Quantum Dots and Targeted Nanoparticle Probes for In Vivo Tumor Imaging

  • Matthew N. Rhyner
  • Andrew M. Smith
  • Xiaohu Gao
  • Hui Mao
  • Lily Yang
  • Shuming Nie
Part of the Fundamental Biomedical Technologies book series (FBMT, volume 102)


Nanometer-sized particles, such as semiconductor quantum dots and iron oxide nanocrystals, have novel optical, electronic, magnetic, or structural properties that are not available from either individual molecules or bulk solids. When linked with tumor-targeting ligands, such as monoclonal antibodies, peptides, or small molecules, these nanoparticles can be used to target tumor antigens (biomarkers) as well as tumor vasculatures with high affinity and specificity. In the “mesoscopic” size range of 5–100 nm diameter, quantum dots and related nanoparticles also have more surface areas and functional groups that can be linked to multiple diagnostic (e.g., optical, radioisotopic, or magnetic) and therapeutic (e.g., anticancer) agents. Previous research has led to the development of bioaffinity nanoparticle probes for advanced molecular and cellular imaging. In this chapter, we discuss recent advances in the development and applications of bioconjugated quantum dots and multifunctional nanoparticles for in vivo tumor imaging and targeting.


quantum dot nanoparticle cancer imaging in vivo targeting polymer coating bimodal. 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Akerman, M.E., Chan, W.C.W., Laakkonen, P., Bhatia, S.N., Ruoslahti, E., 2002. Nanocrystal targeting in vivo. Proc Natl Acad Sci USA 99, 12617–12621.PubMedCrossRefGoogle Scholar
  2. Alivisatos, A.P., 1996. Semiconductor clusters, nanocrystals, and quantum dots. Science 271, 933–937.CrossRefGoogle Scholar
  3. Alivisatos, A.P., Gu, W.W., Larabell, C., 2005. Quantum dots as cellular probes. Annu Rev Biomed Eng 7, 55–76.PubMedCrossRefGoogle Scholar
  4. Ballou, B., Lagerholm, B.C., Ernst, L.A., Bruchez, M.P., Waggoner, A.S., 2004. Noninvasive imaging of quantum dots in mice. Bioconjug Chem 15, 79–86.PubMedCrossRefGoogle Scholar
  5. Bander, N.H., Trabulsi, E.J., Kostakoglu, L., Yao, D., Vallabhajosula, S., Smith-Jones, P., Joyce, M.A., Milowsky, M., Nanus, D.M., Goldsmith, S.J., 2003. Targeting metastatic prostate cancer with radiolabeled monoclonal antibody J591 to the extracellular domain of prostate specific membrane antigen. J Urol 170, 1717–1721.PubMedCrossRefGoogle Scholar
  6. Bruchez, M., Moronne, M., Gin, P., Weiss, S., Alivisatos, A.P., 1998. Semiconductor nanocrystals as fluorescent biological labels. Science 281, 2013–2016.PubMedCrossRefGoogle Scholar
  7. Buck, S.M., Koo, Y.E.L., Park, E., Xu, H., Philbert, M.A., Brasuel, M.A., Kopelman, R., 2004. Optochemical nanosensor PEBBLEs: photonic explorers for bioanalysis with biologically localized embedding. Curr Opin Chem Biol 8, 540–546.PubMedCrossRefGoogle Scholar
  8. Bulte, J.W.M., Douglas, T., Witwer, B., Zhang, S.C., Strable, E., Lewis, B.K., Zywicke, H., Miller, B., van Gelderen, P., Moskowitz, B.M., Duncan, I.D., Frank, J.A., 2001. Magnetodendrimers allow endosomal magnetic labeling and in vivo tracking of stem cells. Nat Biotechnol 19, 1141–1147.PubMedCrossRefGoogle Scholar
  9. Chan, W.C.W., Maxwell, D.J., Gao, X.H., Bailey, R.E., Han, M.Y., Nie, S.M., 2002. Luminescent quantum dots for multiplexed biological detection and imaging. Curr Opin Biotechnol 13, 40–46.PubMedCrossRefGoogle Scholar
  10. Chan, W.C.W., Nie, S.M., 1998. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 281, 2016–2018.PubMedCrossRefGoogle Scholar
  11. Chang, S.S., Reuter, V.E., Heston, W.D.W., Gaudin, P.B., 2001. Comparison of antiprostate-specific membrane antigen antibodies and other immunomarkers in metastatic prostate carcinoma. Urology 57, 1179–1183.PubMedCrossRefGoogle Scholar
  12. Curtis, A., Wilkinson, C., 2001. Nantotechniques and approaches in biotechnology. Trends Biotechnol 19, 97–101.PubMedCrossRefGoogle Scholar
  13. Dahan, M., Levi, S., Luccardini, C., Rostaing, P., Riveau, B., Triller, A., 2003. Diffusion dynamics of glycine receptors revealed by single-quantum dot tracking. Science 302, 442–445.PubMedCrossRefGoogle Scholar
  14. Derfus, A.M., Chan, W.C.W., Bhatia, S.N., 2004. Probing the cytotoxicity of semiconductor quantum dots. Nano Letters 4, 11–18.CrossRefGoogle Scholar
  15. Dubertret, B., Skourides, P., Norris, D.J., Noireaux, V., Brivanlou, A.H., Libchaber, A., 2002. In vivo imaging of quantum dots encapsulated in phospholipid micelles. Science 298, 1759–1762.PubMedCrossRefGoogle Scholar
  16. Duncan, R., Discovery, N.R.D., 2003. The dawning era of polymer therapeutics. Nat Rev Drug Discov 2, 347–360.PubMedCrossRefGoogle Scholar
  17. Gao, X.H., Chan, W.C.W., Nie, S.M., 2002. Quantum-dot nanocrystals for ultrasensitive biological labeling and multicolor optical encoding. J Biomed Opt 7, 532–537.PubMedCrossRefGoogle Scholar
  18. Gao, X.H., Cui, Y.Y., Levenson, R.M., Chung, L.W.K., Nie, S.M., 2004. In vivo cancer targeting and imaging with semiconductor quantum dots. Nat Biotechnol 22, 969–976.PubMedCrossRefGoogle Scholar
  19. Gao, X.H., Nie, S.M., 2003a. Doping mesoporous materials with multicolor quantum dots. J Phys Chem B 107, 11575–11578.CrossRefGoogle Scholar
  20. Gao, X.H., Nie, S.M., 2003b. Molecular profiling of single cells and tissue specimens with quantum dots. Trends Biotechnol 21, 371–373.CrossRefGoogle Scholar
  21. Gao, X.H., Yang, L.L., Petros, J.A., Marshal, F.F., Simons, J.W., Nie, S.M., 2005. In vivo molecular and cellular imaging with quantum dots. Curr Opin Biotechnol 16, 63–72.PubMedCrossRefGoogle Scholar
  22. Gaponik, N., Radtchenko, I.L., Sukhorukov, G.B., Weller, H., Rogach, A.L., 2002. Toward encoding combinatorial libraries: Charge-driven microencapsulation of semiconductor nanocrystals luminescing in the visible and near IR. Adv Mater 14, 879–882.CrossRefGoogle Scholar
  23. Gref, R., Minamitake, Y., Peracchia, M.T., Trubetskoy, V., Torchilin, V., Langer, R., 1994. Biodegradable long-circulating polymeric nanospheres. Science (Washington, D. C., 1883-) 263, 1600–1603.CrossRefGoogle Scholar
  24. Gu, H.W., Zheng, R.K., Zhang, X.X., Xu, B., 2004. Facile one-pot synthesis of bifunctional heterodimers of nanoparticles: a conjugate of quantum dot and magnetic nanoparticles. J Am Chem Soc 126, 5664–5665.PubMedCrossRefGoogle Scholar
  25. Han, M.Y., Gao, X.H., Su, J.Z., Nie, S., 2001. Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules. Nat Biotechnol 19, 631–635.PubMedCrossRefGoogle Scholar
  26. Ishii, D., Kinbara, K., Ishida, Y., Ishii, N., Okochi, M., Yohda, M., Aida, T., 2003. Chaperonin-mediated stabilization and ATP-triggered release of semiconductor nanoparticles. Nature 423, 628–632.PubMedCrossRefGoogle Scholar
  27. Jain, R.K., 1999. Understanding barriers to drug delivery: high resolution in vivo imaging is key. Clin Cancer Res 5, 1605–1606.PubMedGoogle Scholar
  28. Jain, R.K., 2001. Delivery of molecular medicine to solid tumors: lessons from in vivo imaging of gene expression and function. J Control Release 74, 7–25.PubMedCrossRefGoogle Scholar
  29. Jaiswal, J.K., Mattoussi, H., Mauro, J.M., Simon, S.M., 2003. Long-term multiple color imaging of live cells using quantum dot bioconjugates. Nat Biotechnol 21, 47–51.PubMedCrossRefGoogle Scholar
  30. Josephson, L., Tung, C.H., Moore, A., Weissleder, R., 1999. High-efficiency intracellular magnetic labeling with novel superparamagnetic-tat peptide conjugates. Bioconjug Chem 10, 186–191.PubMedCrossRefGoogle Scholar
  31. Kim, S., Lim, Y.T., Soltesz, E.G., De Grand, A.M., Lee, J., Nakayama, A., Parker, J.A., Mihaljevic, T., Laurence, R.G., Dor, D.M., Cohn, L.H., Bawendi, M.G., Frangioni, J.V., 2004. Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping. Nat Biotechnol 22, 93–97.PubMedCrossRefGoogle Scholar
  32. Kircher, M.F., Weissleder, R., Josephson, L., 2004. A dual fluorochrome probe for imaging proteases. Bioconjug Chem 15, 242–248.PubMedCrossRefGoogle Scholar
  33. Kirchner, C., Liedl, T., Kudera, S., Pellegrino, T., Javier, A.M., Gaub, H.E., Stolzle, S., Fertig, N., Parak, W.J., 2005. Cytotoxicity of colloidal CdSe and CdSe/ZnS nanoparticles. Nano Letters 5, 331–338.PubMedCrossRefGoogle Scholar
  34. Larson, D.R., Zipfel, W.R., Williams, R.M., Clark, S.W., Bruchez, M.P., Wise, F.W., Webb, W.W., 2003. Water-soluble quantum dots for multiphoton fluorescence imaging in vivo. Science 300, 1434–1436.PubMedCrossRefGoogle Scholar
  35. Leatherdale, C.A., Woo, W.K., Mikulec, F.V., Bawendi, M.G., 2002. On the absorption cross section of CdSe nanocrystal quantum dots. J Phys Chem B 106, 7619–7622.CrossRefGoogle Scholar
  36. Lidke, D.S., Nagy, P., Heintzmann, R., Arndt-Jovin, D.J., Post, J.N., Grecco, H.E., Jares-Erijman, E.A., Jovin, T.M., 2004. Quantum dot ligands provide new insights into erbB/HER receptor-mediated signal transduction. Nat Biotechnol22, 198–203.PubMedCrossRefGoogle Scholar
  37. Mattoussi, H., Mauro, J.M., Goldman, E.R., Anderson, G.P., Sundar, V.C., Mikulec, F.V., Bawendi, M.G., 2000. Self-assembly of CdSe-ZnS quantum dot bioconjugates using an engineered recombinant protein. J Am Chem Soc 122, 12142–12150.CrossRefGoogle Scholar
  38. Medintz, I.L., Clapp, A.R., Mattoussi, H., Goldman, E.R., Fisher, B., Mauro, J.M., 2003. Self-assembled nanoscale biosensors based on quantum dot FRET donors. Nat Mater 2, 630–638.PubMedCrossRefGoogle Scholar
  39. Michalet, X., Pinaud, F.F., Bentolila, L.A., Tsay, J.M., Doose, S., Li, J.J., Sundaresan, G., Wu, A.M., Gambhir, S.S., Weiss, S., 2005. Quantum dots for live cells, in vivo imaging, and diagnostics. Science (Washington, D. C., 1883-) 307, 538–544.CrossRefGoogle Scholar
  40. Mulder, W.J.M.K., Brandwijk, R. J. Storm, G. Chin, P. T. K. Strijkers, G. J. de Mello Donega, C. Nicolay, K. Griffioen, A. W., 2006. Quantum dots with a paramagnetic coating as a bimodal molecular imaging probe. Nano Letters 6, 1–6.PubMedCrossRefGoogle Scholar
  41. Ntziachristos, V., Bremer, C., Weissleder, R., 2003. Fluorescence imaging with near-infrared light: new technological advances that enable in vivo molecular imaging. Eur Radiol 13, 195–208.PubMedGoogle Scholar
  42. Ntziachristos, V., Schellenberger, E.A., Ripoll, J., Yessayan, D., Graves, E., Bogdanov, A., Josephson, L., Weissleder, R., 2004. Visualization of antitumor treatment by means of fluorescence molecular tomography with an annexin V-Cy5.5 conjugate. Proc Natl Acad SciUSA 101, 12294–12299.CrossRefGoogle Scholar
  43. Patri, A.K., Myc, A., Beals, J., Thomas, T.P., Bander, N.H., Baker, J.R., 2004. Synthesis and in vitro testing of J591 antibody-dendrimer conjugates for targeted prostate cancer therapy. Bioconjug Chem 15, 1174–1181.PubMedCrossRefGoogle Scholar
  44. Pinaud, F., et al., 2006. Advances in fluorescence imaging with quantum dot bio-probes. Biomaterials 27, 1679–1687.PubMedCrossRefGoogle Scholar
  45. Quintana, A., Raczka, E., Piehler, L., Lee, I., Myc, A., Majoros, I., Patri, A.K., Thomas, T., Mule, J., Baker, J.R., 2002. Design and function of a dendrimer-based therapeutic nanodevice targeted to tumor cells through the folate receptor. Pharm Res 19, 1310–1316.PubMedCrossRefGoogle Scholar
  46. Schellenberger, E.A., Sosnovik, D., Weissleder, R., Josephson, L., 2004. Magneto/optical annexin V, a multimodal protein. Bioconjug Chem 15, 1062–1067.PubMedCrossRefGoogle Scholar
  47. Smith, A., Ruan, G., Rhyner,M.N., Nie, S.M., 2006. Engineering luminescent quantum dots for in vivo molecular and cellular imaging. Ann Biomed Eng 34, 1–12.CrossRefGoogle Scholar
  48. Smith, A.M., Gao, X.H., Nie, S.M., 2004. Quantum dot nanocrystals for in vivo molecular and cellular imaging. Photochem Photobiol 80, 377–385.PubMedGoogle Scholar
  49. Stroh, M., Zimmer, J.P., Duda, D.G., Levchenko, T.S., Cohen, K.S., Brown, E.B., Scadden, D.T., Torchilin, V.P., Bawendi, M.G., Fukumura, D., Jain, R.K., 2005. Quantum dots spectrally distinguish multiple species within the tumor milieu in vivo. Nat Med 11, 678–682.PubMedCrossRefGoogle Scholar
  50. Torchilin, V., Babich, J., Weissig, V., 2000. Liposomes and micelles to target the blood pool for imaging purposes. J Liposome Res 10, 483–499.CrossRefGoogle Scholar
  51. Torchilin, V.P., Trubetskoy, V.S., Milshteyn, A.M., Canillo, J., Wolf, G.L., Papisov, M.I., Bogdanov, A.A., Narula, J., Khaw, B.A., Omelyanenko, V.G., 1994. Targeted delivery of diagnostic agents by surface-modified liposomes. J Control Release 28, 45–58.CrossRefGoogle Scholar
  52. Wang, D.S., He, J.B., Rosenzweig, N., Rosenzweig, Z., 2004. Superparamagnetic Fe2O3 Beads-CdSe/ZnS quantum dots core-shell nanocomposite particles for cell separation. Nano Letters 4, 409–413.CrossRefGoogle Scholar
  53. Wu, X.Y., Liu, H.J., Liu, J.Q., Haley, K.N., Treadway, J.A., Larson, J.P., Ge, N.F., Peale, F., Bruchez, M.P., 2003. Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots. Nat Biotechnol 21, 41–46.PubMedCrossRefGoogle Scholar
  54. Xu HX, S.M., Wong, E.Y., et al., 2003. Multiplexed SNP genotyping using the Qbead (TM) system: a quantum dot-encoded microsphere-based assay. Nucleic Acids Res 31, e43.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Matthew N. Rhyner
  • Andrew M. Smith
  • Xiaohu Gao
  • Hui Mao
  • Lily Yang
  • Shuming Nie

There are no affiliations available

Personalised recommendations