigenome: a first draft of histone modifications. Cell Cycle 2005;4:1377–1381.PubMedGoogle Scholar
  162. 162.
    Khan AU, Krishnamurthy S. Histone modifications as key regulators of transcription. Front Biosci 2005;10:866–872.PubMedCrossRefGoogle Scholar
  163. 163.
    Verdone L, Caserta M, Di Mauro E. Role of histone acetylation in the control of gene expression. Biochem Cell Biol 2005;83:344–353.PubMedCrossRefGoogle Scholar
  164. 164.
    Yu Y, Waters R. Histone acetylation, chromatin remodelling and nucleotide excision repair: hint from the study on MFA2 in Saccharomyces cerevisiae. Cell Cycle 2005;4:1043–1045.PubMedGoogle Scholar
  165. 165.
    Verdone L, Agricola E, Caserta M, Di Mauro E. Histone acetylation in gene regulation. Brief Funct Genomic Proteomic 2006;5:209–221.PubMedCrossRefGoogle Scholar
  166. 166.
    Haura EB, Turkson J, Jove R. Mechanisms of disease: insights into the emerging role of signal transducers and activators of transcription in cancer. Nat Clin Pract Oncol 2005;2:315–324.PubMedCrossRefGoogle Scholar
  167. 167.
    Wang JC. Finding primary targets of transcriptional regulators. Cell Cycle 2005;4:356–358.PubMedGoogle Scholar
  168. 168.
    Wittenberg C, Reed SI. Cell cycle-dependent transcription in yeast: promoters, transcription factors, and transcriptomes. Oncogene 2005;24:2746–2755.PubMedCrossRefGoogle Scholar
  169. 169.
    Zaidi SK, Young DW, Choi JY, et al. The dynamic organization of gene-regulatory machinery in nuclear microenvironments. EMBO Rep 2005;6:128–133.PubMedCrossRefGoogle Scholar
  170. 170.
    Barrera LO, Ren B. The transcriptional regulatory code of eukaryotic cells-insights from genome-wide analysis of chromatin organization and transcription factor binding. Curr Opin Cell Biol 2006;18:291–298.PubMedCrossRefGoogle Scholar
  171. 171.
    Dillon N. Gene regulation and large-scale chromatin organization in the nucleus. Chromosome Res 2006;14:117–126.PubMedCrossRefGoogle Scholar
  172. 172.
    Maston GA, Evans SK, Green MR. Transcriptional Regulatory Elements in the Human Genome. Annu Rev Genomics Hum Genet 2006;7:29–59.PubMedCrossRefGoogle Scholar
  173. 173.
    Thomas MC, Chiang CM. The general transcription machinery and general cofactors. Crit Rev Biochem Mol Biol 2006;41:105–178.PubMedCrossRefGoogle Scholar
  174. 174.
    Engelkamp D, van Heyningen V. Transcription factors in disease. Curr Opin Genet Dev 1996;6:334–342.PubMedCrossRefGoogle Scholar
  175. 175.
    Tamura T, Konishi Y, Makino Y, Mikoshiba K. Mechanisms of transcriptional regulation and neural gene expression. Neurochem Int 1996;29:573–581.PubMedCrossRefGoogle Scholar
  176. 176.
    Bieker JJ, Ouyang L, Chen X. Transcriptional factors for specific globin genes. Ann NY Acad Sci 1998;850:64–69.PubMedCrossRefGoogle Scholar
  177. 177.
    Hertel KJ, Lynch KW, Maniatis T. Common themes in the function of transcription and splicing enhancers. Curr Opin Cell Biol 1997;9:350–357.PubMedCrossRefGoogle Scholar
  178. 178.
    Arnosti DN. Analysis and function of transcriptional regulatory elements: insights from Drosophila. Annu Rev Entomol 2003;48:579–602.PubMedCrossRefGoogle Scholar
  179. 179.
    Scannell DR, Wolfe K. Rewiring the transcriptional regulatory circuits of cells. Genome Biol 2004;5:206.PubMedCrossRefGoogle Scholar
  180. 180.
    Villard J. Transcription regulation and human diseases. Swiss Med Wkly 2004;134:571–579.PubMedGoogle Scholar
  181. 181.
    Hampsey M. Molecular genetics of the RNA polymerase II general transcriptional machinery. Microbiol Mol Biol Rev 1998;62:465–503.PubMedGoogle Scholar
  182. 182.
    Berk AJ. Activation of RNA polymerase II transcription. Curr Opin Cell Biol 1999;11:330–335.PubMedCrossRefGoogle Scholar
  183. 183.
    Berk AJ. TBP-like factors come into focus. Cell 2000;103:5–8.PubMedCrossRefGoogle Scholar
  184. 184.
    Green MR. TBP-associated factors (TAFIIs): multiple, selective transcriptional mediators in common complexes. Trends Biochem Sci 2000;25:59–63.PubMedCrossRefGoogle Scholar
  185. 185.
    Pugh BF. Control of gene expression through regulation of the TATA-binding protein. Gene 2000;255:1–14.PubMedCrossRefGoogle Scholar
  186. 186.
    Burley SK, Kamada K. Transcription factor complexes. Curr Opin Struct Biol 2002;12:225–230.PubMedCrossRefGoogle Scholar
  187. 187.
    Featherstone M. Coactivators in transcription initiation: here are your orders. Curr Opin Genet Dev 2002;12:149–155.PubMedCrossRefGoogle Scholar
  188. 188.
    Davidson I. The genetics of TBP and TBP-related factors. Trends Biochem Sci 2003;28:391–398.PubMedCrossRefGoogle Scholar
  189. 189.
    Hochheimer A, Tjian R. Diversified transcription initiation complexes expand promoter selectivity and tissuespecific gene expression. Genes Dev 2003;17:1309–1320.PubMedCrossRefGoogle Scholar
  190. 190.
    Asturias FJ. RNA polymerase II structure, and organization of the preinitiation complex. Curr Opin Struct Biol 2004;14:121–129.PubMedCrossRefGoogle Scholar
  191. 191.
    Matangkasombut O, Auty R, Buratowski S. Structure and function of the TFIID complex. Adv Protein Chem 2004;67:67–92.PubMedCrossRefGoogle Scholar
  192. 192.
    Brady J, Kashanchi F. Tat gets the “green” light on transcription initiation. Retrovirology 2005;2:69PubMedCrossRefGoogle Scholar
  193. 193.
    Thomas MC, Chiang CM. The general transcription machinery and general cofactors. Crit Rev Biochem Mol Biol 2006;41:105–178.PubMedCrossRefGoogle Scholar
  194. 194.
    Dang CV, Resar LM, Emison E, et al. Function of the c-Myc oncogenic transcription factor. Exp Cell Res 1999;253:63–77.PubMedCrossRefGoogle Scholar
  195. 195.
    Kuramoto N, Ogita K, Yoneda Y. Gene transcription through Myc family members in eukaryotic cells. Jpn J Pharmacol 1999;80:103–109.PubMedCrossRefGoogle Scholar
  196. 196.
    Grandori C, Cowley SM, James LP, Eisenman RN. The Myc/Max/Mad network and the transcriptional control of cell behavior. Annu Rev Cell Dev Biol 2000;16:653–699.PubMedCrossRefGoogle Scholar
  197. 197.
    Baudino TA, Cleveland JL. The Max network gone mad. Mol Cell Biol 2001;21:691–702.PubMedCrossRefGoogle Scholar
  198. 198.
    Eisenman RN. The Max network: coordinated transcriptional regulation of cell growth and proliferation. Harvey Lect 2000–2001;96:1–32.PubMedGoogle Scholar
  199. 199.
    Luscher B. Function and regulation of the transcription factors of the Myc/Max/Mad network. Gene 2001;277:1–14.PubMedCrossRefGoogle Scholar
  200. 200.
    Zhou ZQ, Hurlin PJ. The interplay between Mad and Myc in proliferation and differentiation. Trends Cell Biol 2001;11:S10–S14.PubMedGoogle Scholar
  201. 201.
    Lee LA, Dang CV. Myc target transcriptomes. Curr Top Microbiol Immunol 2006;302:145–167.PubMedCrossRefGoogle Scholar
  202. 202.
    Nair SK, Burley SK. Structural aspects of interactions within the Myc/Max/Mad network. Curr Top Microbiol Immunol 2006;302:123–143.PubMedCrossRefGoogle Scholar
  203. 203.
    Pirity M, Blanck JK, Schreiber-Agus N. Lessons learned from Myc/Max/Mad knockout mice. Curr Top Microbiol Immunol 2006;302:205–234.PubMedCrossRefGoogle Scholar
  204. 204.
    Rottmann S, Luscher B. The Mad side of the Max network: antagonizing the function of Myc and more. Curr Top Microbiol Immunol 2006;302:63–122.PubMedCrossRefGoogle Scholar
  205. 205.
    Williams LT, Escobedo JA, Fantl WJ, Turck CW, Klippel A. Interactions of growth factor receptors with cytoplasmic signaling molecules. Cold Spring Harb Symp Quant Biol 1991;56:243–250.PubMedGoogle Scholar
  206. 206.
    Fantl WJ, Escobedo JA, Martin GA, et al. Distinct phosphotyrosines on a growth factor receptor bind to specific molecules that mediate different signaling pathways. Cell 1992;69:413–423.PubMedCrossRefGoogle Scholar
  207. 207.
    Hunter T, Lindberg RA, Middlemas DS, Tracy S, van der Geer P. Receptor protein tyrosine kinases and phosphatases. Cold Spring Harb Symp Quant Biol 1992;57:25–41.PubMedGoogle Scholar
  208. 208.
    Fantl WJ, Johnson DE, Williams LT. Signalling by receptor tyrosine kinases. Annu Rev Biochem 1993;62:453–481.PubMedGoogle Scholar
  209. 209.
    Johnson GL, Vaillancourt RR. Sequential protein kinase reactions controlling cell growth and differentiation. Curr Opin Cell Biol 1994;6:230–238.PubMedCrossRefGoogle Scholar
  210. 210.
    van der Geer P, Hunter T, Lindberg RA. Receptor proteintyrosine kinases and their signal transduction pathways. Annu Rev Cell Biol 1994;10:251–337.PubMedCrossRefGoogle Scholar
  211. 211.
    Schlessinger J. Cell signaling by receptor tyrosine kinases. Cell 2000;103:211–225.PubMedCrossRefGoogle Scholar
  212. 212.
    Medinger M, Drevs J. Receptor tyrosine kinases and anticancer therapy. Curr Pharm Des 2005;11:1139–1149.PubMedCrossRefGoogle Scholar
  213. 213.
    Gavi S, Shumay E, Wang HY, Malbon CC. G-proteincoupled receptors and tyrosine kinases: crossroads in cell signaling and regulation. Trends Endocrinol Metab 2006;17:48–54.PubMedCrossRefGoogle Scholar
  214. 214.
    Li E, Hristova K. Role of receptor tyrosine kinase transmembrane domains in cell signaling and human pathologies. Biochemistry 2006;45:6241–6251.PubMedCrossRefGoogle Scholar
  215. 215.
    Perona R. Cell signalling: growth factors and tyrosine kinase receptors. Clin Transl Oncol 2006;8:77–82.PubMedCrossRefGoogle Scholar
  216. 216.
    Tiganis T. Protein tyrosine phosphatases: dephosphorylating the epidermal growth factor receptor. IUBMB Life 2002;53:3–14.PubMedCrossRefGoogle Scholar
  217. 217.
    Jorissen RN, Walker F, Pouliot N, Garrett TP, Ward CW, Burgess AW. Epidermal growth factor receptor: mechanisms of activation and signalling. Exp Cell Res 2003;284:31–53.PubMedCrossRefGoogle Scholar
  218. 218.
    Bazley LA, Gullick WJ. The epidermal growth factor receptor family. Endocr Relat Cancer 2005;12(suppl 1):S17–S27.PubMedCrossRefGoogle Scholar
  219. 219.
    Normanno N, Bianco C, Strizzi L, et al. The ErbB receptors and their ligands in cancer: an overview. Curr Drug Targets 2005;6:243–257.PubMedCrossRefGoogle Scholar
  220. 220.
    Zaczek A, Brandt B, Bielawski KP. The diverse signaling network of EGFR, HER2, HER3 and HER4 tyrosine kinase receptors and the consequences for therapeutic approaches. Histol Histopathol 2005;20:1005–1015.PubMedGoogle Scholar
  221. 221.
    Edwin F, Wiepz GJ, Singh R, Peet CR, Chaturvedi D, Bertics PJ, Patel TB. A historical perspective of the EGF receptor and related systems. Methods Mol Biol 2006;327:1–24.PubMedGoogle Scholar
  222. 222.
    Warren CM, Landgraf R. Signaling through ERBB receptors: multiple layers of diversity and control. Cell Signal 2006;18:923–933.PubMedCrossRefGoogle Scholar
  223. 223.
    Magnuson NS, Beck T, Vahidi H, Hahn H, Smola U, Rapp UR. The Raf-1 serine/threonine protein kinase. Semin Cancer Biol 1994;5:247–253.PubMedGoogle Scholar
  224. 224.
    Williams NG, Roberts TM. Signal transduction pathways involving the Raf proto-oncogene. Cancer Metastasis Rev 1994;13:105–116.PubMedCrossRefGoogle Scholar
  225. 225.
    Burgering BM, Bos JL. Regulation of Ras-mediated signalling: more than one way to skin a cat. Trends Biochem Sci 1995;20:18–22.PubMedCrossRefGoogle Scholar
  226. 226.
    Morrison DK. Mechanisms regulating Raf-1 activity in signal transduction pathways. Mol Reprod Dev 1995;42:507–514.PubMedCrossRefGoogle Scholar
  227. 227.
    Morrison DK, Cutler RE. The complexity of Raf-1 regulation. Curr Opin Cell Biol 1997;9:174–179.PubMedCrossRefGoogle Scholar
  228. 228.
    Dhillon AS, Kolch W. Untying the regulation of the Raf-1 kinase. Arch Biochem Biophys 2002;404:3–9.PubMedCrossRefGoogle Scholar
  229. 229.
    Bernards A, Settleman J. GAP control: regulating the regulators of small GTPases. Trends Cell Biol 2004;14:377–385.PubMedCrossRefGoogle Scholar
  230. 230.
    Bernards A, Settleman J. GAPs in growth factor signalling. Growth Factors 2005;23:143–149.PubMedCrossRefGoogle Scholar
  231. 231.
    Chan A. Teaching resources. Ras-MAPK pathways. Sci STKE 2005;2005(271):tr5.PubMedCrossRefGoogle Scholar
  232. 232.
    Hancock JF, Parton RG. Ras plasma membrane signalling platforms. Biochem J 2005;389 (pt 1):1–11.PubMedCrossRefGoogle Scholar
  233. 233.
    Kranenburg O. The KRAS oncogene: past, present, and future. Biochim Biophys Acta 2005;1756:81–82.PubMedGoogle Scholar
  234. 234.
    McCudden CR, Hains MD, Kimple RJ, Siderovski DP, Willard FS. G-protein signaling: back to the future. Cell Mol Life Sci 2005;62:551–577.PubMedCrossRefGoogle Scholar
  235. 235.
    Mitin N, Rossman KL, Der CJ. Signaling interplay in Ras superfamily function. Curr Biol 2005;15:R563–R574.PubMedCrossRefGoogle Scholar
  236. 236.
    Philips MR. Compartmentalized signalling of Ras. Biochem Soc Trans 2005;33 (pt 4):657–661.PubMedCrossRefGoogle Scholar
  237. 237.
    Wennerberg K, Rossman KL, Der CJ. The Ras superfamily at a glance. J Cell Sci 2005;118 (pt 5):843–846.PubMedCrossRefGoogle Scholar
  238. 238.
    Mor A, Philips MR. Compartmentalized Ras/MAPK signaling. Annu Rev Immunol 2006;24:771–800.PubMedCrossRefGoogle Scholar
  239. 239.
    Bagrodia S, Derijard B, Davis RJ, Cerione RA. Cdc42 and PAK mediated signaling leads to Jun kinase and p38 mitogen-activated protein kinase activation. J Biol Chem 1995;270:27995–27998.PubMedCrossRefGoogle Scholar
  240. 240.
    Pombo CM, Kehrl JH, Sanchez I, et al. Activation of the SAPK pathway by the human STE20 homologue germinal centre kinase. Nature 1995;377:750–754.PubMedCrossRefGoogle Scholar
  241. 241.
    Xia Z, Dickens M, Raingeaud J, Davis RJ, Greenberg ME. Opposing effects of ERK and JNK p38 MAP kinases on apoptosis. Science 1995;270:1326–1331.PubMedCrossRefGoogle Scholar
  242. 242.
    Brown JL, Stowers L, Baer M, Trejo J, Coughlin S, Chant J. Human Ste20 homologue hPAK1 links GTPases to the JNK MAP kinase pathway. Curr Biol 1996;6:598–605.PubMedCrossRefGoogle Scholar
  243. 243.
    Ichijo H, Nishida E, Irie K, et al. Induction of apoptosis by ASK1, a mammalian MAPKKK that activates SAPK/JNK and p38 signaling pathways. Science 1997;275:90–94.PubMedCrossRefGoogle Scholar
  244. 244.
    Wilkinson MG, Millar JB. SAPKs and transcription factors do the nucleocytoplasmic tango. Genes Dev 1998;12:1391–1397.PubMedCrossRefGoogle Scholar
  245. 245.
    Davis RJ. Signal transduction by the JNK group of MAP kinases. Cell 2000;103:239–252.PubMedCrossRefGoogle Scholar
  246. 246.
    Wada T, Penninger JM. Mitogen activated protein kinases in apoptosis regulation. Oncogene 2004;23:2838–2849.PubMedCrossRefGoogle Scholar
  247. 247.
    Bradham C, McClay DR. p38 MAPK in Development and Cancer. Cell Cycle 2006;5:824–828.PubMedGoogle Scholar
  248. 248.
    Gaestel M. MAPKAP kinases—MKs—two’s company, three’s a crowd. Nat Rev Mol Cell Biol 2006;7:120–130PubMedCrossRefGoogle Scholar
  249. 249.
    MacCorkle RA, Tan TH. Mitogen-activated protein kinases in cell-cycle control. Cell Biochem Biophys 2005;43:451–461.PubMedCrossRefGoogle Scholar
  250. 250.
    Shimada K, Nakamura M, Ishida E, Konishi N. Molecular roles of MAP kinases and FADD phosphorylation in prostate cancer. Histol Histopathol 2006;21:415–422.PubMedGoogle Scholar
  251. 251.
    Yoon S, Seger R. The extracellular signal-regulated kinase: multiple substrates regulate diverse cellular functions. Growth Factors 2006;24:21–44.PubMedCrossRefGoogle Scholar
  252. 252.
    Pellegrini S, Dusanter-Fourt I. The structure, regulation and function of the Janus kinases (JAKs) and the signal transducers and activators of transcription (STATs). Eur J Biochem 1997;248:615–633.PubMedCrossRefGoogle Scholar
  253. 253.
    Liu KD, Gaffen SL, Goldsmith MA. JAK/STAT signaling by cytokine receptors. Curr Opin Immunol 1998;10:271–278.PubMedCrossRefGoogle Scholar
  254. 254.
    Shuai K. The STAT family of proteins in cytokine signaling. Prog Biophys Mol Biol 1999;71:405–422.PubMedCrossRefGoogle Scholar
  255. 255.
    Boudny V, Kovarik J. JAK/STAT signaling pathways and cancer. Janus kinases/signal transducers and activators of transcription. Neoplasma 2002;49:349–355.PubMedGoogle Scholar
  256. 256.
    Kisseleva T, Bhattacharya S, Braunstein J, Schindler CW. Signaling through the JAK/STAT pathway, recent advances and future challenges. Gene 2002;285:1–24.PubMedCrossRefGoogle Scholar
  257. 257.
    O’Shea JJ, Gadina M, Schreiber RD. Cytokine signaling in 2002: new surprises in the Jak/Stat pathway. Cell 2002;109(suppl):S121–S131.PubMedCrossRefGoogle Scholar
  258. 258.
    Agaisse H, Perrimon N. The roles of JAK/STAT signaling in Drosophila immune responses. Immunol Rev 2004;198:72–82.PubMedCrossRefGoogle Scholar
  259. 259.
    Rawlings JS, Rosler KM, Harrison DA. The JAK/STAT signaling pathway. J Cell Sci 2004;117 (pt 8):1281–1283.PubMedCrossRefGoogle Scholar
  260. 260.
    Hebenstreit D, Horejs-Hoeck J, Duschl A. JAK/STAT-dependent gene regulation by cytokines. Drug News Perspect 2005;18:243–249.PubMedCrossRefGoogle Scholar
  261. 261.
    Arbouzova NI, Zeidler MP. JAK/STAT signalling in Drosophila: insights into conserved regulatory and cellular functions. Development 2006;133:2605–2616.PubMedCrossRefGoogle Scholar
  262. 262.
    Lutz M, Knaus P. Integration of the TGF-beta pathway into the cellular signalling network. Cell Signal 2002;14:977–988.PubMedCrossRefGoogle Scholar
  263. 263.
    Mehra A, Wrana JL. TGF-beta and the Smad signal transduction pathway. Biochem Cell Biol 2002;80:605–622.PubMedCrossRefGoogle Scholar
  264. 264.
    Cohen MM Jr. TGF beta/Smad signaling system and its pathologic correlates. Am J Med Genet A 2003;116:1–10.CrossRefGoogle Scholar
  265. 265.
    Derynck R, Zhang YE. Smad-dependent and Smad-independent pathways in TGF-beta family signalling. Nature 2003;425:577–584.PubMedCrossRefGoogle Scholar
  266. 266.
    Chin D, Boyle GM, Parsons PG, Coman WB. What is transforming growth factor-beta (TGF-beta)? Br J Plast Surg 2004;57:215–221.PubMedCrossRefGoogle Scholar
  267. 267.
    ten Dijke P, Hill CS. New insights into TGF-beta-Smad signalling. Trends Biochem Sci 2004;29:265–273.PubMedCrossRefGoogle Scholar
  268. 268.
    Feng XH, Derynck R. Specificity and versatility in tgf-beta signaling through Smads. Annu Rev Cell Dev Biol 2005;21:659–693.PubMedCrossRefGoogle Scholar
  269. 269.
    Park SH. Fine tuning and cross-talking of TGF-beta signal by inhibitory Smads. J Biochem Mol Biol 2005;38:9–16.PubMedGoogle Scholar
  270. 270.
    Massague J, Seoane J, Wotton D. Smad transcription factors. Genes Dev 2005;19:2783–2810.PubMedCrossRefGoogle Scholar
  271. 271.
    Massague J, Gomis RR. The logic of TGFbeta signaling. FEBS Lett 2006;580:2811–2820.PubMedCrossRefGoogle Scholar
  272. 272.
    Gumbiner BM. Signal transduction of beta-catenin. Curr Opin Cell Biol 1995;7:634–640.PubMedCrossRefGoogle Scholar
  273. 273.
    Cadigan KM, Nusse R. Wnt signaling: a common theme in animal development. Genes Dev 1997;11:3286–3305.PubMedCrossRefGoogle Scholar
  274. 274.
    Shimizu H, Julius MA, Giarre M, Zheng Z, Brown AM, Kitajewski J. Transformation by Wnt family proteins correlates with regulation of beta-catenin. Cell Growth Differ 1997;8:1349–1358.PubMedGoogle Scholar
  275. 275.
    Boutros M, Mlodzik M. Dishevelled: at the crossroads of divergent intracellular signaling pathways. Mech Dev 1999;83:27–37.PubMedCrossRefGoogle Scholar
  276. 276.
    Miller JR, Hocking AM, Brown JD, Moon RT. Mechanism and function of signal transduction by the Wnt/beta-catenin and Wnt/Ca2+ pathways. Oncogene 1999;18:7860–7872.PubMedCrossRefGoogle Scholar
  277. 277.
    Hinoi T, Yamamoto H, Kishida M, Takada S, Kishida S, Kikuchi A. Complex formation of adenomatous polyposis coli gene product and axin facilitates glycogen synthase kinase-3 beta-dependent phosphorylation of beta-catenin and downregulates beta-catenin. J Biol Chem 2000;275:34399–34406.PubMedCrossRefGoogle Scholar
  278. 278.
    Polakis P. Wnt signaling and cancer. Genes Dev 2000;14:1837–1851.PubMedGoogle Scholar
  279. 279.
    Civenni G, Holbro T, Hynes NE. Wnt1 and Wnt5a induce cyclin D1 expression through ErbB1 transactivation in HC11 mammary epithelial cells. EMBO Rep 2003;4:166–171.PubMedCrossRefGoogle Scholar
  280. 280.
    Doble BW, Woodgett JR. GSK-3: tricks of the trade for a multi-tasking kinase. J Cell Sci 2003;116:1175–1186.PubMedCrossRefGoogle Scholar
  281. 281.
    Lee E, Salic A, Kruger R, Heinrich R, Kirschner MW. The roles of APC and Axin derived from experimental and theoretical analysis of the Wnt pathway. PLoS Biol 2003;1:E10.PubMedCrossRefGoogle Scholar
  282. 282.
    Malliri A, Collard JG. Role of Rho-family proteins in cell adhesion and cancer. Curr Opin Cell Biol 2003;15:583–589.PubMedCrossRefGoogle Scholar
  283. 283.
    van Es JH, Barker N, Clevers H. You Wnt some, you lose some: oncogenes in the Wnt signaling pathway. Curr Opin Genet Dev 2003;13:28–33.PubMedCrossRefGoogle Scholar
  284. 284.
    Veeman MT, Axelrod JD, Moon RT. A second canon. Functions and mechanisms of beta-catenin-independent Wnt signaling. Dev Cell 2003;5:367–377.PubMedCrossRefGoogle Scholar
  285. 285.
    Cong F, Schweizer L, Varmus H. Wnt signals across the plasma membrane to activate the beta-catenin pathway by forming oligomers containing its receptors, Frizzled and LRP. Development 2004;131:5103–5115.PubMedCrossRefGoogle Scholar
  286. 286.
    Logan CY, Nusse R. The Wnt signaling pathway in development and disease. Annu Rev Cell Dev Biol 2004;20:781–810.PubMedCrossRefGoogle Scholar
  287. 287.
    Malbon CC. Frizzleds: new members of the superfamily of G-protein-coupled receptors. Front Biosci 2004;9:1048–1058.PubMedCrossRefGoogle Scholar
  288. 288.
    Nelson WJ, Nusse R. Convergence of Wnt, beta-catenin, and cadherin pathways. Science 2004;303:1483–1487.PubMedCrossRefGoogle Scholar
  289. 289.
    Tolwinski NS, Wieschaus E. Rethinking WNT signaling. Trends Genet 2004;20:177–181.PubMedCrossRefGoogle Scholar
  290. 290.
    Bejsovec A. Wnt pathway activation: new relations and locations. Cell 2005;120:11–14.PubMedGoogle Scholar
  291. 291.
    Gregorieff A, Clevers H. Wnt signaling in the intestinal epithelium: from endoderm to cancer. Genes Dev 2005;19:877–890.PubMedCrossRefGoogle Scholar
  292. 292.
    Malbon CC. Beta-catenin, cancer, and G proteins: not just for frizzleds anymore. Sci STKE 2005;2005(292):pe35.PubMedCrossRefGoogle Scholar
  293. 293.
    Senda T, Shimomura A, Iizuka-Kogo A. Adenomatous polyposis coli (Apc) tumor suppressor gene as a multifunctional gene. Anat Sci Int 2005;80:121–131.PubMedCrossRefGoogle Scholar
  294. 294.
    Takada R, Hijikata H, Kondoh H, Takada S. Analysis of combinatorial effects of Wnts and Frizzleds on beta-catenin/armadillo stabilization and Dishevelled phosphorylation. Genes Cells 2005;10:919–928.PubMedCrossRefGoogle Scholar
  295. 295.
    Cadigan KM, Liu YI. Wnt signaling: complexity at the surface. J Cell Sci 2006;119:395–402.PubMedCrossRefGoogle Scholar
  296. 296.
    Kikuchi A, Kishida S, Yamamoto H. Regulation of Wnt signaling by protein-protein interaction and post-translational modifications. Exp Mol Med 2006;38:1–10.PubMedGoogle Scholar
  297. 297.
    Malbon CC, Wang HY. Dishevelled: a mobile scaffold catalyzing development. Curr Top Dev Biol 2006;72:153–166.PubMedCrossRefGoogle Scholar
  298. 298.
    Pongracz JE, Stockley RA. Wnt signalling in lung development and diseases. Respir Res 2006;7:15.PubMedCrossRefGoogle Scholar
  299. 299.
    Tian Q. Proteomic exploration of the Wnt/beta-catenin pathway. Curr Opin Mol Ther 2006;8:191–197.PubMedGoogle Scholar
  300. 300.
    Franke TF, Kaplan DR, Cantley LC. PI3K: downstream AKTion blocks apoptosis. Cell 1997;88:435–437.PubMedCrossRefGoogle Scholar
  301. 301.
    Wymann MP, Pirola L. Structure and function of phosphoinositide 3-kinases. Biochim Biophys Acta 1998;1436:127–150.PubMedGoogle Scholar
  302. 302.
    Krasilnikov MA. Phosphatidylinositol-3 kinase dependent pathways: the role in control of cell growth, survival, and malignant transformation. Biochemistry (Mosc) 2000;65:59–67.Google Scholar
  303. 303.
    Cantley LC. The phosphoinositide 3-kinase pathway. Science 2002;296:1655–1657.PubMedCrossRefGoogle Scholar
  304. 304.
    Chang F, Lee JT, Navolanic PM, et al. Involvement of PI3K/Akt pathway in cell cycle progression, apoptosis, and neoplastic transformation: a target for cancer chemotherapy. Leukemia 2003;17:590–603.PubMedCrossRefGoogle Scholar
  305. 305.
    Franke TF, Hornik CP, Segev L, Shostak GA, Sugimoto C. PI3K/Akt and apoptosis: size matters. Oncogene 2003;22:8983–8998.PubMedCrossRefGoogle Scholar
  306. 306.
    Liang J, Slingerland JM. Multiple roles of the PI3K/PKB (Akt) pathway in cell cycle progression. Cell Cycle 2003;2:339–345.PubMedGoogle Scholar
  307. 307.
    Asnaghi L, Bruno P, Priulla M, Nicolin A. mTOR: a protein kinase switching between life and death. Pharmacol Res 2004;50:545–549.PubMedCrossRefGoogle Scholar
  308. 308.
    Brader S, Eccles SA. Phosphoinositide 3-kinase signalling pathways in tumor progression, invasion and angiogenesis. Tumori 2004;90:2–8.PubMedGoogle Scholar
  309. 309.
    Fresno Vara JA, Casado E, de Castro J, Cejas P, Belda-Iniesta C, Gonzalez-Baron M. PI3K/Akt signalling pathway and cancer. Cancer Treat Rev 2004;30:193–204.PubMedCrossRefGoogle Scholar
  310. 310.
    Osaki M, Oshimura M, Ito H. PI3K-Akt pathway: its functions and alterations in human cancer. Apoptosis 2004;9:667–676.PubMedCrossRefGoogle Scholar
  311. 311.
    Chen YL, Law PY, Loh HH. Inhibition of PI3K/Akt signaling: an emerging paradigm for targeted cancer therapy. Curr Med Chem Anticancer Agents 2005;5:575–589.PubMedCrossRefGoogle Scholar
  312. 312.
    Hay N. The Akt-mTOR tango and its relevance to cancer. Cancer Cell 2005;8:179–183.PubMedCrossRefGoogle Scholar
  313. 313.
    Kim D, Cheng GZ, Lindsley CW, Yang H, Cheng JQ. Targeting the phosphatidylinositol-3 kinase/Akt pathway for the treatment of cancer. Curr Opin Invest Drugs 2005;6:1250–1258.Google Scholar
  314. 314.
    Morgensztern D, McLeod HL. PI3K/Akt/mTOR pathway as a target for cancer therapy. Anticancer Drugs 2005;16:797–803.PubMedCrossRefGoogle Scholar
  315. 315.
    Henson ES, Gibson SB. Surviving cell death through epidermal growth factor (EGF) signal transduction pathways: implications for cancer therapy. Cell Signal 2006;18:2089–2097.PubMedCrossRefGoogle Scholar
  316. 316.
    Kalderon D. Similarities between the Hedgehog and Wnt signaling pathways. Trends Cell Biol 2002;12:523–531.PubMedCrossRefGoogle Scholar
  317. 317.
    King RW. Roughing up Smoothened: chemical modulators of hedgehog signaling. J Biol 2002;1:8.PubMedCrossRefGoogle Scholar
  318. 318.
    Mullor JL, Sanchez P, Altaba AR. Pathways and consequences: hedgehog signaling in human disease. Trends Cell Biol 2002;12:562–569.PubMedCrossRefGoogle Scholar
  319. 319.
    Cohen MM Jr. The hedgehog signaling network. Am J Med Genet A 2003;123:5–28.CrossRefGoogle Scholar
  320. 320.
    McMahon AP, Ingham PW, Tabin CJ. Developmental roles and clinical significance of hedgehog signaling. Curr Top Dev Biol 2003;53:1–114.PubMedCrossRefGoogle Scholar
  321. 321.
    Nusse R. Wnts and Hedgehogs: lipid-modified proteins and similarities in signaling mechanisms at the cell surface. Development 2003;130:5297–5305.PubMedCrossRefGoogle Scholar
  322. 322.
    Wetmore C. Sonic hedgehog in normal and neoplastic proliferation: insight gained from human tumors and animal models. Curr Opin Genet Dev 2003;13:34–42.PubMedCrossRefGoogle Scholar
  323. 323.
    Lum L, Beachy PA. The Hedgehog response network: sensors, switches, and routers. Science 2004;304:1755–1759.PubMedCrossRefGoogle Scholar
  324. 324.
    Ogden SK, Ascano M Jr, Stegman MA, Robbins DJ. Regulation of Hedgehog signaling: a complex story. Biochem Pharmacol 2004;67:805–814.PubMedCrossRefGoogle Scholar
  325. 325.
    Yu TC, Miller SJ. The hedgehog pathway: revisited. Dermatol Surg 2004;30:583–584.PubMedCrossRefGoogle Scholar
  326. 326.
    Hooper JE, Scott MP. Communicating with Hedgehogs. Nat Rev Mol Cell Biol 2005;6:306–317.PubMedCrossRefGoogle Scholar
  327. 327.
    Neumann CJ. Hedgehogs as negative regulators of the cell cycle. Cell Cycle 2005;4:1139–1140.PubMedGoogle Scholar
  328. 328.
    Nieuwenhuis E, Hui CC. Hedgehog signaling and congenital malformations. Clin Genet 2005;67:193–208.PubMedCrossRefGoogle Scholar
  329. 329.
    Allenspach EJ, Maillard I, Aster JC, Pear WS. Notch signaling in cancer. Cancer Biol Ther 2002;1:466–476.PubMedGoogle Scholar
  330. 330.
    Baron M, Aslam H, Flasza M, et al. Multiple levels of Notch signal regulation (review). Mol Membr Biol 2002;19:27–38.PubMedCrossRefGoogle Scholar
  331. 331.
    Baron M. An overview of the Notch signalling pathway. Semin Cell Dev Biol 2003;14:113–119.PubMedCrossRefGoogle Scholar
  332. 332.
    Collins BJ, Kleeberger W, Ball DW. Notch in lung development and lung cancer. Semin Cancer Biol 2004;14:357–364.PubMedCrossRefGoogle Scholar
  333. 333.
    Hansson EM, Lendahl U, Chapman G. Notch signaling in development and disease. Semin Cancer Biol 2004;14:320–328.PubMedCrossRefGoogle Scholar
  334. 334.
    Kadesch T. Notch signaling: the demise of elegant simplicity. Curr Opin Genet Dev 2004;14:506–512.PubMedCrossRefGoogle Scholar
  335. 335.
    Sjolund J, Manetopoulos C, Stockhausen MT, Axelson H. The Notch pathway in cancer: differentiation gone awry. Eur J Cancer 2005;41:2620–2629.PubMedCrossRefGoogle Scholar
  336. 336.
    Bianchi S, Dotti MT, Federico A. Physiology and pathology of notch signalling system. J Cell Physiol 2006;207:300–308.PubMedCrossRefGoogle Scholar
  337. 337.
    Wilson A, Radtke F. Multiple functions of Notch signaling in self-renewing organs and cancer. FEBS Lett 2006;580:2860–2868.PubMedCrossRefGoogle Scholar
  338. 338.
    Abraham RT. Cell cycle checkpoint signaling through the ATM and ATR kinases. Genes Dev 2001;15:2177–2196.PubMedCrossRefGoogle Scholar
  339. 339.
    Laval J, Jurado J, Saparbaev M, Sidorkina O. Antimutagenic role of base-excision repair enzymes upon free radical-induced DNA damage. Mutat Res 1998;402:93–102.PubMedGoogle Scholar
  340. 340.
    Boiteux S, Radicella JP. Base excision repair of 8-hydroxyguanine protects DNA from endogenous oxidative stress. Biochimie 1999;81:59–67.PubMedCrossRefGoogle Scholar
  341. 341.
    Boiteux S, Radicella JP. The human OGG1 gene: structure, functions, and its implication in the process of carcinogenesis. Arch Biochem Biophys 2000;377:1–8.PubMedCrossRefGoogle Scholar
  342. 342.
    Boiteux S, le Page F. Repair of 8-oxoguanine and Ogg1-incised apurinic sites in a CHO cell line. Prog Nucleic Acid Res Mol Biol 2001;68:95–105.PubMedCrossRefGoogle Scholar
  343. 343.
    Hazra TK, Hill JW, Izumi T, Mitra S. Multiple DNA glycosylases for repair of 8-oxoguanine and their potential in vivo functions. Prog Nucleic Acid Res Mol Biol 2001;68:193–205.PubMedCrossRefGoogle Scholar
  344. 344.
    Ide H. DNA substrates containing defined oxidative base lesions and their application to study substrate specificities of base excision repair enzymes. Prog Nucleic Acid Res Mol Biol 2001;68:207–221.PubMedCrossRefGoogle Scholar
  345. 345.
    Nakabeppu Y. Regulation of intracellular localization of human MTH1, OGG1, and MYH proteins for repair of oxidative DNA damage. Prog Nucleic Acid Res Mol Biol 2001;68:75–94.PubMedCrossRefGoogle Scholar
  346. 346.
    Nishimura S. Mammalian Ogg1/Mmh gene plays a major role in repair of the 8-hydroxyguanine lesion in DNA. Prog Nucleic Acid Res Mol Biol 2001;68:107–123.PubMedCrossRefGoogle Scholar
  347. 347.
    Shinmura K, Yokota J. The OGG1 gene encodes a repair enzyme for oxidatively damaged DNA and is involved in human carcinogenesis. Antioxid Redox Signal 2001;3:597–609.PubMedCrossRefGoogle Scholar
  348. 348.
    Nishimura S. Involvement of mammalian OGG1(MMH) in excision of the 8-hydroxyguanine residue in DNA. Free Radic Biol Med 2002;32:813–821.PubMedCrossRefGoogle Scholar
  349. 349.
    Fortini P, Pascucci B, Parlanti E, D’Errico M, Simonelli V, Dogliotti E. 8-Oxoguanine DNA damage: at the crossroad of alternative repair pathways. Mutat Res 2003;531:127–139.PubMedGoogle Scholar
  350. 350.
    Nakabeppu Y, Tsuchimoto D, Furuichi M, Sakumi K. The defense mechanisms in mammalian cells against oxidative damage in nucleic acids and their involvement in the suppression of mutagenesis and cell death. Free Radic Res 2004;38:423–429.PubMedCrossRefGoogle Scholar
  351. 351.
    Thompson LH. Properties and applications of human DNA repair genes. Mutat Res 1991;247:213–219.PubMedGoogle Scholar
  352. 352.
    Tomkinson AE, Levin DS. Mammalian DNA ligases. Bioessays 1997;19:893–901.PubMedCrossRefGoogle Scholar
  353. 353.
    Tomkinson AE, Mackey ZB. Structure and function of mammalian DNA ligases. Mutat Res 1998;407:1–9.PubMedGoogle Scholar
  354. 354.
    Thompson LH, West MG. XRCC1 keeps DNA from getting stranded. Mutat Res 2000;459:1–18.PubMedGoogle Scholar
  355. 355.
    Tomkinson AE, Chen L, Dong Z, et al. Completion of base excision repair by mammalian DNA ligases. Prog Nucleic Acid Res Mol Biol 2001;68:151–164.PubMedCrossRefGoogle Scholar
  356. 356.
    Caldecott KW. XRCC1 and DNA strand break repair. DNA Repair (Amst) 2003;2:955–969.CrossRefGoogle Scholar
  357. 357.
    Dianov GL, Sleeth KM, Dianova II, Allinson SL. Repair of abasic sites in DNA. Mutat Res 2003;531:157–163.PubMedGoogle Scholar
  358. 358.
    Malanga M, Althaus FR. The role of poly(ADP-ribose) in the DNA damage signaling network. Biochem Cell Biol 2005;83:354–364.PubMedCrossRefGoogle Scholar
  359. 359.
    Williams RS, Bernstein N, Lee MS, et al. Structural basis for phosphorylation-dependent signaling in the DNAdamage response. Biochem Cell Biol 2005;83:721–727.PubMedCrossRefGoogle Scholar
  360. 360.
    Johnson RT, Squires S. The XPD complementation group. Insights into xeroderma pigmentosum, Cockayne’s syndrome and trichothiodystrophy. Mutat Res 1992;273:97–118.PubMedGoogle Scholar
  361. 361.
    Wood RD. DNA damage recognition during nucleotide excision repair in mammalian cells. Biochimie 1999;81:39–44.PubMedCrossRefGoogle Scholar
  362. 362.
    van Brabant AJ, Stan R, Ellis NA. DNA helicases, genomic instability, and human genetic disease. Annu Rev Genomics Hum Genet 2000;1:409–459.PubMedCrossRefGoogle Scholar
  363. 363.
    Berneburg M, Lehmann AR. Xeroderma pigmentosum and related disorders: defects in DNA repair and transcription. Adv Genet 2001;43:71–102.PubMedCrossRefGoogle Scholar
  364. 364.
    Bernstein C, Bernstein H, Payne CM, Garewal H. DNA repair/pro-apoptotic dual-role proteins in five major DNA repair pathways: fail-safe protection against carcinogenesis. Mutat Res 2002;511:145–178.PubMedCrossRefGoogle Scholar
  365. 365.
    Chen J, Suter B. Xpd, a structural bridge and a functional link. Cell Cycle 2003;2:503–506.PubMedGoogle Scholar
  366. 366.
    Lehmann AR. DNA repair-deficient diseases, xeroderma pigmentosum, Cockayne syndrome and trichothiodystrophy. Biochimie 2003;85:1101–1111.PubMedCrossRefGoogle Scholar
  367. 367.
    Eshleman JR, Markowitz SD. Mismatch repair defects in human carcinogenesis. Hum Mol Genet 1996;5(spec. No.): 1489–1494.PubMedGoogle Scholar
  368. 368.
    MacPhee DG. Mismatch repair as a source of mutations in non-dividing cells. Genetica 1996;97:183–195.PubMedCrossRefGoogle Scholar
  369. 369.
    Arnheim N, Shibata D. DNA mismatch repair in mammals: role in disease and meiosis. Curr Opin Genet Dev 1997;7:364–370.PubMedCrossRefGoogle Scholar
  370. 370.
    Peltomaki P. DNA mismatch repair gene mutations in human cancer. Environ Health Perspect 1997;105(suppl 4):775–780.PubMedCrossRefGoogle Scholar
  371. 371.
    Prolla TA. DNA mismatch repair and cancer. Curr Opin Cell Biol 1998;10:311–316.PubMedCrossRefGoogle Scholar
  372. 372.
    Kirkpatrick DT. Roles of the DNA mismatch repair and nucleotide excision repair proteins during meiosis. Cell Mol Life Sci 1999;55:437–449.PubMedCrossRefGoogle Scholar
  373. 373.
    Kolodner RD, Marsischky GT. Eukaryotic DNA mismatch repair. Curr Opin Genet Dev 1999;9:89–96.PubMedCrossRefGoogle Scholar
  374. 374.
    Harfe BD, Jinks-Robertson S. Mismatch repair proteins and mitotic genome stability. Mutat Res 2000;451:151–167.PubMedGoogle Scholar
  375. 375.
    Harfe BD, Jinks-Robertson S. DNA mismatch repair and genetic instability. Annu Rev Genet 2000;34:359–399.PubMedCrossRefGoogle Scholar
  376. 376.
    Taverna P, Liu L, Hanson AJ, Monks A, Gerson SL. Characterization of MLH1 and MSH2 DNA mismatch repair proteins in cell lines of the NCI anticancer drug screen. Cancer Chemother Pharmacol 2000;46:507–516.PubMedCrossRefGoogle Scholar
  377. 377.
    Aquilina G, Bignami M. Mismatch repair in correction of replication errors and processing of DNA damage. J Cell Physiol 2001;187:145–154.PubMedCrossRefGoogle Scholar
  378. 378.
    Bellacosa A. Functional interactions and signaling properties of mammalian DNA mismatch repair proteins. Cell Death Differ 2001;8:1076–1092.PubMedCrossRefGoogle Scholar
  379. 379.
    Hsieh P. Molecular mechanisms of DNA mismatch repair. Mutat Res 2001;486:71–87.PubMedGoogle Scholar
  380. 380.
    Marti TM, Kunz C, Fleck O. DNA mismatch repair and mutation avoidance pathways. J Cell Physiol 2002;191:28–41.PubMedCrossRefGoogle Scholar
  381. 381.
    Schofield MJ, Hsieh P. DNA mismatch repair: molecular mechanisms and biological function. Annu Rev Microbiol 2003;57:579–608.PubMedCrossRefGoogle Scholar
  382. 382.
    Isaacs RJ, Spielmann HP. A model for initial DNA lesion recognition by NER and MMR based on local conformational flexibility. DNA Repair (Amst) 2004;3:455–464.CrossRefGoogle Scholar
  383. 383.
    Stojic L, Brun R, Jiricny J. Mismatch repair and DNA damage signalling. DNA Repair (Amst) 2004;3:1091–1101.CrossRefGoogle Scholar
  384. 384.
    Surtees JA, Argueso JL, Alani E. Mismatch repair proteins: key regulators of genetic recombination. Cytogenet Genome Res 2004;107:146–159.PubMedCrossRefGoogle Scholar
  385. 385.
    Kunkel TA, Erie DA. DNA mismatch repair. Annu Rev Biochem 2005;74:681–710.PubMedCrossRefGoogle Scholar
  386. 386.
    Skinner AM, Turker MS. Oxidative mutagenesis, mismatch repair, and aging. Sci Aging Knowledge Environ 2005;2005(9):re3.PubMedCrossRefGoogle Scholar
  387. 387.
    Jiricny J. The multifaceted mismatch-repair system. Nat Rev Mol Cell Biol 2006;7:335–346.PubMedCrossRefGoogle Scholar
  388. 388.
    Jun SH, Kim TG, Ban C. DNA mismatch repair system. Classical and fresh roles. FEBS J 2006;273:1609–1619.PubMedCrossRefGoogle Scholar
  389. 389.
    Montesano R, Becker R, Hall J, et al. Repair of DNA alkylation adducts in mammalian cells. Biochimie 1985;67:919–928.PubMedCrossRefGoogle Scholar
  390. 390.
    D’Incalci M, Citti L, Taverna P, Catapano CV. Importance of the DNA repair enzyme O6-alkyl guanine alkyltransferase (AT) in cancer chemotherapy. Cancer Treat Rev 1988;15:279–292.PubMedCrossRefGoogle Scholar
  391. 391.
    Pegg AE. Mammalian O6-alkylguanine-DNA alkyltransferase: regulation and importance in response to alkylating carcinogenic and therapeutic agents. Cancer Res 1990;50:6119–6129.PubMedGoogle Scholar
  392. 392.
    Erickson LC. The role of O-6 methylguanine DNA methyltransferase (MGMT) in drug resistance and strategies for its inhibition. Semin Cancer Biol 1991;2:257–265.PubMedGoogle Scholar
  393. 393.
    Pegg AE, Byers TL. Repair of DNA containing O6-alkylguanine. FASEB J 1992;6:2302–2310.PubMedGoogle Scholar
  394. 394.
    Koc ON, Phillips WP Jr, Lee K, et al. Role of DNA repair in resistance to drugs that alkylate O6 of guanine. Cancer Treat Res 1996;87:123–146.PubMedGoogle Scholar
  395. 395.
    Sekiguchi M, Nakabeppu Y, Sakumi K, Tuzuki T. DNArepair methyltransferase as a molecular device for preventing mutation and cancer. J Cancer Res Clin Oncol 1996;122:199–206.PubMedCrossRefGoogle Scholar
  396. 396.
    Pieper RO. Understanding and manipulating O6-methylguanine-DNA methyltransferase expression. Pharmacol Ther 1997;74:285–297.PubMedCrossRefGoogle Scholar
  397. 397.
    Sekiguchi M, Sakumi K. Roles of DNA repair methyltransferase in mutagenesis and carcinogenesis. Jpn J Hum Genet 1997;42:389–399.PubMedCrossRefGoogle Scholar
  398. 398.
    Yu Z, Chen J, Ford BN, Brackley ME, Glickman BW. Human DNA repair systems: an overview. Environ Mol Mutagen 1999;33:3–20.PubMedCrossRefGoogle Scholar
  399. 399.
    Kaina B, Ochs K, Grosch S, et al. BER, MGMT, and MMR in defense against alkylation-induced genotoxicity and apoptosis. Prog Nucleic Acid Res Mol Biol 2001;68:41–54.PubMedCrossRefGoogle Scholar
  400. 400.
    Gerson SL. Clinical relevance of MGMT in the treatment of cancer. J Clin Oncol 2002;20:2388–2399.PubMedCrossRefGoogle Scholar
  401. 401.
    Margison GP, Santibanez-Koref MF. O6-alkylguanine-DNA alkyltransferase: role in carcinogenesis and chemotherapy. Bioessays 2002;24:255–266.PubMedCrossRefGoogle Scholar
  402. 402.
    Drablos F, Feyzi E, Aas PA, et al. Alkylation damage in DNA and RNA—repair mechanisms and medical significance. DNA Repair (Amst) 2004;3:1389–1407.CrossRefGoogle Scholar
  403. 403.
    Gerson SL. MGMT: its role in cancer aetiology and cancer therapeutics. Nat Rev Cancer 2004;4:296–307.PubMedCrossRefGoogle Scholar
  404. 404.
    Gollin SM. Mechanisms leading to chromosomal instability. Semin Cancer Biol 2005;15:33–42.PubMedCrossRefGoogle Scholar
  405. 405.
    Varon R, Vissinga C, Platzer M, et al. Nibrin, a novel DNA double-strand break repair protein, is mutated in Nijmegen breakage syndrome. Cell 1998;93:467–476.PubMedCrossRefGoogle Scholar
  406. 406.
    Dasika GK, Lin SC, Zhao S, et al. DNA damage-induced cell cycle checkpoints and DNA strand break repair in development and tumorigenesis. Oncogene 1999;18:7883–7899.PubMedCrossRefGoogle Scholar
  407. 407.
    Lim DS, Kim ST, Xu B, et al. ATM phosphorylates p95/NBS1 in an S-phase checkpoint pathway. Nature 2000;404:613–617.PubMedCrossRefGoogle Scholar
  408. 408.
    Buscemi G, Savio C, Zannini L, et al. CHK2 activation dependence on NBS1 after DNA damage. Mol Cell Biol 2001;21:5214–5222.PubMedCrossRefGoogle Scholar
  409. 409.
    Falck J, Mailand N, Syljuasen RG, et al. The ATM-CHK2-CDC25a checkpoint pathway guards against radioresistant DNA synthesis. Nature 2001;410:842–847.PubMedCrossRefGoogle Scholar
  410. 410.
    Xu B, Kim S, Kastan MB. Involvement of BRCA1 in S-phase and G(2)-phase checkpoints after ionizing irradiation. Mol Cell Biol 2001;21:3445–3450.PubMedCrossRefGoogle Scholar
  411. 411.
    D’Amours D, Jackson SP. The MRE11 complex: at the crossroads of DNA repair and checkpoint signalling. Nat Rev Mol Cell Biol 2002;3:317–327.PubMedCrossRefGoogle Scholar
  412. 412.
    Girard PM, Riballo E, Begg AC, et al. NBS1 promotes ATM dependent phosphorylation events including those required for G1/S arrest. Oncogene 2002;21:4191–4199.PubMedCrossRefGoogle Scholar
  413. 413.
    Huang J, Dynan WS. Reconstitution of the mammalian DNA double-strand break end-joining reaction reveals a requirement for an MRE11/RAD50/NBS1-containing fraction. Nucleic Acids Res 2002;30:667–674.PubMedCrossRefGoogle Scholar
  414. 414.
    Nakanishi K, Taniguchi T, Ranganathan V, et al. Interaction of FANCD2 and NBS1 in the DNA damage response. Nat Cell Biol 2002;4:913–920.PubMedCrossRefGoogle Scholar
  415. 415.
    Osborn AJ, Elledge SJ, Zou L. Checking on the fork: the DNA-replication stress-response pathway. Trends Cell Biol 2002;12:509–516.PubMedCrossRefGoogle Scholar
  416. 416.
    Tauchi H, Kobayashi J, Morishima K, et al. NBS1 is essential for DNA repair by homologous recombination in higher vertebrate cells. Nature 2002;420:93–98.PubMedCrossRefGoogle Scholar
  417. 417.
    Tauchi H, Matsuura S, Kobayashi J, et al. Nijmegen breakage syndrome gene, NBS1, and molecular links to factors for genome stability. Oncogene 2002;21:8967–8980.PubMedCrossRefGoogle Scholar
  418. 418.
    Yazdi PT, Wang Y, Zhao S, et al. SMC1 is a downstream effector in the ATM/NBS1 branch of the human S-phase checkpoint. Genes Dev 2002;16:571–582.PubMedCrossRefGoogle Scholar
  419. 419.
    Carson CT, Schwartz RA, Stracker TH, et al. The MRE11 complex is required for ATM activation and the G2/M checkpoint. Embo J 2003;22:6610–6620.PubMedCrossRefGoogle Scholar
  420. 420.
    Goodarzi AA, Block WD, Lees-Miller SP. The role of ATM and ATR in DNA damage-induced cell cycle control. Prog Cell Cycle Res 2003;5:393–411.PubMedGoogle Scholar
  421. 421.
    Shiloh Y. ATM and related protein kinases: safeguarding genome integrity. Nat Rev Cancer 2003;3:155–168.PubMedCrossRefGoogle Scholar
  422. 422.
    Shiloh Y. ATM: ready, set, go. Cell Cycle 2003;2:116–117.PubMedGoogle Scholar
  423. 423.
    Uziel T, Lerenthal Y, Moyal L, et al. Requirement of the MRN complex for ATM activation by DNA damage. Embo J 2003;22:5612–5621.PubMedCrossRefGoogle Scholar
  424. 424.
    Abraham RT. PI 3-kinase related kinases: “big” players in stress-induced signaling pathways. DNA Repair (Amst) 2004;3:883–887.CrossRefGoogle Scholar
  425. 425.
    Lee JH, Paull TT. Direct activation of the ATM protein kinase by the MRE11/RAD50/NBS1 complex. Science 2004;304:93–96.PubMedCrossRefGoogle Scholar
  426. 426.
    Matsuura S, Kobayashi J, Tauchi H, Komatsu K. Nijmegen breakage syndrome and DNA double strand break repair by NBS1 complex. Adv Biophys 2004;38:65–80.CrossRefGoogle Scholar
  427. 427.
    Lavin MF, Birrell G, Chen P, et al. ATM signaling and genomic stability in response to DNA damage. Mutat Res 2005;569:123–132.PubMedGoogle Scholar
  428. 428.
    Lee JH, Paull TT. ATM activation by DNA double-strand breaks through the MRE11-RAD50-NBS1 complex. Science 2005;308:551–554.PubMedCrossRefGoogle Scholar
  429. 429.
    O’Driscoll M, Jeggo PA. The role of double-strand break repair—insights from human genetics. Nat Rev Genet 2006;7:45–54.PubMedCrossRefGoogle Scholar
  430. 430.
    Zhang Y, Zhou J, Lim CU. The role of NBS1 in DNA double strand break repair, telomere stability, and cell cycle checkpoint control. Cell Res 2006;16:45–54.PubMedCrossRefGoogle Scholar
  431. 431.
    Blow JJ, Laskey RA. A role for the nuclear envelope in controlling DNA replication within the cell cycle. Nature 1988;332:546–548.PubMedCrossRefGoogle Scholar
  432. 432.
    Nishitani H, Nurse P. p65cdc18 plays a major role controlling the initiation of DNA replication in fission yeast. Cell 1995;83:397–405.PubMedCrossRefGoogle Scholar
  433. 433.
    Cocker JH, Piatti S, Santocanale C, Nasmyth K, Diffley JF. An essential role for the Cdc6 protein in forming the pre-replicative complexes of budding yeast. Nature 1996;379:180–182.PubMedCrossRefGoogle Scholar
  434. 434.
    Coleman TR, Carpenter PB, Dunphy WG. The Xenopus Cdc6 protein is essential for the initiation of a single round of DNA replication in cell-free extracts. Cell 1996;87:53–63.PubMedCrossRefGoogle Scholar
  435. 435.
    Muzi Falconi M, Brown GW, Kelly TJ. cdc18+ regulates initiation of DNA replication in Schizosaccharomyces pombe. Proc Natl Acad Sci USA 1996;93:1566–1570.PubMedCrossRefGoogle Scholar
  436. 436.
    Owens JC, Detweiler CS, Li JJ. CDC45 is required in conjunction with CDC7/DBF4 to trigger the initiation of DNA replication. Proc Natl Acad Sci 1997;94:12521–12526.PubMedCrossRefGoogle Scholar
  437. 437.
    Tanaka T, Knapp D, Nasmyth K. Loading of an Mcm protein onto DNA replication origins is regulated by Cdc6p and CDKs. Cell 1997;90:649–660.PubMedCrossRefGoogle Scholar
  438. 438.
    Williams RS, Shohet RV, Stillman B. A human protein related to yeast Cdc6p. Proc Natl Acad Sci USA 1997;94:142–147.PubMedCrossRefGoogle Scholar
  439. 439.
    Hateboer G, Wobst A, Petersen BO, et al. Cell cycle-regulated expression of mammalian CDC6 is dependent on E2F. Mol Cell Biol 1998;18:6679–6697.PubMedGoogle Scholar
  440. 440.
    Hua XH, Newport J. Identification of a preinitiation step in DNA replication that is independent of origin recognition complex and cdc6, but dependent on cdk2. J Cell Biol 1998;140:271–281.PubMedCrossRefGoogle Scholar
  441. 441.
    Leatherwood J. Emerging mechanisms of eukaryotic DNA replication initiation. Curr Opin Cell Biol 1998;10:742–748.PubMedCrossRefGoogle Scholar
  442. 442.
    McGarry TJ, Kirschner MW. Geminin, an inhibitor of DNA replication, is degraded during mitosis. Cell 1998;93:1043–1053.PubMedCrossRefGoogle Scholar
  443. 443.
    Mimura S, Takisawa H. Xenopus Cdc45-dependent loading of DNA polymerase onto chromatin under the control of S-phase Cdk. EMBO J 1998;17:5699–5707.PubMedCrossRefGoogle Scholar
  444. 444.
    Saha P, Chen J, Thome KC, et al. Human CDC6/Cdc18 associates with Orc1 and cyclin-cdk and is selectively eliminated from the nucleus at the onset of S phase. Mol Cell Biol 1998;18:2758–27567.PubMedGoogle Scholar
  445. 445.
    Williams GH, Romanowski P, Morris L, et al. Improved cervical smear assessment using antibodies against proteins that regulate DNA replication. Proc Natl Acad Sci USA 1998;95:14932–14937.PubMedCrossRefGoogle Scholar
  446. 446.
    Yan Z, DeGregori J, Shohet R, et al. Cdc6 is regulated by E2F and is essential for DNA replication in mammalian cells. Proc Natl Acad Sci USA 1998;95:3603–3608.PubMedCrossRefGoogle Scholar
  447. 447.
    Zou L, Stillman B. Formation of a preinitiation complex by S-phase cyclin CDK-dependent loading of Cdc45p onto chromatin. Science 1998;280:593–596.PubMedCrossRefGoogle Scholar
  448. 448.
    Donaldson AD, Blow JJ. The regulation of replication origin activation. Curr Opin Genet Dev 1999;9:62–68.PubMedCrossRefGoogle Scholar
  449. 449.
    Fujita M, Yamada C, Goto H, et al. Cell cycle regulation of human CDC6 protein. Intracellular localization, interaction with the human mcm complex, and CDC2 kinase-mediated hyperphosphorylation. J Biol Chem 1999;274:25927–25932.PubMedCrossRefGoogle Scholar
  450. 450.
    Masai H, Sato N, Takeda T, Arai K. CDC7 kinase complex as a molecular switch for DNA replication. Front Biosci 1999;4:D834–D840.PubMedCrossRefGoogle Scholar
  451. 451.
    Petersen BO, Lukas J, Sorensen CS, Bartek J, Helin K. Phosphorylation of mammalian CDC6 by cyclin A/CDK2 regulates its subcellular localization. EMBO J 1999;18:396–410.PubMedCrossRefGoogle Scholar
  452. 452.
    Coverley D, Pelizon C, Trewick S, Laskey RA. Chromatin-bound Cdc6 persists in S and G2 phases in human cells, while soluble Cdc6 is destroyed in a cyclin A-cdk2 dependent process. J Cell Sci 2000;113:1929–1938.PubMedGoogle Scholar
  453. 453.
    Homesley L, Lei M, Kawasaki Y, Sawyer S, Christensen T, Tye BK. Mcm10 and the MCM2-7 complex interact to initiate DNA synthesis and to release replication factors from origins. Genes Dev 2000;14:913–926.PubMedGoogle Scholar
  454. 454.
    Maiorano D, Moreau J, Mechali M. XCDT1 is required for the assembly of pre-replicative complexes in Xenopus laevis. Nature 2000;404:622–625.PubMedCrossRefGoogle Scholar
  455. 455.
    Nishitani H, Lygerou Z, Nishimoto T, Nurse P. The Cdt1 protein is required to license DNA for replication in fission yeast. Nature 2000;404:625–628.PubMedCrossRefGoogle Scholar
  456. 456.
    Petersen BO, Wagener C, Marinoni F, et al. Cell cycle-and cell growth-regulated proteolysis of mammalian CDC6 is dependent on APC-CDH1. Genes Dev 2000;14:2330–2343.PubMedCrossRefGoogle Scholar
  457. 457.
    Takisawa H, Mimura S, Kubota Y. Eukaryotic DNA replication: from pre-replication complex to initiation complex. Curr Opin Cell Biol 2000;12:690–696.PubMedCrossRefGoogle Scholar
  458. 458.
    Whittaker AJ, Royzman I, Orr-Weaver TL. Drosophila double parked: a conserved, essential replication protein that colocalizes with the origin recognition complex and links DNA replication with mitosis and the down-regulation of S phase transcripts. Genes Dev 2000;14:1765–1776.PubMedGoogle Scholar
  459. 459.
    Wohlschlegel JA, Dwyer BT, Dhar SK, Cvetic C, Walter JC, Dutta A. Inhibition of eukaryotic DNA replication by geminin binding to Cdt1. Science 2000;290:2309–2312.PubMedCrossRefGoogle Scholar
  460. 460.
    Diffley JF. DNA replication: building the perfect switch. Curr Biol 2001;11:R367–R370.PubMedCrossRefGoogle Scholar
  461. 461.
    Lei M, Tye BK. Initiating DNA synthesis: from recruiting to activating the MCM complex. J Cell Sci 2001;114:1447–1454.PubMedGoogle Scholar
  462. 462.
    Nishitani H, Taraviras S, Lygerou Z, Nishimoto T. The human licensing factor for DNA replication Cdt1 accumulates in G1 and is destabilized after initiation of S-phase. J Biol Chem 2001;276:44905–44911.PubMedCrossRefGoogle Scholar
  463. 463.
    Tada S, Li A, Maiorano D, Mechali M, Blow JJ. Repression of origin assembly in metaphase depends on inhibition of RLF-B/Cdt1 by geminin. Nat Cell Biol 2001;3:107–113.PubMedCrossRefGoogle Scholar
  464. 464.
    Yanow SK, Lygerou Z, Nurse P. Expression of Cdc18/Cdc6 and Cdt1 during G2 phase induces initiation of DNA replication. EMBO J 2001;20:4648–4656.PubMedCrossRefGoogle Scholar
  465. 465.
    Arentson E, Faloon P, Seo J, et al. Oncogenic potential of the DNA replication licensing protein CDT1. Oncogene 2002;21:1150–1158.PubMedCrossRefGoogle Scholar
  466. 466.
    Bell SP, Dutta A. DNA replication in eukaryotic cells. Annu Rev Biochem 2002;71:333–374.PubMedCrossRefGoogle Scholar
  467. 467.
    Bermejo R, Vilaboa N, Cales C. Regulation of CDC6, geminin, and CDT1 in human cells that undergo polyploidization. Mol Biol Cell 2002;13:3989–4000.PubMedCrossRefGoogle Scholar
  468. 468.
    Bonds L, Baker P, Gup C, Shroyer KR. Immunohistochemical localization of cdc6 in squamous and glandular neoplasia of the uterine cervix. Arch Pathol Lab Med 2002;26:1164–1168.Google Scholar
  469. 469.
    Mihaylov IS, Kondo T, Jones L, et al. Control of DNA replication and chromosome ploidy by geminin and cyclin A. Mol Cell Biol 2002;22:1868–1880.PubMedCrossRefGoogle Scholar
  470. 470.
    Nishitani H, Lygerou Z. Control of DNA replication licensing in a cell cycle. Genes Cells 2002;7:523–534.PubMedCrossRefGoogle Scholar
  471. 471.
    Robles LD, Frost AR, Davila M, Hutson AD, Grizzle WE, Chakrabarti R. Down-regulation of Cdc6, a cell cycle regulatory gene, in prostate cancer. J Biol Chem 2002;277:25431–25438.PubMedCrossRefGoogle Scholar
  472. 472.
    Shreeram S, Sparks A, Lane DP, Blow JJ. Cell typespecific responses of human cells to inhibition of replication licensing. Oncogene 2002;21:6624–6632.PubMedCrossRefGoogle Scholar
  473. 473.
    Wohlschlegel JA, Kutok JL, Weng AP, Dutta A. Expression of geminin as a marker of cell proliferation in normal tissues and malignancies. Am J Pathol 2002;161:267–273.PubMedGoogle Scholar
  474. 474.
    Li X, Zhao Q, Liao R, Sun P, Wu X. The SCF(Skp2) ubiquitin ligase complex interacts with the human replication licensing factor Cdt1 and regulates Cdt1 degradation. J Biol Chem 2003;278:30854–30858.PubMedCrossRefGoogle Scholar
  475. 475.
    Vaziri C, Saxena S, Jeon Y, et al. A p53-dependent checkpoint pathway prevents rereplication. Mol Cell 2003;11:997–1008.PubMedCrossRefGoogle Scholar
  476. 476.
    Yoshida K, Inoue I. Regulation of Geminin and Cdt1 expression by E2F transcription factors. Oncogene 2004;23:3802–3812.PubMedCrossRefGoogle Scholar
  477. 477.
    Hartwell LH, Weinert TA. Checkpoints: controls that ensure the order of cell cycle events. Science 1989;246:629–634.PubMedCrossRefGoogle Scholar
  478. 478.
    Pardee AB. G1 events and regulation of cell proliferation. Science 1989;246:603–608.PubMedCrossRefGoogle Scholar
  479. 479.
    Kastan MB, Kuerbitz SJ. Control of G1 arrest after DNA damage. Environ Health Perspect 1993;101(suppl 5):55–58.PubMedCrossRefGoogle Scholar
  480. 480.
    Sherr CJ. G1 phase progression: cycling on cue. Cell 1994;79:551–555.PubMedCrossRefGoogle Scholar
  481. 481.
    Elledge SJ. Cell cycle checkpoints: preventing an identity crisis. Science 1996;274:1664–1672.PubMedCrossRefGoogle Scholar
  482. 482.
    Rudner AD, Murray AW. The spindle assembly checkpoint. Curr Opin Cell Biol 1996;8:773–780.PubMedCrossRefGoogle Scholar
  483. 483.
    Sanchez I, Dynlacht BD. Transcriptional control of the cell cycle. Curr Opin Cell Biol 1996;8:318–324.PubMedCrossRefGoogle Scholar
  484. 484.
    Sherr CJ. Cancer cell cycles. Science 1996;274:1672–1677.PubMedCrossRefGoogle Scholar
  485. 485.
    O’Connor PM. Mammalian G1 and G2 phase checkpoints. Cancer Surv 1997;29:151–182.PubMedGoogle Scholar
  486. 486.
    Paulovich AG, Toczyski DP, Hartwell LH. When checkpoints fail. Cell 1997;88:315–321PubMedCrossRefGoogle Scholar
  487. 487.
    Lengauer C, Kinzler KW, Vogelstein B. Genetic instabilities in human cancers. Nature 1998;396:643–649.PubMedCrossRefGoogle Scholar
  488. 488.
    Mercer WE. Checking on the cell cycle. J Cell Biochem Suppl 1998;30–31:50–54.PubMedCrossRefGoogle Scholar
  489. 489.
    Salgia R, Skarin AT. Molecular abnormalitities in lung cancer. J Clin Oncol 1998;16:1207–1217.PubMedGoogle Scholar
  490. 490.
    Weinert T. DNA damage checkpoints update: getting molecular. Curr Opin Genet Dev 1998;8:185–193.PubMedCrossRefGoogle Scholar
  491. 491.
    Johnson DG, Walker CL. Cyclins and cell cycle checkpoints. Annu Rev Pharmacol Toxicol 1999;39:295–312.PubMedCrossRefGoogle Scholar
  492. 492.
    Clarke DJ, Gimenez-Abian JF. Checkpoints controlling mitosis. Bioessays 2000;22:351–363.PubMedCrossRefGoogle Scholar
  493. 493.
    Nyberg KA, Michelson RJ, Putnam CW, Weinert TA. Toward maintaining the genome: DNA damage and replication checkpoints. Annu Rev Genet 2002;36:617–656.PubMedCrossRefGoogle Scholar
  494. 494.
    Shreeram S, Blow JJ. The role of the replication licensing system in cell proliferation and cancer. Prog Cell Cycle Res 2003;5:287–293.PubMedGoogle Scholar
  495. 495.
    Dash BC, El-Deiry WS. Cell cycle checkpoint control mechanisms that can be disrupted in cancer. Methods Mol Biol 2004;280:99–161.PubMedGoogle Scholar
  496. 496.
    Esposito V, Baldi A, Tonini G, et al. Analysis of cell cycle regulator proteins in non-small cell lung cancer. J Clin Pathol 2004;57:58–63.PubMedCrossRefGoogle Scholar
  497. 497.
    Lisby M, Rothstein R. DNA damage checkpoint and repair centers. Curr Opin Cell Biol 2004;16:328–334.PubMedCrossRefGoogle Scholar
  498. 498.
    Lukas J, Lukas C, Bartek J. Mammalian cell cycle checkpoints: signalling pathways and their organization in space and time. DNA Repair (Amst) 2004;3:997–1007.CrossRefGoogle Scholar
  499. 499.
    Stark GR, Taylor WR. Analyzing the G2/M checkpoint. Methods Mol Biol 2004;280:51–82.PubMedGoogle Scholar
  500. 500.
    Swanton C. Cell-cycle targeted therapies. Lancet Oncol 2004;5:27–36.PubMedCrossRefGoogle Scholar
  501. 501.
    Branzei D, Foiani M. The DNA damage response during DNA replication. Curr Opin Cell Biol 2005;17:568–575.PubMedCrossRefGoogle Scholar
  502. 502.
    Hall A. Rho GTPases and the control of cell behaviour. Biochem Soc Trans 2005;33:891–895.PubMedCrossRefGoogle Scholar
  503. 503.
    Macaluso M, Montanari M, Cinti C, Giordano A. Modulation of cell cycle components by epigenetic and genetic events. Semin Oncol 2005;32:452–457.PubMedCrossRefGoogle Scholar
  504. 504.
    MacCorkle RA, Tan TH. Mitogen-activated protein kinases in cell-cycle control. Cell Biochem Biophys 2005;43:451–461.PubMedCrossRefGoogle Scholar
  505. 505.
    Gaestel M. MAPKAP kinases-MKs-two’s company, three’s a crowd. Nat Rev Mol Cell Biol 2006;7:120–130.PubMedCrossRefGoogle Scholar
  506. 506.
    Musgrove EA. Cyclins: roles in mitogenic signaling and oncogenic transformation. Growth Factors 2006;24:13–19.PubMedCrossRefGoogle Scholar
  507. 507.
    Niida H, Nakanishi M. DNA damage checkpoints in mammals. Mutagenesis 2006;21:3–9.PubMedCrossRefGoogle Scholar
  508. 508.
    Burtelow MA, Roos-Mattjus PM, Rauen M, Babendure JR, Karnitz LM. Reconstitution and molecular analysis of the hRad9-hHus1-hRad1 (9-1-1) DNA damage responsive checkpoint complex. J Biol Chem 2001;276:25903–25909.PubMedCrossRefGoogle Scholar
  509. 509.
    Lindsey-Boltz LA, Bermudez VP, Hurwitz J, Sancar A. Purification and characterization of human DNA damage checkpoint Rad complexes. Proc Natl Acad Sci USA 2001;98:11236–11241.PubMedCrossRefGoogle Scholar
  510. 510.
    Bao S, Lu T, Wang X, et al. Disruption of the Rad9/Rad1/Hus1 (9-1-1) complex leads to checkpoint signaling and replication defects. Oncogene 2004;23:5586–5593.PubMedCrossRefGoogle Scholar
  511. 511.
    Parrilla-Castellar ER, Arlander SJ, Karnitz L. Dial 9-1-1 for DNA damage: the Rad9-Hus1-Rad1 (9-1-1) clamp complex. DNA Repair (Amst) 2004;3:1009–1014.CrossRefGoogle Scholar
  512. 512.
    Majka J, Burgers PM. Function of Rad17/Mec3/Ddc1 and its partial complexes in the DNA damage checkpoint. DNA Repair (Amst) 2005;4:1189–1194.CrossRefGoogle Scholar
  513. 513.
    Brandt PD, Helt CE, Keng PC, Bambara RA. The Rad9 protein enhances survival and promotes DNA repair following exposure to ionizing radiation. Biochem Biophys Res Commun 2006;347:232–237.PubMedCrossRefGoogle Scholar
  514. 514.
    Niida H, Nakanishi M. DNA damage checkpoints in mammals. Mutagenesis 2006;21:3–9.PubMedCrossRefGoogle Scholar
  515. 515.
    van Vugt MA, Medema RH. Checkpoint adaptation and recovery: back with Polo after the break. Cell Cycle 2004;3:1383–1386.PubMedGoogle Scholar
  516. 516.
    van Vugt MA, Bras A, Medema RH. Restarting the cell cycle when the checkpoint comes to a halt. Cancer Res 2005;65:7037–7040.PubMedCrossRefGoogle Scholar
  517. 517.
    Chen PL, Scully P, Shew JY, Wang JY, Lee WH. Phosphorylation of the retinoblastoma gene product is modulated during the cell cycle and cellular differentiation. Cell 1989;58:1193–1198.PubMedCrossRefGoogle Scholar
  518. 518.
    Hoppe-Seyler F, Butz K. Tumor suppressor genes in molecular medicine. Clin Investig. 1994;72:619–630.PubMedCrossRefGoogle Scholar
  519. 519.
    Toyoshima H, Hunter T. p27, a novel inhibitor of G1 cyclin-Cdk protein kinase activity, is related to p21. Cell 1994;78:67–74.PubMedCrossRefGoogle Scholar
  520. 520.
    Harper JW, Elledge SJ, Keyomarsi K, et al. Inhibition of cyclin-dependent kinases by p21. Mol Biol Cell 1995;6:387–400.PubMedGoogle Scholar
  521. 521.
    Sherr CJ, Roberts JM. Inhibitors of mammalian G1 cyclin-dependent kinases. Genes Dev 1995;9:1149–1163.PubMedCrossRefGoogle Scholar
  522. 522.
    Steegenga WT, van der Eb AJ, Jochemsen AG. How phosphorylation regulates the activity of p53. J Mol Biol 1996;263:103–113.PubMedCrossRefGoogle Scholar
  523. 523.
    Martinez JD, Craven MT, Joseloff E, Milczarek G, Bowden GT. Regulation of DNA binding and transactivation in p53 by nuclear localization and phosphorylation. Oncogene 1997;14:2511–2520.PubMedCrossRefGoogle Scholar
  524. 524.
    Takemura M, Kitagawa T, Izuta S, et al. Phosphorylated retinoblastoma protein stimulates DNA polymerase alpha. Oncogene 1997;15:2483–2492.PubMedCrossRefGoogle Scholar
  525. 525.
    Banin S, Moyal L, Shieh S, et al. Enhanced phosphorylation of p53 by ATM in response to DNA damage. Science 1998;281:1674–1677.PubMedCrossRefGoogle Scholar
  526. 526.
    Dryja TP, Cavenee W, White R, et al. Homozygosity of chromosome 13 in retinoblastoma. N Engl J Med 1984;310:550–553.PubMedCrossRefGoogle Scholar
  527. 527.
    Lee WH, Bookstein R, Hong F, Young LJ, Shew JY, Lee EY. Human retinoblastoma susceptibility gene: cloning, identification, and sequence. Science 1987;235:1394–1399.PubMedCrossRefGoogle Scholar
  528. 528.
    Dunn JM, Phillips RA, Becker AJ, Gallie BL. Identification of germline and somatic mutations affecting the retinoblastoma gene. Science 1988;241:1797–1800.PubMedCrossRefGoogle Scholar
  529. 529.
    Huang HJ, Yee JK, Shew JY, et al. Suppression of the neoplastic phenotype by replacement of the RB gene in human cancer cells. Science 1988;242:1563–1566.PubMedCrossRefGoogle Scholar
  530. 530.
    Horowitz JM, Yandell DW, Park SH, et al. Point mutational inactivation of the retinoblastoma antioncogene. Science 1989;243:937–940.PubMedCrossRefGoogle Scholar
  531. 531.
    Bookstein R, Lee WH. Molecular genetics of the retinoblastoma suppressor gene. Crit Rev Oncog 1991;2:211–227.PubMedGoogle Scholar
  532. 532.
    Goodrich DW, Wang NP, Qian YW, Lee EY, Lee WH. The retinoblastoma gene product regulates progression through the G1 phase of the cell cycle. Cell 1991;67:293–302.PubMedCrossRefGoogle Scholar
  533. 533.
    Goodrich DW, Lee WH. Molecular characterization of the retinoblastoma susceptibility gene. Biochim Biophys Acta 1993;1155:43–61.PubMedGoogle Scholar
  534. 534.
    Hollingsworth RE, Hensey CE, Lee W-H. Retinoblastoma protein and cell cycle. Curr Opin Genet 1993;3:55–62.CrossRefGoogle Scholar
  535. 535.
    Wiman KG. The retinoblastoma gene: role in cell cycle control and cell differentiation. FASEB J 1993;7:841–845.PubMedGoogle Scholar
  536. 536.
    Riley DJ, Lee EY, Lee WH. The retinoblastoma protein: more than a tumor suppressor. Annu Rev Cell Biol 1994;10:1–29.PubMedCrossRefGoogle Scholar
  537. 537.
    Wang JY, Knudsen ES, Welch PJ. The retinoblastoma tumor suppressor protein. Adv Cancer Res 1994;64: 25–85.PubMedCrossRefGoogle Scholar
  538. 538.
    Herwig S, Strauss M. The retinoblastoma protein: a master regulator of cell cycle, differentiation and apoptosis. Eur J Biochem 1997;246:581–601.PubMedCrossRefGoogle Scholar
  539. 539.
    Weinberg RA. The retinoblastoma protein and cell cycle control. Cell 1995;81:323–330.PubMedCrossRefGoogle Scholar
  540. 540.
    Beijersbergen RL, Bernards R. Cell cycle regulation by the retinoblastoma family of growth inhibitory proteins. Biochim Biophys Acta 1996;1287:103–120.PubMedGoogle Scholar
  541. 541.
    Herwig S, Strauss M. The retinoblastoma protein: a master regulator of cell cycle, differentiation and apoptosis. Eur J Biochem 1997;246:581–601.PubMedCrossRefGoogle Scholar
  542. 542.
    Stiegler P, Kasten M, Giordano A. The RB family of cell cycle regulatory factors. J Cell Biochem Suppl 1998;30–31:30–36.PubMedCrossRefGoogle Scholar
  543. 543.
    Stiegler P, Giordano A. The family of retinoblastoma proteins. Crit Rev Eukaryot Gene Expr 2001;11:59–76.PubMedGoogle Scholar
  544. 544.
    Yamasaki L. Role of the RB tumor suppressor in cancer. Cancer Treat Res 2003;115:209–239.PubMedCrossRefGoogle Scholar
  545. 545.
    Massague J. The transforming growth factor-beta family. Annu Rev Cell Biol 1990;6:597–641.PubMedCrossRefGoogle Scholar
  546. 546.
    Moses HL, Yang EY, Pietenpol JA. TGF-beta stimulation and inhibition of cell proliferation: new mechanistic insights. Cell 1990;63:245–247.PubMedCrossRefGoogle Scholar
  547. 547.
    Fynan TM, Reiss M. Resistance to inhibition of cell growth by transforming growth factor-beta and its role in oncogenesis. Crit Rev Oncog 1993;4:493–540.PubMedGoogle Scholar
  548. 548.
    Alexandrow MG, Moses HL. Transforming growth factor beta and cell cycle regulation. Cancer Res 1995;55:1452–1457.PubMedGoogle Scholar
  549. 549.
    Polyak K. Negative regulation of cell growth by TGF-B. Biochim Biophys Acta 1996;1241:185–199.Google Scholar
  550. 550.
    Derynck R, Feng XH. TGF-beta receptor signaling. Biochim Biophys Acta 1997;1333:F105–F150.PubMedGoogle Scholar
  551. 551.
    Hartsough MT, Mulder KM. Transforming growth factorbeta signaling in epithelial cells. Pharmacol Ther 1997;75:21–41.PubMedCrossRefGoogle Scholar
  552. 552.
    Ravitz MJ, Wenner CE. Cyclin-dependent kinase regulation during G1 phase and cell cycle regulation by TGF-beta. Adv Cancer Res 1997;71:165–207.PubMedCrossRefGoogle Scholar
  553. 553.
    Lee KY, Bae SC. TGF-beta-dependent cell growth arrest and apoptosis. J Biochem Mol Biol 2002;35:47–53.PubMedGoogle Scholar
  554. 554.
    Ten Dijke P, Hill CS. New insights into TGF-beta-Smad signalling. Trends Biochem Sci 2004;29:265–273.PubMedCrossRefGoogle Scholar
  555. 555.
    Elliott RL, Blobe GC. Role of transforming growth factor Beta in human cancer. J Clin Oncol 2005;23:2078–2093.PubMedCrossRefGoogle Scholar
  556. 556.
    Diller L, Kassel J, Nelson CE, et al. p53 functions as a cell cycle control protein in osteosarcomas. Mol Cell Biol 1990;10:5772–5781.PubMedGoogle Scholar
  557. 557.
    Raycroft L, Wu H, Lozano G. Transcriptional activation by wild-type but not transforming mutants of the p53 anti-oncogene. Science 1990;249:1049–1051.PubMedCrossRefGoogle Scholar
  558. 558.
    Kastan MB, Onyekwere O, Sidransky D, Vogelstein B, Craig RW. Participation of p53 protein in the cellular response to DNA damage. Cancer Res 1991;51:6304–6311.PubMedGoogle Scholar
  559. 559.
    Martinez J, Georgoff I, Levine AJ. Cellular localization and cell cycle regulation by a temperature-sensitive p53 protein. Genes Dev 1991;5:151–159.PubMedCrossRefGoogle Scholar
  560. 560.
    Yin Y, Tainsky MA, Bischoff FZ, Strong LC, Wahl GM. Wild-type p53 restores cell cycle control and inhibits gene amplification in cells with mutant p53 alleles. Cell 1992;70:937–948.PubMedCrossRefGoogle Scholar
  561. 561.
    Greenblatt MS, Bennett WP, Hollstein M, Harris CC. Mutations in the p53 tumor suppressor gene: clues to cancer etiology and molecular pathogenesis. Cancer Res 1994;54:4855–4878PubMedGoogle Scholar
  562. 562.
    Meek DW. Post-translational modification of p53. Semin Cancer Biol 1994;5:203–210.PubMedGoogle Scholar
  563. 563.
    Agarwal ML, Agarwal A, Taylor WR, Stark GR. p53 controls both the G2/M and the G1 cell cycle checkpoints and mediates reversible growth arrest in human fibroblasts. Proc Natl Acad Sci USA 1995;92:8493–8497.PubMedCrossRefGoogle Scholar
  564. 564.
    Guillouf C, Rosselli F, Krishnaraju K, Moustacchi E, Hoffman B, Liebermann DA. p53 involvement in control of G2 exit of the cell cycle: role in DNA damage-induced apoptosis. Oncogene 1995;10:2263–2270.PubMedGoogle Scholar
  565. 565.
    Moll UM, Ostermeyer AG, Haladay R, Winkfield B, Frazier M, Zambetti G. Cytoplasmic sequestration of wild-type p53 protein impairs the G1 checkpoint after DNA damage. Mol Cell Biol 1996;16:1126–1137.PubMedGoogle Scholar
  566. 566.
    Almog N, Rotter V. Involvement of p53 in cell differentiation and development. Biochim Biophys Acta 1997;1333:F1–F27.PubMedGoogle Scholar
  567. 567.
    Levine AJ. p53, the cellular gatekeeper for growth and division. Cell 1997;88:323–331.PubMedCrossRefGoogle Scholar
  568. 568.
    Prives C, Hall PA. The p53 pathway. J Pathol 1999;187:112–126.PubMedCrossRefGoogle Scholar
  569. 569.
    Brooks CL, Gu W. Dynamics in the p53-Mdm2 ubiquitination pathway. Cell Cycle 2004;3:895–899.PubMedGoogle Scholar
  570. 570.
    Meek DW. The p53 response to DNA damage. DNA Repair (Amst) 2004;3:1049–1056.CrossRefGoogle Scholar
  571. 571.
    Bond GL, Hu W, Levine AJ. MDM2 is a central node in the p53 pathway: 12 years and counting. Curr Cancer Drug Targets 2005;5:3–8.PubMedCrossRefGoogle Scholar
  572. 572.
    Harris SL, Levine AJ. The p53 pathway: positive and negative feedback loops. Oncogene 2005;24:2899–2908.PubMedCrossRefGoogle Scholar
  573. 573.
    Wang YC, Lin RK, Tan YH, Chen JT, Chen CY, Wang YC. Wild-type p53 overexpression and its correlation with MDM2 and p14ARF alterations: an alternative pathway to non-small-cell lung cancer. J Clin Oncol 2005;23:154–164.PubMedCrossRefGoogle Scholar
  574. 574.
    Pardee AB. A restriction point for control of normal animal cell proliferation. Proc Natl Acad Sci USA 1974;71:1286–1290.PubMedCrossRefGoogle Scholar
  575. 575.
    Campisi J, Medrano EE, Morro G, Pardee AB. Restriction point control of cell growth by a labile protein: Evidence for increased stability in transformed cells. Proc Natl Acad Sci USA 1982;79:436–440.PubMedCrossRefGoogle Scholar
  576. 576.
    Kato J. Induction of S phase by G1 regulatory factors. Front Biosci 1999;4:D787–D792.PubMedCrossRefGoogle Scholar
  577. 577.
    Blagosklonny MV, Pardee AB. The restriction point of the cell cycle. Cell Cycle 2002;1:103–110.PubMedGoogle Scholar
  578. 578.
    Boonstra J. Progression through the G1-phase of the ongoing cell cycle. J Cell Biochem 2003;90:244–252.PubMedCrossRefGoogle Scholar
  579. 579.
    Hinds PW, Mittnacht S, Dulic V, Arnold A, Reed SI, Weinberg RA. Regulation of retinoblastoma protein functions by ectopic expression of human cyclins. Cell 1992;70:993–1006.PubMedCrossRefGoogle Scholar
  580. 580.
    Xiong Y, Zhang H, Beach D. D type cyclins associate with multiple protein kinases and the DNA replication and repair factor PCNA. Cell 1992;71:505–514.PubMedCrossRefGoogle Scholar
  581. 581.
    Baldin V, Lukas J, Marcote MJ, Pagano M, Draetta G. Cyclin D1 is a nuclear protein required for cell cycle progression in G1. Genes Dev 1993;7:812–821.PubMedCrossRefGoogle Scholar
  582. 582.
    Dowdy SF, Hinds PW, Louie K, Reed SI, Arnold A, Weinberg RA. Physical interaction of the retinoblastoma protein with human D cyclins. Cell 1993;73:499–511.PubMedCrossRefGoogle Scholar
  583. 583.
    Kato J, Matsushime H, Hiebert SW, Ewen ME, Sherr CJ. Direct binding of cyclin D to the retinoblastoma gene product (pRb) and pRb phosphorylation by the cyclin D-dependent kinase CDK4. Genes Dev 1993;7:331–342.PubMedCrossRefGoogle Scholar
  584. 584.
    Quelle DE, Ashmun RA, Shurtleff SA, et al. Overexpression of mouse D-type cyclins accelerates G1 phase in rodent fibroblasts. Genes Dev 1993;7:1559–1571.PubMedCrossRefGoogle Scholar
  585. 585.
    Sewing A, Burger C, Brusselbach S, Schalk C, Lucibello FC, Muller R. Human cyclin D1 encodes a labile nuclear protein whose synthesis is directly induced by growth factors and suppressed by cyclic AMP. J Cell Sci 1993;104:545–555.PubMedGoogle Scholar
  586. 586.
    Lukas J, Muller H, Bartkova J, et al. DNA tumor virus oncoproteins and retinoblastoma gene mutations share the ability to relieve the cell’s requirement for cyclin D1 function in G1. J Cell Biol 1994;125:625–638.PubMedCrossRefGoogle Scholar
  587. 587.
    Pagano M, Theodoras AM, Tam SW, Draetta GF. Cyclin D1-mediated inhibition of repair and replicative DNA synthesis in human fibroblasts. Genes Dev 1994;8:1627–1639.PubMedCrossRefGoogle Scholar
  588. 588.
    Schauer IE, Siriwardana S, Langan TA, Sclafani RA. Cyclin D1 overexpression vs. retinoblastoma inactivation: implications for growth control evasion in non-small cell and small cell lung cancer. Proc Natl Acad Sci USA 1994;91:7827–7831.PubMedCrossRefGoogle Scholar
  589. 589.
    Bartkova J, Lukas J, Strauss M, Bartek J. Cyclin D1 oncoprotein aberrantly accumulates in malignancies of diverse histogenesis. Oncogene 1995;10:775–778.PubMedGoogle Scholar
  590. 590.
    Han EK, Sgambato A, Jiang W, et al. Stable overexpression of cyclin D1 in a human mammary epithelial cell line prolongs the S-phase and inhibits growth. Oncogene 1995;10:953–961.PubMedGoogle Scholar
  591. 591.
    Ko TC, Sheng HM, Reisman D, Thompson EA, Beauchamp RD. Transforming growth factor-beta 1 inhibits cyclin D1 expression in intestinal epithelial cells. Oncogene 1995;10:177–184.PubMedGoogle Scholar
  592. 592.
    Xiao ZX, Ginsberg D, Ewen M, Livingston DM. Regulation of the retinoblastoma protein-related protein p107 by G1 cyclin-associated kinases. Proc Natl Acad Sci USA 1996;93:4633–4637.PubMedCrossRefGoogle Scholar
  593. 593.
    Hosokawa Y, Arnold A. Mechanism of cyclin D1 (CCND1, PRAD1) overexpression in human cancer cells: analysis of allele-specific expression. Genes Chromosomes Cancer 1998;22:66–71.PubMedCrossRefGoogle Scholar
  594. 594.
    Ortega S, Malumbres M, Barbacid M. Cyclin Ddependent kinases, INK4 inhibitors and cancer. Biochim Biophys Acta 2002;1602:73–87.PubMedGoogle Scholar
  595. 595.
    El-Deiry WS, Tokino T, Velculescu VE, et al. WAF1, a potential mediator of p53 tumor suppression. Cell 1993;75:817–825.PubMedCrossRefGoogle Scholar
  596. 596.
    Polyak K, Kato JY, Solomon MJ, et al. p27Kip1, a cyclin-Cdk inhibitor, links transforming growth factor-beta and contact inhibition to cell cycle arrest. Genes Dev 1994;8:9–22.PubMedCrossRefGoogle Scholar
  597. 597.
    Biggs JR, Kraft AS. Inhibitors of cyclin-dependent kinase and cancer. J Mol Med 1995;73:509–514.PubMedCrossRefGoogle Scholar
  598. 598.
    Datto MB, Li Y, Panus JF, Howe DJ, Xiong Y, Wang XF. Transforming growth factor beta induces the cyclin-dependent kinase inhibitor p21 through a p53-independent mechanism. Proc Natl Acad Sci USA 1995;92:5545–5549.PubMedCrossRefGoogle Scholar
  599. 599.
    Datto MB, Yu Y, Wang XF. Functional analysis of the transforming growth factor beta responsive elements in the WAF1/Cip1/p21 promoter. J Biol Chem 1995;270:28623–28628.PubMedCrossRefGoogle Scholar
  600. 600.
    Deng C, Zhang P, Harper JW, Elledge SJ, Leder P. Mice lacking p21CIP1/WAF1 undergo normal development, but are defective in G1 checkpoint control. Cell 1995;82:675–684.PubMedCrossRefGoogle Scholar
  601. 601.
    Quelle DE, Zindy F, Ashmun RA, Sherr CJ. Alternative reading frames of the INK4a tumor suppressor gene encode two unrelated proteins capable of inducing cell cycle arrest. Cell 1995;83:993–1000.PubMedCrossRefGoogle Scholar
  602. 602.
    Yeudall WA, Jakus J. Cyclin kinase inhibitors add a new dimension to cell cycle control. Eur J Cancer B Oral Oncol 1995;31B:291–298.PubMedCrossRefGoogle Scholar
  603. 603.
    Serrano M, Lee H, Chin L, Cordon-Cardo C, Beach D, DePinho RA. Role of the INK4a locus in tumor suppression and cell mortality. Cell 1996;85:27–37.PubMedCrossRefGoogle Scholar
  604. 604.
    Yan Y, Frisen J, Lee MH, Massague J, Barbacid M. Ablation of the CDK inhibitor p57Kip2 results in increased apoptosis and delayed differentiation during mouse development. Genes Dev 1997;11:973–983.PubMedCrossRefGoogle Scholar
  605. 605.
    Craig C, Kim M, Ohri E, et al. Effects of adenovirusmediated p16INK4A expression on cell cycle arrest are determined by endogenous p16 and Rb status in human cancer cells. Oncogene 1998;16:265–272.PubMedCrossRefGoogle Scholar
  606. 606.
    Niculescu AB 3rd, Chen X, Smeets M, Hengst L, Prives C, Reed SI. Effects of p21(Cip1/Waf1) at both the G1/S and the G2/M cell cycle transitions: pRb is a critical determinant in blocking DNA replication and in preventing endoreduplication. Mol Cell Biol 1998;18:629–643.PubMedGoogle Scholar
  607. 607.
    Liggett WH Jr, Sidransky D. Role of the p16 tumor suppressor gene in cancer. J Clin Oncol 1998;16:1197–1206.PubMedGoogle Scholar
  608. 608.
    Sherr CJ, Roberts JM. CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev 1999;13:1501–1512.PubMedCrossRefGoogle Scholar
  609. 609.
    Ohtani N, Yamakoshi K, Takahashi A, Hara E. The p16INK4a-RB pathway: molecular link between cellular senescence and tumor suppression. J Med Invest 2004;51:146–153.PubMedCrossRefGoogle Scholar
  610. 610.
    Shan B, Zhu X, Chen PL, et al. Molecular cloning of cellular genes encoding retinoblastoma-associated proteins: identification of a gene with properties of the transcription factor E2F. Mol Cell Biol 1992;12:5620–5631.PubMedGoogle Scholar
  611. 611.
    Chellapan SP. The E2F transcription factor: role in cell cycle regulation and differentiation. Mol Cell Diff 1994;2:201–220.Google Scholar
  612. 612.
    Martin K, Trouche D, Hagemeier C, Kouzarides T. Regulation of transcription by E2F1/DP1. J Cell Sci Suppl 1995;19:91–94.PubMedGoogle Scholar
  613. 613.
    Schwarz JK, Bassing CH, Kovesdi I, et al. Expression of the E2F1 transcription factor overcomes type beta transforming growth factor-mediated growth suppression. Proc Natl Acad Sci USA 1995;92:483–487.PubMedCrossRefGoogle Scholar
  614. 614.
    Hurford RK Jr, Cobrinik D, Lee MH, Dyson N. pRB and p107/p130 are required for the regulated expression of different sets of E2F responsive genes. Genes Dev 1997;11:1447–1463.PubMedCrossRefGoogle Scholar
  615. 615.
    Sellers WR, Novitch BG, Miyake S, et al. Stable binding to E2F is not required for the retinoblastoma protein to activate transcription, promote differentiation, and suppress tumor cell growth. Genes Dev 1998;12:95–106.PubMedCrossRefGoogle Scholar
  616. 616.
    Yamaskai L, Bronson R, Williams BO, Dyson NJ, Harlow E, Jacks T. Loss of E2F-1 reduces tumorigenesis and extends the lifespan of Rb1 (+/−) mice. Nature Genet 1998;18:360–363.CrossRefGoogle Scholar
  617. 617.
    Ohtani K. Implication of transcription factor E2F in regulation of DNA replication. Front Biosci 1999;4:D793–D804.PubMedCrossRefGoogle Scholar
  618. 618.
    Humbert PO, Verona R, Trimarchi JM, Rogers C, Dandapani S, Lees JA. E2f3 is critical for normal cellular proliferation. Genes Dev 2000;14:690–703.PubMedGoogle Scholar
  619. 619.
    Ren B, Cam H, Takahashi Y, Volkert T, Terragni J, Young RA, Dynlacht BD. E2F integrates cell cycle progression with DNA repair, replication, and G(2)/M checkpoints. Genes Dev 2002;16:245–256.PubMedCrossRefGoogle Scholar
  620. 620.
    Schlisio S, Halperin T, Vidal M, Nevins JR. Interaction of YY1 with E2Fs, mediated by RYBP, provides a mechanism for specificity of E2F function. EMBO J 2002;21:5775–5786.PubMedCrossRefGoogle Scholar
  621. 621.
    Stevaux O, Dyson NJ. A revised picture of the E2F transcriptional network and RB function. Curr Opin Cell Biol 2002;14:684–691.PubMedCrossRefGoogle Scholar
  622. 622.
    Mundle SD, Saberwal G. Evolving intricacies and implications of E2F-1 regulation. EMBO J 2003;17:569–574.Google Scholar
  623. 623.
    Karakaidos P, Taraviras S, Vassiliou LV, et al. Overexpression of the replication licensing regulators hCdt1 and hCdc6 characterizes a subset of non-small-cell lung carcinomas: synergistic effect with mutant p53 on tumor growth and chromosomal instability—evidence of E2F-1 transcriptional control over hCdt1. Am J Pathol 2004;165:1351–1365.PubMedGoogle Scholar
  624. 624.
    Rogoff HA, Kowalik TF. Life, death and E2F: linking proliferation control and DNA damage signaling via E2F1. Cell Cycle 2004;3:845–846.PubMedGoogle Scholar
  625. 625.
    Korenjak M, Brehm A. E2F-Rb complexes regulating transcription of genes important for differentiation and development. Curr Opin Genet Dev 2005;15:520–527.PubMedCrossRefGoogle Scholar
  626. 626.
    Goodrich DW, Lee WH. Abrogation by c-myc of G1 phase arrest induced by RB protein but not by p53. Nature 1992;360:177–179.PubMedCrossRefGoogle Scholar
  627. 627.
    Lukas J, Parry D, Aagaard L, et al. Retinoblastomaprotein-dependent cell-cycle inhibition by the tumour suppressor p16. Nature 1995;375:503–506.PubMedCrossRefGoogle Scholar
  628. 628.
    Henriksson M, Luscher B. Proteins of the Myc network: essential regulators of cell growth and differentiation. Adv Cancer Res 1996;68:109–182.PubMedCrossRefGoogle Scholar
  629. 629.
    Schmidt EV. MYC family ties. Nature Genet 1996;14:8–10.PubMedCrossRefGoogle Scholar
  630. 630.
    Alexandrow MG, Moses HL. Kips off to Myc: implications for TGF beta signaling. J Cell Biochem 1997;66:427–432.PubMedCrossRefGoogle Scholar
  631. 631.
    Amati B, Alevizopoulos K, Vlach J. Myc and the cell cycle. Front Biosci 1998;3:d250–d268.PubMedGoogle Scholar
  632. 632.
    Burgin A, Bouchard C, Eilers M. Control of cell proliferation by Myc proteins. Results Probl Cell Differ 1998;22:181–197.PubMedGoogle Scholar
  633. 633.
    Matsumura I, Tanaka H, Kanakura Y. E2F1 and c-Myc in cell growth and death. Cell Cycle 2003;2:333–338.PubMedGoogle Scholar
  634. 634.
    Yam CH, Fung TK, Poon RY. Cyclin A in cell cycle control and cancer. Cell Mol Life Sci 2002;59:1317–1326.PubMedCrossRefGoogle Scholar
  635. 635.
    Porter LA, Donoghue DJ. Cyclin B1 and CDK1: nuclear localization and upstream regulators. Prog Cell Cycle Res 2003;5:335–347.PubMedGoogle Scholar
  636. 636.
    Smith-Sorensen B, Hovig E. CDKN2A (p16INK4A) somatic and germline mutations. Hum Mutat 1996;7:294–303.PubMedCrossRefGoogle Scholar
  637. 637.
    Foulkes WD, Flanders TY, Pollock PM, Hayward NK. The CDKN2A (p16) gene and human cancer. Mol Med 1997;3:5–20.PubMedGoogle Scholar
  638. 638.
    Serrano M. The tumor suppressor protein p16INK4a. Exp Cell Res 1997;237:7–13.PubMedCrossRefGoogle Scholar
  639. 639.
    Carnero A, Hannon GJ. The INK4 family of CDK inhibitors. Curr Top Microbiol Immunol 1998;227:43–55.PubMedGoogle Scholar
  640. 640.
    Liggett WH Jr, Sidransky D. Role of the p16 tumor suppressor gene in cancer. J Clin Oncol 1998;16:1197–1206.PubMedGoogle Scholar
  641. 641.
    Huschtscha LI, Reddel RR. p16(INK4a) and the control of cellular proliferative life span. Carcinogenesis 1999;20:921–926.PubMedCrossRefGoogle Scholar
  642. 642.
    Roussel MF. The INK4 family of cell cycle inhibitors in cancer. Oncogene 1999;18:5311–5317.PubMedCrossRefGoogle Scholar
  643. 643.
    Shapiro GI, Edwards CD, Rollins BJ. The physiology of p16(INK4A)-mediated G1 proliferative arrest. Cell Biochem Biophys 2000;33:189–197.PubMedCrossRefGoogle Scholar
  644. 644.
    Ohtani N, Yamakoshi K, Takahashi A, Hara E. The p16INK4a-RB pathway: molecular link between cellular senescence and tumor suppression. J Med Invest 2004;51:146–153.PubMedCrossRefGoogle Scholar
  645. 645.
    Larsen CJ. Contribution of the dual coding capacity of the p16INK4a/MTS1/CDKN2 locus to human malignancies. Prog Cell Cycle Res 1997;3:109–124.PubMedGoogle Scholar
  646. 646.
    Chin L, Pomerantz J, DePinho RA. The INK4a/ARF tumor suppressor: one gene—two products—two pathways. Trends Biochem Sci 1998;23:291–296.PubMedCrossRefGoogle Scholar
  647. 647.
    Stott FJ, Bates S, James MC, et al. The alternative product from the human CDKN2A locus, p14(ARF), participates in a regulatory feedback loop with p53 and MDM2. EMBO J 1998;17:5001–5014.PubMedCrossRefGoogle Scholar
  648. 648.
    James MC, Peters G. Alternative product of the p16/CKDN2A locus connects the Rb and p53 tumor suppressors. Prog Cell Cycle Res 2000;4:71–81.PubMedGoogle Scholar
  649. 649.
    Weber HO, Samuel T, Rauch P, Funk JO. Human p14(ARF)-mediated cell cycle arrest strictly depends on intact p53 signaling pathways. Oncogene 2002;21:3207–3212.PubMedCrossRefGoogle Scholar
  650. 650.
    Satyanarayana A, Rudolph KL. p16 and ARF: activation of teenage proteins in old age. J Clin Invest 2004;114:1237–1240.PubMedGoogle Scholar
  651. 651.
    Livingstone LR, White A, Sprouse J, Livanos E, Jacks T, Tlsty TD. Altered cell cycle arrest and gene amplification potential accompany loss of wild-type p53. Cell 1992;70:923–935.PubMedCrossRefGoogle Scholar
  652. 652.
    Harper JW, Adami GR, Wei N, Keyomarsi K, Elledge SJ. The p21 cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclin-dependent kinases. Cell 1993;75:805–816.PubMedCrossRefGoogle Scholar
  653. 653.
    Xiong Y, Hannon GJ, Zhang H, Casso D, Kobayashi R, Beach D. p21 is a universal inhibitor of cyclin kinases. Nature 1993;366:701–704.PubMedCrossRefGoogle Scholar
  654. 654.
    Chen CY, Oliner JD, Zhan Q, Fornace AJ Jr, Vogelstein B, Kastan MB. Interactions between p53 and MDM2 in a mammalian cell cycle checkpoint pathway. Proc Natl Acad Sci USA 1994;91:2684–2688.PubMedCrossRefGoogle Scholar
  655. 655.
    El-Deiry WS, Harper JW, O’Connor PM, et al. WAF1/CIP1 is induced in p53-mediated G1 arrest and apoptosis. Cancer Res 1994;54:1169–1174.PubMedGoogle Scholar
  656. 656.
    Waga S, Hannon GJ, Beach D, Stillman B. The p21 inhibitor of cyclin-dependent kinases controls DNA replication by interaction with PCNA. Nature 1994;369:574–578.PubMedCrossRefGoogle Scholar
  657. 657.
    Canman CE, Gilmer TM, Coutts SB, Kastan MB. Growth factor modulation of p53-mediated growth arrest versus apoptosis. Genes Dev 1995;9:600–611.PubMedCrossRefGoogle Scholar
  658. 658.
    Chen X, Bargonetti J, Prives C. p53, through p21 (WAF1/CIP1), induces cyclin D1 synthesis. Cancer Res 1995;55:4257–4263.PubMedGoogle Scholar
  659. 659.
    Del Sal G, Murphy M, Ruaro E, Lazarevic D, Levine AJ, Schneider C. Cyclin D1 and p21/waf1 are both involved in p53 growth suppression. Oncogene 1996;12:177–185.PubMedGoogle Scholar
  660. 660.
    Polyak K, Waldman T, He TC, Kinzler KW, Vogelstein B. Genetic determinants of p53-induced apoptosis and growth arrest. Genes Dev 1996;10:1945–1952.PubMedCrossRefGoogle Scholar
  661. 661.
    Linke SP, Clarkin KC, Wahl GM. p53 mediates permanent arrest over multiple cell cycles in response to gammairradiation. Cancer Res 1997;57:1171–1179.PubMedGoogle Scholar
  662. 662.
    Cayrol C, Knibiehler M, Ducommun B. p21 binding to PCNA causes G1 and G2 cell cycle arrest in p53-deficient cells. Oncogene 1998;16:311–320.PubMedCrossRefGoogle Scholar
  663. 663.
    Laiho M, DeCaprio JA, Ludlow JW, Livingston DM, Massague J. Growth inhibition by TGF-beta linked to suppression of retinoblastoma protein phosphorylation. Cell 1990;62:175–185.PubMedCrossRefGoogle Scholar
  664. 664.
    Ewen ME, Sluss HK, Whitehouse LL, Livingston DM. TGF beta inhibition of Cdk4 synthesis is linked to cell cycle arrest. Cell 1993;74:1009–1020.PubMedCrossRefGoogle Scholar
  665. 665.
    Williams GT. Programmed cell death: apoptosis and oncogenesis. Cell 1991;65:1097–1098.PubMedCrossRefGoogle Scholar
  666. 666.
    Saraste A, Pulkki K. Morphologic and biochemical hallmarks of apoptosis. Cardiovasc Res 2000;45:528–537.PubMedCrossRefGoogle Scholar
  667. 667.
    Martelli AM, Zweyer M, Ochs RL, et al. Nuclear apoptotic changes: an overview. J Cell Biochem 2001;82:634–646.PubMedCrossRefGoogle Scholar
  668. 668.
    Van Cruchten S, Van Den Broeck W. Morphological and biochemical aspects of apoptosis, oncosis and necrosis. Anat Histol Embryol 2002;31:214–223.PubMedCrossRefGoogle Scholar
  669. 669.
    Alenzi FQ, Warrens AN. Cellular and molecular themes in apoptosis. Wien Klin Wochenschr 2003;115:563–574.PubMedCrossRefGoogle Scholar
  670. 670.
    Schultz DR, Harrington WJ Jr. Apoptosis: programmed cell death at a molecular level. Semin Arthritis Rheum 2003;32:345–369.PubMedCrossRefGoogle Scholar
  671. 671.
    Edinger AL, Thompson CB. Death by design: apoptosis, necrosis and autophagy. Curr Opin Cell Biol 2004;16:663–669.PubMedCrossRefGoogle Scholar
  672. 672.
    Jin Z, El-Deiry WS. Overview of cell death signaling pathways. Cancer Biol Ther 2005;4:139–163.PubMedCrossRefGoogle Scholar
  673. 673.
    Yonish-Rouach E, Grunwald D, Wilder S, et al. p53-mediated cell death: relationship to cell cycle control. Mol Cell Biol 1993;13:1415–1423.PubMedGoogle Scholar
  674. 674.
    Oren M. Relationship of p53 to the control of apoptotic cell death. Semin Cancer Biol 1994;5:221–227.PubMedGoogle Scholar
  675. 675.
    Bond J, Haughton M, Blaydes J, Gire V, Wynford-Thomas D, Wyllie F. Evidence that transcriptional activation by p53 plays a direct role in the induction of cellular senescence. Oncogene 1996;13:2097–2104.PubMedGoogle Scholar
  676. 676.
    Chen X, Ko LJ, Jayaraman L, Prives C. p53 levels, functional domains, and DNA damage determine the extent of the apoptotic response of tumor cells. Genes Dev 1996;10:2438–2451.PubMedCrossRefGoogle Scholar
  677. 677.
    Kagawa S, Fujiwara T, Hizuta A, et al. p53 expression overcomes p21WAF1/CIP1-mediated G1 arrest and induces apoptosis in human cancer cells. Oncogene 1997;15:1903–1909.PubMedCrossRefGoogle Scholar
  678. 678.
    Polyak K, Xia Y, Zweier JL, Kinzler KW, Vogelstein B. A model for p53-induced apoptosis. Nature 1997;389:300–305.PubMedCrossRefGoogle Scholar
  679. 679.
    Sandig V, Brand K, Herwig S, Lukas J, Bartek J, Strauss M. Adenovirally transferred p16INK4/CDKN2 and p53 genes cooperate to induce apoptotic tumor cell death. Nat Med 1997;3:313–319.PubMedCrossRefGoogle Scholar
  680. 680.
    Hockenbery DM. The bcl-2 oncogene and apoptosis. Semin Immunol 1992;4:413–420.PubMedGoogle Scholar
  681. 681.
    Oltvai ZN, Milliman CL, Korsmeyer SJ. Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programmed cell death. Cell 1993;74:609–619.PubMedCrossRefGoogle Scholar
  682. 682.
    Chiou SK, Rao L, White E. Bcl-2 blocks p53-dependent apoptosis. Mol Cell Biol 1994;14:2556–2563.PubMedGoogle Scholar
  683. 683.
    Miyashita T, Krajewski S, Krajewska M, et al. Tumor suppressor p53 is a regulator of bcl-2 and bax gene expression in vitro and in vivo. Oncogene 1994;9:1799–1805.PubMedGoogle Scholar
  684. 684.
    Selvakumaran M, Lin HK, Miyashita T, et al. Immediate early up-regulation of bax expression by p53 but not TGF beta 1: a paradigm for distinct apoptotic pathways. Oncogene 1994;9:1791–1798.PubMedGoogle Scholar
  685. 685.
    Miyashita T, Reed JC. Tumor suppressor p53 is a direct transcriptional activator of the human bax gene. Cell 1995;80:293–299.PubMedCrossRefGoogle Scholar
  686. 686.
    Brown R. The bcl-2 family of proteins. Br Med Bull 1997;53:466–477.PubMedGoogle Scholar
  687. 687.
    Jacobson MD. Apoptosis: Bcl-2-related proteins get connected. Curr Biol 1997;7:R277–R281.214.PubMedCrossRefGoogle Scholar
  688. 688.
    Kroemer G. The proto-oncogene Bcl-2 and its role in regulating apoptosis. Nat Med 1997;3:614–620.PubMedCrossRefGoogle Scholar
  689. 689.
    Yin C, Knudson CM, Korsmeyer SJ, Van Dyke T. Bax suppresses tumorigenesis and stimulates apoptosis in vivo. Nature 1997;385:637–640.PubMedCrossRefGoogle Scholar
  690. 690.
    Adams JM, Cory S. The Bcl-2 protein family: arbiters of cell survival. Science 1998;281(5381):1322–1326.PubMedCrossRefGoogle Scholar
  691. 691.
    Cory S, Adams JM. The Bcl2 family: regulators of the cellular life-or-death switch. Nat Rev Cancer 2002;2(9):647–656.PubMedCrossRefGoogle Scholar
  692. 692.
    Kiechle FL, Zhang X. Apoptosis: biochemical aspects and clinical implications. Clin Chim Acta 2002;326(1–2):27–45.PubMedCrossRefGoogle Scholar
  693. 693.
    Alenzi FQ, Warrens AN. Cellular and molecular themes in apoptosis. Wien Klin Wochenschr 2003;115(15–16):563–574.PubMedCrossRefGoogle Scholar
  694. 694.
    Harada H, Grant S. Apoptosis regulators. Rev Clin Exp Hematol 2003;7(2):117–138.PubMedGoogle Scholar
  695. 695.
    Kaina B. DNA damage-triggered apoptosis: critical role of DNA repair, double-strand breaks, cell proliferation and signaling. Biochem Pharmacol 2003;66(8):1547–1554.PubMedCrossRefGoogle Scholar
  696. 696.
    Liston P, Fong WG, Komeluk RG. The inhibitors of apoptosis: there is more to life than Bcl2. Oncogene 2003;22(53):8568–8580.PubMedCrossRefGoogle Scholar
  697. 697.
    Willis S, Day CL, Hinds MG, Huang DC. The Bcl-2-regulated apoptotic pathway. J Cell Sci 2003;116 (pt 20):4053–4056.PubMedCrossRefGoogle Scholar
  698. 698.
    Piro LD. Apoptosis, Bcl-2 antisense, and cancer therapy. Oncology (Williston Park) 2004;18(13 suppl 10):5–10.Google Scholar
  699. 699.
    Shabnam MS, Srinivasan R, Wali A, Majumdar S, Joshi K, Behera D. Expression of p53 protein and the apoptotic regulatory molecules Bcl-2, Bcl-XL, and Bax in locally advanced squamous cell carcinoma of the lung. Lung Cancer 2004;45(2):181–188.PubMedCrossRefGoogle Scholar
  700. 700.
    Thomadaki H, Scorilas A, Hindmarsh JT. BCL2 family of apoptosis-related genes: functions and clinical implications in cancer. Crit Rev Clin Lab Sci 2006;43(1):1–67.PubMedCrossRefGoogle Scholar
  701. 701.
    Kumar S. Mechanisms mediating caspase activation in cell death. Cell Death Differ 1999;6:1060–1066.PubMedCrossRefGoogle Scholar
  702. 702.
    Kolenko VM, Uzzo RG, Bukowski R, Finke JH. Caspase-dependent and-independent death pathways in cancer therapy. Apoptosis 2000;5:17–20.PubMedCrossRefGoogle Scholar
  703. 703.
    Kuida K. Caspase-9. Int J Biochem Cell Biol 2000;32:121–124.PubMedCrossRefGoogle Scholar
  704. 704.
    Creagh EM, Martin SJ. Caspases: cellular demolition experts. Biochem Soc Trans 2001;29:696–702.PubMedCrossRefGoogle Scholar
  705. 705.
    Zimmermann KC, Bonzon C, Green DR. The machinery of programmed cell death. Pharmacol Ther 2001;92:57–70.PubMedCrossRefGoogle Scholar
  706. 706.
    Adams JM, Cory S. Apoptosomes: engines for caspase activation. Curr Opin Cell Biol 2002;14:715–720.PubMedCrossRefGoogle Scholar
  707. 707.
    Chen M, Wang J. Initiator caspases in apoptosis signaling pathways. Apoptosis 2002;7:313–319.PubMedCrossRefGoogle Scholar
  708. 708.
    Cho SG, Choi EJ. Apoptotic signaling pathways: caspases and stress-activated protein kinases. J Biochem Mol Biol 2002;35:24–27.PubMedGoogle Scholar
  709. 709.
    Gupta S. Molecular signaling in death receptor and mitochondrial pathways of apoptosis (Review). Int J Oncol 2003;22:15–20.PubMedGoogle Scholar
  710. 710.
    Hajra KM, Liu JR. Apoptosome dysfunction in human cancer. Apoptosis 2004;9:691–704.PubMedCrossRefGoogle Scholar
  711. 711.
    Shi Y. Caspase activation, inhibition, and reactivation: a mechanistic view. Protein Sci 2004;13:1979–1987.PubMedCrossRefGoogle Scholar
  712. 712.
    Fan TJ, Han LH, Cong RS, Liang J. Caspase family proteases and apoptosis. Acta Biochim Biophys Sin (Shanghai) 2005;37:719–727.CrossRefGoogle Scholar
  713. 713.
    Kim R, Emi M, Tanabe K. Caspase-dependent and-independent cell death pathways after DNA damage (Review). Oncol Rep 2005;14:595–599.PubMedGoogle Scholar
  714. 714.
    Curtin JF, Cotter TG. Live and let die: regulatory mechanisms in Fas-mediated apoptosis. Cell Signal 2003;15:983–992.PubMedCrossRefGoogle Scholar
  715. 715.
    Dempsey PW, Doyle SE, He JQ, Cheng G. The signaling adaptors and pathways activated by TNF superfamily. Cytokine Growth Factor Rev 2003;14:193–209.PubMedCrossRefGoogle Scholar
  716. 716.
    Gaur U, Aggarwal BB. Regulation of proliferation, survival and apoptosis by members of the TNF superfamily. Biochem Pharmacol 2003;66:1403–1408.PubMedCrossRefGoogle Scholar
  717. 717.
    MacFarlane M. TRAIL-induced signalling and apoptosis. Toxicol Lett 2003;139:89–97.PubMedCrossRefGoogle Scholar
  718. 718.
    Ozoren N, El-Deiry WS. Cell surface Death Receptor signaling in normal and cancer cells. Semin Cancer Biol 2003;13:135–147.PubMedCrossRefGoogle Scholar
  719. 719.
    Tibbetts MD, Zheng L, Lenardo MJ. The death effector domain protein family: regulators of cellular homeostasis. Nat Immunol 2003;4:404–409.PubMedCrossRefGoogle Scholar
  720. 720.
    Wajant H. Death receptors. Essays Biochem 2003;39:53–71.PubMedGoogle Scholar
  721. 721.
    Thorburn A. Death receptor-induced cell killing. Cell Signal 2004;16:139–144.PubMedCrossRefGoogle Scholar
  722. 722.
    Zhang J, Zhang D, Hua Z. FADD and its phosphorylation. IUBMB Life 2004;56:395–401.PubMedCrossRefGoogle Scholar
  723. 723.
    de Thonel A, Eriksson JE. Regulation of death receptors-Relevance in cancer therapies. Toxicol Appl Pharmacol 2005;207(2 suppl):123–132.PubMedGoogle Scholar
  724. 724.
    Shakibaei M, Schulze-Tanzil G, Takada Y, Aggarwal BB. Redox regulation of apoptosis by members of the TNF superfamily. Antioxid Redox Signal 2005;7:482–496.PubMedCrossRefGoogle Scholar
  725. 725.
    Fas SC, Fritzsching B, Suri-Payer E, Krammer PH. Death receptor signaling and its function in the immune system. Curr Dir Autoimmun 2006;9:1–17.PubMedGoogle Scholar
  726. 726.
    Cleveland JL, Ihle JN. Contenders in FasL/TNF death signaling. Cell 1995;81:479–482.PubMedCrossRefGoogle Scholar
  727. 727.
    Mukhopadhyay A, Ni J, Zhai Y, Yu GL, Aggarwal BB. Identification and characterization of a novel cytokine, THANK, a TNF homologue that activates apoptosis, nuclear factor-kappaB, and c-Jun NH2-terminal kinase. J Biol Chem 1999;274:15978–15981.PubMedCrossRefGoogle Scholar
  728. 728.
    Nakayama M, Ishidoh K, Kayagaki N, et al. Multiple pathways of TWEAK-induced cell death. J Immunol 2002;168:734–743.PubMedGoogle Scholar
  729. 729.
    Reichmann E. The biological role of the Fas/FasL system during tumor formation and progression. Semin Cancer Biol 2002;12:309–315.PubMedCrossRefGoogle Scholar
  730. 730.
    Han S, Yoon K, Lee K, et al. TNF-related weak inducer of apoptosis receptor, a TNF receptor superfamily member, activates NF-kappa B through TNF receptor-associated factors. Biochem Biophys Res Commun 2003;305:789–796.PubMedCrossRefGoogle Scholar
  731. 731.
    Wiley SR, Winkles JA. TWEAK, a member of the TNF superfamily, is a multifunctional cytokine that binds the TweakR/Fn14 receptor. Cytokine Growth Factor Rev 2003;14:241–249.PubMedCrossRefGoogle Scholar
  732. 732.
    Campbell S, Michaelson J, Burkly L, Putterman C. The role of TWEAK/Fn14 IN the pathogenesis of inflammation and systemic autoimmunity. Front Biosci 2004;9:2273–2284.PubMedCrossRefGoogle Scholar
  733. 733.
    Winkles JA, Tran NL, Berens ME. TWEAK and Fn 14: new molecular targets for cancer therapy? Cancer Lett 2006;235:11–17.PubMedCrossRefGoogle Scholar
  734. 734.
    Huang DC, Strasser A. BH3-Only proteins-essential initiators of apoptotic cell death. Cell 2000;103:839–842.PubMedCrossRefGoogle Scholar
  735. 735.
    Lutz RJ. Role of the BH3 (Bcl-2 homology 3) domain in the regulation of apoptosis and Bcl-2-related proteins. Biochem Soc Trans 2000;28:51–56.PubMedCrossRefGoogle Scholar
  736. 736.
    Bouillet P, Strasser A. BH3-only proteins—evolutionarily conserved proapoptotic Bcl-2 family members essential for initiating programmed cell death. J Cell Sci 2002;115:1567–1574.PubMedGoogle Scholar
  737. 737.
    Fleischer A, Rebollo A, Ayllon V. BH3-only proteins: the lords of death. Arch Immunol Ther Exp (Warsz) 2003;51:9–17.Google Scholar
  738. 738.
    Willis SN, Adams JM. Life in the balance: how BH3-only proteins induce apoptosis. Curr Opin Cell Biol 2005;17:617–625.PubMedCrossRefGoogle Scholar
  739. 739.
    Shibue T, Taniguchi T. BH3-only proteins: integrated control point of apoptosis. Int J Cancer 2006;119:2036–2043.PubMedCrossRefGoogle Scholar
  740. 740.
    Yin XM. Bid, a BH3-only multi-functional molecule, is at the cross road of life and death. Gene 2006;369:7–19.PubMedCrossRefGoogle Scholar
  741. 741.
    Sheikh MS, Fornace AJ Jr. Death and decoy receptors and p53-mediated apoptosis. Leukemia 2000;14:1509–1513.PubMedCrossRefGoogle Scholar
  742. 742.
    Cappello F, Bellafiore M, Palma A, Bucchieri F. Defective apoptosis and tumorigenesis: role of p53 mutation and Fas/FasL system dysregulation. Eur J Histochem 2002;46:199–208PubMedGoogle Scholar
  743. 743.
    Haupt S, Berger M, Goldberg Z, Haupt Y. Apoptosis—the p53 network. J Cell Sci 2003;116:4077–4085.PubMedCrossRefGoogle Scholar
  744. 744.
    Oda E, Ohki R, Murasawa H, et al. Noxa, a BH3-only member of the Bcl-2 family and candidate mediator of p53-induced apoptosis. Science 2000;288:1053–1058.PubMedCrossRefGoogle Scholar
  745. 745.
    Schuler M, Green DR. Mechanisms of p53-dependent apoptosis. Biochem Soc Trans 2001;29:684–688.PubMedCrossRefGoogle Scholar
  746. 746.
    Wu X, Deng Y. Bax and BH3-domain-only proteins in p53-mediated apoptosis. Front Biosci 2002;7:d151–d156.PubMedCrossRefGoogle Scholar
  747. 747.
    Jeffers JR, Parganas E, Lee Y, et al. Puma is an essential mediator of p53-dependent and-independent apoptotic pathways. Cancer Cell 2003;4:321–328.PubMedCrossRefGoogle Scholar
  748. 748.
    Seo YW, Shin JN, Ko KH, et al. The molecular mechanism of Noxa-induced mitochondrial dysfunction in p53-mediated cell death. J Biol Chem 2003;278:48292–48299.PubMedCrossRefGoogle Scholar
  749. 749.
    Shibue T, Takeda K, Oda E, et al. Integral role of Noxa in p53-mediated apoptotic response. Genes Dev 2003;17:2233–2238.PubMedCrossRefGoogle Scholar
  750. 750.
    Villunger A, Michalak EM, Coultas L, et al. p53-and drug-induced apoptotic responses mediated by BH3-only proteins puma and noxa. Science 2003;302:1036–1038.PubMedCrossRefGoogle Scholar
  751. 751.
    Hemann MT, Zilfou JT, Zhao Z, Burgess DJ, Hannon GJ, Lowe SW. Suppression of tumorigenesis by the p53 target PUMA. Proc Natl Acad Sci U S A 2004;101:9333–9338.PubMedCrossRefGoogle Scholar
  752. 752.
    Chipuk JE, Bouchier-Hayes L, Kuwana T, Newmeyer DD, Green DR. PUMA couples the nuclear and cytoplasmic proapoptotic function of p53. Science 2005;309:1732–1735.PubMedCrossRefGoogle Scholar
  753. 753.
    Tobiume K. Involvement of Bcl-2 family proteins in p53-induced apoptosis. J Nippon Med Sch 2005;72:192–193.PubMedCrossRefGoogle Scholar
  754. 754.
    Vousden KH. Apoptosis. p53 and PUMA: a deadly duo. Science 2005;309:1685–1686.PubMedCrossRefGoogle Scholar
  755. 755.
    Yu J, Zhang L. The transcriptional targets of p53 in apoptosis control. Biochem Biophys Res Commun 2005;331:851–858.PubMedCrossRefGoogle Scholar
  756. 756.
    Allen RT, Cluck MW, Agrawal DK. Mechanisms controlling cellular suicide: role of Bcl-2 and caspases. Cell Mol Life Sci 1998;54:427–445.PubMedCrossRefGoogle Scholar
  757. 757.
    Hu Y, Benedict MA, Wu D, Inohara N, Nunez G. Bcl-XL interacts with Apaf-1 and inhibits Apaf-1-dependent caspase-9 activation. Proc Natl Acad Sci USA 1998;95:4386–4391.PubMedCrossRefGoogle Scholar
  758. 758.
    Mignotte B, Vayssiere JL. Mitochondria and apoptosis. Eur J Biochem 1998;252:1–15.PubMedCrossRefGoogle Scholar
  759. 759.
    Pan G, O’Rourke K, Dixit VM. Caspase-9, Bcl-XL, and Apaf-1 form a ternary complex. J Biol Chem 1998;273:5841–5845.PubMedCrossRefGoogle Scholar
  760. 760.
    Bossy-Wetzel E, Green DR. Apoptosis: checkpoint at the mitochondrial frontier. Mutat Res 1999;434:243–251.PubMedGoogle Scholar
  761. 761.
    Cosulich SC, Savory PJ, Clarke PR. Bcl-2 regulates amplification of caspase activation by cytochrome c. Curr Biol 1999;9:147–150.PubMedCrossRefGoogle Scholar
  762. 762.
    Eskes R, Desagher S, Antonsson B, Martinou JC. Bid induces the oligomerization and insertion of Bax into the outer mitochondrial membrane. Mol Cell Biol 2000;20:929–935.PubMedCrossRefGoogle Scholar
  763. 763.
    Haraguchi M, Torii S, Matsuzawa S, et al. Apoptotic protease activating factor 1 (Apaf-1)-independent cell death suppression by Bcl-2. J Exp Med 2000;191:1709–1720.PubMedCrossRefGoogle Scholar
  764. 764.
    Hausmann G, O’Reilly LA, van Driel R, et al. Proapoptotic apoptosis protease-activating factor 1 (Apaf-1) has a cytoplasmic localization distinct from Bcl-2 or Bclx( L). J Cell Biol 2000;149:623–634.PubMedCrossRefGoogle Scholar
  765. 765.
    Newmeyer DD, Bossy-Wetzel E, Kluck RM, Wolf BB, Beere HM, Green DR. Bcl-xL does not inhibit the function of Apaf-1. Cell Death Differ 2000;7:402–407.PubMedCrossRefGoogle Scholar
  766. 766.
    Cheng EH, Wei MC, Weiler S, et al. BCL-2, BCL-X(L) sequester BH3 domain-only molecules preventing BAXand BAK-mediated mitochondrial apoptosis. Mol Cell 2001;8:705–711.PubMedCrossRefGoogle Scholar
  767. 767.
    Liang Y, Zhou Y, Shen P. NF-kappaB and its regulation on the immune system. Cell Mol Immunol 2004;1:343–350.PubMedGoogle Scholar
  768. 768.
    Xiao W. Advances in NF-kappaB signaling transduction and transcription. Cell Mol Immunol 2004;1:425–435.PubMedGoogle Scholar
  769. 769.
    Courtois G. The NF-kappaB signaling pathway in human genetic diseases. Cell Mol Life Sci 2005;62:1682–1691.PubMedCrossRefGoogle Scholar
  770. 770.
    Dobrovolskaia MA, Kozlov SV. Inflammation and cancer: when NF-kappaB amalgamates the perilous partnership. Curr Cancer Drug Targets 2005;5:325–344.PubMedCrossRefGoogle Scholar
  771. 771.
    Karin M, Greten FR. NF-kappaB: linking inflammation and immunity to cancer development and progression. Nat Rev Immunol 2005;5:749–759.PubMedCrossRefGoogle Scholar
  772. 772.
    Luo JL, Kamata H, Karin M. IKK/NF-kappaB signaling: balancing life and death—a new approach to cancer therapy. J Clin Invest 2005;115:2625–2632.PubMedCrossRefGoogle Scholar
  773. 773.
    Moynagh PN. The NF-kappaB pathway. J Cell Sci 2005;118 (pt 20):4589–4592.PubMedCrossRefGoogle Scholar
  774. 774.
    Zingarelli B. Nuclear factor-kappaB. Crit Care Med 2005;33(12 suppl):S414–S416.PubMedCrossRefGoogle Scholar
  775. 775.
    Bubici C, Papa S, Pham CG, Zazzeroni F, Franzoso G. The NF-kappaB-mediated control of ROS and JNK signaling. Histol Histopathol 2006;21:69–80.PubMedGoogle Scholar
  776. 776.
    Campbell KJ, Perkins ND. Regulation of NF-kappaB function. Biochem Soc Symp 2006;(73):165–180.Google Scholar
  777. 777.
    Hoffmann A, Baltimore D. Circuitry of nuclear factor kappaB signaling. Immunol Rev 2006;210:171–186.PubMedCrossRefGoogle Scholar
  778. 778.
    Karin M. Nuclear factor-kappaB in cancer development and progression. Nature 2006;441:431–436.PubMedCrossRefGoogle Scholar
  779. 779.
    Kovalenko A, Wallach D. If the prophet does not come to the mountain: dynamics of signaling complexes in NF-kappaB activation. Mol Cell 2006;22:433–436.PubMedCrossRefGoogle Scholar
  780. 780.
    Piva R, Belardo G, Santoro MG. NF-kappaB: a stressregulated switch for cell survival. Antioxid Redox Signal 2006;8:478–486.PubMedCrossRefGoogle Scholar
  781. 781.
    Vermeulen L, Vanden Berghe W, Haegeman G. Regulation of NF-kappaB transcriptional activity. Cancer Treat Res 2006;130:89–102.PubMedCrossRefGoogle Scholar
  782. 782.
    O’Neill LA, Greene C. Signal transduction pathways activated by the IL-1 receptor family: ancient signaling machinery in mammals, insects, and plants. J Leukoc Biol 1998;63(6):650–657.PubMedGoogle Scholar
  783. 783.
    Karin M. The beginning of the end: IkappaB kinase (IKK) and NF-kappaB activation. J Biol Chem 1999;274:27339–27342.PubMedCrossRefGoogle Scholar
  784. 784.
    Karin M. How NF-kappaB is activated: the role of the IkappaB kinase (IKK) complex. Oncogene 1999;18:6867–6874.PubMedCrossRefGoogle Scholar
  785. 785.
    Rothwarf DM, Karin M. The NF-kappa B activation pathway: a paradigm in information transfer from membrane to nucleus. Sci STKE 1999;1999:RE1.PubMedCrossRefGoogle Scholar
  786. 786.
    Senftleben U, Karin M. The IKK/NF-kappa B pathway. Crit Care Med 2002;30(1 suppl):S18–S26.CrossRefGoogle Scholar
  787. 787.
    Hayden MS, Ghosh S. Signaling to NF-kappaB. Genes Dev 2004;18:2195–2224.PubMedCrossRefGoogle Scholar
  788. 788.
    Chen ZJ. Ubiquitin signalling in the NF-kappaB pathway. Nat Cell Biol 2005;7:758–765.PubMedCrossRefGoogle Scholar
  789. 789.
    Hu MC, Hung MC. Role of IkappaB kinase in tumorigenesis. Future Oncol 2005;1:67–78.PubMedCrossRefGoogle Scholar
  790. 790.
    Viatour P, Merville MP, Bours V, Chariot A. Phosphorylation of NF-kappaB and IkappaB proteins: implications in cancer and inflammation. Trends Biochem Sci 2005;30:43–52.PubMedCrossRefGoogle Scholar
  791. 791.
    Gloire G, Dejardin E, Piette J. Extending the nuclear roles of IkappaB kinase subunits. Biochem Pharmacol 2006;72:1081–1089.PubMedCrossRefGoogle Scholar
  792. 792.
    Crow JF. The high spontaneous mutation rate: is it a health risk? Proc Natl Acad Sci USA 1997;94:8380–8386.PubMedCrossRefGoogle Scholar
  793. 793.
    Hollstein M, Sidransky D, Vogelstein B, Harris CC. p53 mutations in human cancers. Science 1991;253:49–53.PubMedCrossRefGoogle Scholar
  794. 794.
    Hartwell L. Defects in a cell cycle checkpoint may be responsible for the genomic instability of cancer cells. Cell 1992;71:543–546.PubMedCrossRefGoogle Scholar
  795. 795.
    Zambetti GP, Levine AJ. A comparison of the biological activities of wild-type and mutant p53. Faseb J 1993;7:855–865.PubMedGoogle Scholar
  796. 796.
    Hartwell LH, Kastan MB. Cell cycle control and cancer. Science 1994;266:1821–1828.PubMedCrossRefGoogle Scholar
  797. 797.
    Foulkes WD, Flanders TY, Pollock PM, Hayward NK. The CDKN2 (p16) gene and human cancer. Mol Med 1996;3:5–20.Google Scholar
  798. 798.
    Gottlieb TM, Oren M. p53 in growth control and neoplasia. Biochim Biophys Acta 1996;1287:77–102.PubMedGoogle Scholar
  799. 799.
    Gao HG, Chen JK, Stewart J, et al. Distribution of p53 and K-ras mutations in human lung cancer tissues. Carcinogenesis 1997;18:473–478.PubMedCrossRefGoogle Scholar
  800. 800.
    Peltomaki P. DNA mismatch repair gene mutations in human cancer. Environ Health Perspect 1997;105(suppl 4):775–780.PubMedCrossRefGoogle Scholar
  801. 801.
    Cahill DP, Lengauer C, Yu J, et al. Mutations of mitotic checkpoint genes in human cancers. Nature 1998;392:300–303.PubMedCrossRefGoogle Scholar
  802. 802.
    Massague J, Blain SW, Lo RS. TGFbeta signaling in growth control, cancer, and heritable disorders. Cell 2000;103:295–309.PubMedCrossRefGoogle Scholar
  803. 803.
    Chen PL, Chen YM, Bookstein R, Lee WH. Genetic mechanisms of tumor suppression by the human p53 gene. Science 1990;250:1576–1580.PubMedCrossRefGoogle Scholar
  804. 804.
    Weinberg RA. Tumor suppressor genes. Science 1991;254:1138–1146.PubMedCrossRefGoogle Scholar
  805. 805.
    Levine AJ. The tumor suppressor genes. Annu Rev Biochem 1993;62:623–651.PubMedCrossRefGoogle Scholar
  806. 806.
    Yamamoto T. Molecular basis of cancer: oncogenes and tumor suppressor genes. Microbiol Immunol 1993;37:11–22.PubMedGoogle Scholar
  807. 807.
    Greenblatt MS, Bennett WP, Hollstein M, Harris CC. Mutations in the p53 tumor suppressor gene: clues to cancer etiology and molecular pathogenesis. Cancer Res 1994;54:4855–4878.PubMedGoogle Scholar
  808. 808.
    Ponz de Leon M. Oncogenes and tumor suppressor genes. Recent Results Cancer Res 1994;136:35–47.PubMedGoogle Scholar
  809. 809.
    Weinberg RA. The molecular basis of oncogenes and tumor suppressor genes. Ann NY Acad Sci 1995;758:331–338.PubMedCrossRefGoogle Scholar
  810. 810.
    Markowitz SD, Roberts AB. Tumor suppressor activity of the TGF-beta pathway in human cancers. Cytokine Growth Factor Rev 1996;7:93–102.PubMedCrossRefGoogle Scholar
  811. 811.
    Shapiro GI, Rollins BJ. p16INK4A as a human tumor suppressor. Biochim Biophys Acta 1996;1242:165–169.PubMedGoogle Scholar
  812. 812.
    Smith-Sorensen B, Hovig E. CDKN2A (p16INK4A) somatic and germline mutations. Hum Mutat 1996;7:294–303.PubMedCrossRefGoogle Scholar
  813. 813.
    Eshleman JR, Markowitz SD. Mismatch repair defects in human carcinogenesis. Hum Mol Genet 1996;5 Spec No:1489–1494.PubMedGoogle Scholar
  814. 814.
    Malkhosyan S, Rampino N, Yamamoto H, Perucho M. Frameshift mutator mutations. Nature 1996;382:499–500.PubMedCrossRefGoogle Scholar
  815. 815.
    Pihan G. Doxsey SJ. Mutations and aneuploidy: coconspirators in cancer? Cancer Cell 2003;4:89–94.PubMedCrossRefGoogle Scholar
  816. 816.
    Sarasin A. An overview of the mechanisms of mutagenesis and carcinogenesis. Mutat Res 2003;544:99–106.PubMedCrossRefGoogle Scholar
  817. 817.
    Frank SA, Nowak MA. Problems of somatic mutation and cancer. Bioessays 2004;26:291–299.PubMedCrossRefGoogle Scholar
  818. 818.
    Weir B, Zhao X, Meyerson M. Somatic alterations in the human cancer genome. Cancer Cell 2004;6:433–438.PubMedCrossRefGoogle Scholar
  819. 819.
    Miller JH. Perspective on mutagenesis and repair: the standard model and alternate modes of mutagenesis. Crit Rev Biochem Mol Biol 2005;40:155–179.PubMedCrossRefGoogle Scholar
  820. 820.
    de Klein A, van Kessel AG, Grosveld G, et al. A cellular oncogene is translocated to the Philadelphia chromosome in chronic myelocytic leukaemia. Nature 1982;300:765–767.PubMedCrossRefGoogle Scholar
  821. 821.
    Cory S. Activation of cellular oncogenes in hemopoietic cells by chromosome translocation. Adv Cancer Res 1986;47:189–234.PubMedCrossRefGoogle Scholar
  822. 822.
    Cagle PT, Taylor LD, Schwartz MR, Ramzy I, Elder F. Cytogenetic abnormalities common to adenocarcinoma metastatic to the pleura. Cancer Genet Cytogenet 1989;39:219–225.PubMedCrossRefGoogle Scholar
  823. 823.
    Solomon E, Borrow J, Goddard AD. Chromosome aberrations and cancer. Science 1991;254:1153–60.PubMedCrossRefGoogle Scholar
  824. 824.
    Rabbitts TH. Chromosomal translocations in human cancer. Nature 1994;372:143–149.PubMedCrossRefGoogle Scholar
  825. 825.
    Abeysinghe SS, Stenson PD, Krawczak M, Cooper DN. Gross Rearrangement Breakpoint Database (GRaBD). Hum Mutat 2004;23:219–221.PubMedCrossRefGoogle Scholar
  826. 826.
    Bystritskiy AA, Razin SV. Breakpoint clusters: reason or consequence? Crit Rev Eukaryot Gene Expr 2004;14:65–77.PubMedCrossRefGoogle Scholar
  827. 827.
    Knuutila S. Cytogenetics and molecular pathology in cancer diagnostics. Ann Med 2004;36:162–171.PubMedCrossRefGoogle Scholar
  828. 828.
    Aplan PD. Causes of oncogenic chromosomal translocation. Trends Genet 2006;22:46–55.PubMedCrossRefGoogle Scholar
  829. 829.
    Jefford CE, Irminger-Finger I. Mechanisms of chromosome instability in cancers. Crit Rev Oncol Hematol 2006;59:1–14.PubMedCrossRefGoogle Scholar
  830. 830.
    Raptis S, Bapat B. Genetic instability in human tumors. EXS 2006;(96):303–320.Google Scholar
  831. 831.
    Taki T, Taniwaki M. Chromosomal translocations in cancer and their relevance for therapy. Curr Opin Oncol 2006;18:62–68.PubMedCrossRefGoogle Scholar
  832. 832.
    Barker PE. Double minutes in human tumor cells. Cancer Genet Cytogenet 1982;5:81–94.PubMedCrossRefGoogle Scholar
  833. 833.
    Cowell JK. Double minutes and homogeneously staining regions: gene amplification in mammalian cells. Annu Rev Genet 1982;16:21–59.PubMedCrossRefGoogle Scholar
  834. 834.
    Tabin CJ, Bradley SM, Bargmann CI, et al. Mechanism of activation of a human oncogene. Nature 1982;300:143–149.PubMedCrossRefGoogle Scholar
  835. 835.
    Alitalo K, Schwab M. Oncogene amplification in tumor cells. Adv Cancer Res 1986;47:235–281.PubMedCrossRefGoogle Scholar
  836. 836.
    Benner SE, Wahl GM, Von Hoff DD. Double minute chromosomes and homogeneously staining regions in tumors taken directly from patients versus in human tumor cell lines. Anticancer Drugs 1991;2:11–25.PubMedCrossRefGoogle Scholar
  837. 837.
    Hamlin JL, Leu TH, Vaughn JP, Ma C, Dijkwel PA. Amplification of DNA sequences in mammalian cells. Prog Nucleic Acid Res Mol Biol 1991;41:203–239.PubMedCrossRefGoogle Scholar
  838. 838.
    Hahn PJ. Molecular biology of double-minute chromosomes. Bioessays 1993;15:477–484.PubMedCrossRefGoogle Scholar
  839. 839.
    Schwab M. Amplification of oncogenes in human cancer cells. Bioessays 1998;20:473–479.PubMedCrossRefGoogle Scholar
  840. 840.
    Schwab M. Oncogene amplification in solid tumors. Semin Cancer Biol. 1999;9:319–325.PubMedCrossRefGoogle Scholar
  841. 841.
    Todd R, Wong DT. Oncogenes. Anticancer Res 1999;19:4729–4746.PubMedGoogle Scholar
  842. 842.
    Savelyeva L. Schwab M. Amplification of oncogenes revisited: from expression profiling to clinical application. Cancer Lett 2001;167:115–123.PubMed