Advertisement

Control of Osteoclast Activity and Bone Loss by IKK Subunits: New Targets for Therapy

  • Maria Grazia Ruocco
  • Michael Karin
Part of the Advances in Experimental Medicine and Biology book series (volume 602)

Transcription factor NF-κB has been well recognized as a pivotal player in osteclastogenesis and inflammation-induced bone loss. Here, we discuss our recent results obtained using a genetic approach in mice that indicate the importance of IKKβ, and not IKKα, as a transducer of signals from receptor activator of NF-κB (RANK) to NF-κB. Ablation of IKKβ results in lack of osteoclastogenesis and unresponsiveness of IKKβ-deficient mice to inflammation-induced bone loss. In the need of a more effective therapy for the treatment of inflammatory diseases causing bone resorption, specific inhibition of IKKβ represents a logical alternative strategy to the current therapies.

Keywords

Bone Loss Osteoclast Differentiation Bone Erosion Osteoclast Precursor IkappaB Kinase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abu-Amer, Y., J. Erdmann, et al. 2000. Tumor necrosis factor receptors types 1 and 2 differentially regulate osteoclastogenesis. J Biol Chem 275(35): 27307–27310.PubMedGoogle Scholar
  2. Barnes, P.J., and M. Karin. 1997. Nuclear factor-kappaB: a pivotal transcription factor in chronic inflammatory diseases. N Engl J Med 336(15): 1066–1071.CrossRefPubMedGoogle Scholar
  3. Bathon, J.M., R.W. Martin, et al. 2000. A comparison of etanercept and methotrexate in patients with early rheumatoid arthritis. N Engl J Med 343(22): 1586–1593.CrossRefPubMedGoogle Scholar
  4. Bolon, B., G. Campagnuolo, et al. 2002. Duration of bone protection by a single osteoprotegerin injection in rats with adjuvant-induced arthritis. Cell Mol Life Sci 59(9): 1569–1576.CrossRefPubMedGoogle Scholar
  5. Bonizzi, G., and M. Karin. 2004. The two NF-kappaB activation pathways and their role in innate and adaptive immunity. Trends Immunol 25(6): 280–288.CrossRefPubMedGoogle Scholar
  6. Boyle, W.J., W.S. Simonet, et al. 2003. Osteoclast differentiation and activation. Nature 423(6937): 337–342.CrossRefPubMedGoogle Scholar
  7. Breedveld, F.C., P. Emery, et al. 2004. Infliximab in active early rheumatoid arthritis. Ann Rheum Dis 63(2): 149–155.CrossRefPubMedGoogle Scholar
  8. Campagnuolo, G., B. Bolon, et al. 2002. Kinetics of bone protection by recombinant osteoprotegerin therapy in Lewis rats with adjuvant arthritis. Arthritis Rheum 46(7): 1926–1936.CrossRefPubMedGoogle Scholar
  9. Campbell, I.K., S. Gerondakis, et al. 2000. Distinct roles for the NF-kappaB1 (p50) and c-Rel transcription factors in inflammatory arthritis. J Clin Invest 105(12): 1799–1806.CrossRefPubMedGoogle Scholar
  10. Campbell, I.K., K. O’Donnell, et al. 2001. Severe inflammatory arthritis and lymphadenopathy in the absence of TNF. J Clin Invest 107(12): 1519–1527.CrossRefPubMedGoogle Scholar
  11. Chellaiah, M., C. Fitzgerald, et al. 1998. c-Src is required for stimulation of gelsolin-associated phosphatidylinositol 3-kinase. J Biol Chem 273(19): 11908–11916.CrossRefPubMedGoogle Scholar
  12. Danning, C.L., G.G. Illei, et al. 2000. Macrophage-derived cytokine and nuclear factor kappaB p65 expression in synovial membrane and skin of patients with psoriatic arthritis. Arthritis Rheum 43(6): 1244–1256.CrossRefPubMedGoogle Scholar
  13. den Broeder, A., L. van de Putte, et al. 2002. A single dose, placebo controlled study of the fully human anti-tumor necrosis factor-alpha antibody adalimumab (D2E7) in patients with rheumatoid arthritis. J Rheumatol 29(11): 2288–2298.Google Scholar
  14. den Broeder, A.A., L.A. Joosten, et al. 2002. Long term anti-tumour necrosis factor alpha monotherapy in rheumatoid arthritis: effect on radiological course and prognostic value of markers of cartilage turnover and endothelial activation. Ann Rheum Dis 61(4): 311–318.CrossRefGoogle Scholar
  15. Dougall, W.C., M. Glaccum, et al. 1999. RANK is essential for osteoclast and lymph node development. Genes Dev 13(18): 2412–2424.CrossRefPubMedGoogle Scholar
  16. Duong, L.T., P.T. Lakkakorpi, et al. 1998. PYK2 in osteoclasts is an adhesion kinase, localized in the sealing zone, activated by ligation of alpha(v) beta3 integrin, and phosphorylated by src kinase. J Clin Invest 102(5): 881–892.CrossRefPubMedGoogle Scholar
  17. Elliott, M.J., R.N. Maini, et al. 1994. Randomised double-blind comparison of chimeric monoclonal antibody to tumour necrosis factor alpha (cA2) versus placebo in rheumatoid arthritis. Lancet 344(8930): 1105–1110.CrossRefPubMedGoogle Scholar
  18. Epinat, J.C., and T. D. Gilmore. 1999. Diverse agents act at multiple levels to inhibit the Rel/NF-kappaB signal transduction pathway. Oncogene 18(49): 6896–6909.CrossRefPubMedGoogle Scholar
  19. Foxwell, B., K. Browne, et al. 1998. Efficient adenoviral infection with IkappaB alpha reveals that macrophage tumor necrosis factor alpha production in rheumatoid arthritis is NF-kappaB dependent. Proc Natl Acad Sci U S A 95(14): 8211–8215.CrossRefPubMedGoogle Scholar
  20. Franzoso, G., L. Carlson, et al. 1997. Requirement for NF-kappaB in osteoclast and B-cell development. Genes Dev 11(24): 3482–3496.CrossRefPubMedGoogle Scholar
  21. Genovese, M.C., J.M. Bathon, et al. 2002. Etanercept versus methotrexate in patients with early rheumatoid arthritis: two-year radiographic and clinical outcomes. Arthritis Rheum 46(6): 1443–1450.CrossRefPubMedGoogle Scholar
  22. Ghosh, S., M.J. May, et al. 1998. NF-kappa B and Rel proteins: evolutionarily conserved mediators of immune responses. Annu Rev Immunol 16: 225–260.CrossRefPubMedGoogle Scholar
  23. Gravallese, E.M., 2002. Bone destruction in arthritis. Ann Rheum Dis 61(Suppl 2): ii84–ii86.PubMedGoogle Scholar
  24. Hsu, H., H.B. Shu, et al. 1996. TRADD-TRAF2 and TRADD-FADD interactions define two distinct TNF receptor 1 signal transduction pathways. Cell 84(2): 299–308.CrossRefPubMedGoogle Scholar
  25. Hu, Y., V. Baud, et al. 1999. Abnormal morphogenesis but intact IKK activation in mice lacking the IKKalpha subunit of IkappaB kinase. Science 284(5412): 316–320.CrossRefPubMedGoogle Scholar
  26. Hu, Y., V. Baud, et al. 2001. IKKalpha controls formation of the epidermis independently of NF-kappaB. Nature 410(6829): 710–714.CrossRefPubMedGoogle Scholar
  27. Iotsova, V., J. Caamano, et al. 1997. Osteopetrosis in mice lacking NF-kappaB1 and NF-kappaB2. Nat Med 3(11): 1285–1289.CrossRefPubMedGoogle Scholar
  28. Ji, H., A. Pettit, et al. 2002. Critical roles for interleukin 1 and tumor necrosis factor alpha in antibody-induced arthritis. J Exp Med 196(1): 77–85.CrossRefPubMedGoogle Scholar
  29. Jimi, E., K. Aoki, et al. 2004. Selective inhibition of NF-kappa B blocks osteoclastogenesis and prevents inflammatory bone destruction in vivo. Nat Med 10(6): 617–624.CrossRefPubMedGoogle Scholar
  30. Karin, M., and Y. Ben-Neriah. 2000. Phosphorylation meets ubiquitination: the control of NF-[kappa]B activity. Annu Rev Immunol 18: 621–663.CrossRefPubMedGoogle Scholar
  31. Karin, M., and A. Lin. 2002. NF-kappaB at the crossroads of life and death. Nat Immunol 3(3): 221–227.CrossRefPubMedGoogle Scholar
  32. Karsenty, G., and E.F. Wagner. 2002. Reaching a genetic and molecular understanding of skeletal development. Dev Cell 2(4): 389–406.CrossRefPubMedGoogle Scholar
  33. Kobayashi, K., N. Takahashi, et al. 2000. Tumor necrosis factor alpha stimulates osteoclast differentiation by a mechanism independent of the ODF/RANKL-RANK interaction. J Exp Med 191(2): 275–286.CrossRefPubMedGoogle Scholar
  34. Kong, Y.Y., U. Feige, et al. 1999. Activated T cells regulate bone loss and joint destruction in adjuvant arthritis through osteoprotegerin ligand. Nature 402(6759): 304–309.CrossRefPubMedGoogle Scholar
  35. Kong, Y.Y., H. Yoshida, et al. 1999. OPGL is a key regulator of osteoclastogenesis, lymphocyte development and lymph-node organogenesis. Nature 397(6717): 315–323.CrossRefPubMedGoogle Scholar
  36. Kremer, J.M., M.E. Weinblatt, et al. 2003. Etanercept added to background methotrexate therapy in patients with rheumatoid arthritis: continued observations. Arthritis Rheum 48(6): 1493–1499.CrossRefPubMedGoogle Scholar
  37. Lacey, D.L., E. Timms, et al. 1998. Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell 93(2): 165–176.CrossRefPubMedGoogle Scholar
  38. Lam, J., S. Takeshita, et al. 2000. TNF-alpha induces osteoclastogenesis by direct stimulation of macrophages exposed to permissive levels of RANK ligand. J Clin Invest 106(12): 1481–1488.CrossRefPubMedGoogle Scholar
  39. Lawrence, T., D.A. Willoughby, et al. 2002. Anti-inflammatory lipid mediators and insights into the resolution of inflammation. Nat Rev Immunol 2(10): 787–795.CrossRefPubMedGoogle Scholar
  40. Lee, S.E., K.M. Woo, et al. 2002. The phosphatidylinositol 3-kinase, p38, and extracellular signal-regulated kinase pathways are involved in osteoclast differentiation. Bone 30(1): 71–77.CrossRefPubMedGoogle Scholar
  41. Leisen, J.C., H. Duncan, et al. 1988. The erosive front: a topographic study of the junction between the pannus and the subchondral plate in the macerated rheumatoid metacarpal head. J Rheumatol 15(1): 17–22.PubMedGoogle Scholar
  42. Li, Q., D. Van Antwerp, et al. 1999. Severe liver degeneration in mice lacking the IkappaB kinase 2 gene. Science 284(5412): 321–325.CrossRefPubMedGoogle Scholar
  43. Li, Z.W., W. Chu, et al. 1999. The IKKbeta subunit of IkappaB kinase (IKK) is essential for nuclear factor kappaB activation and prevention of apoptosis. J Exp Med 189(11): 1839–1845.CrossRefPubMedGoogle Scholar
  44. Lipsky, P.E., D.M. van der Heijde, et al. 2000. Infliximab and methotrexate in the treatment of rheumatoid arthritis. Anti-Tumor Necrosis Factor Trial in Rheumatoid Arthritis with Concomitant Therapy Study Group. N Engl J Med 343(22): 1594–1602.CrossRefPubMedGoogle Scholar
  45. Liu, Z.G., H. Hsu, et al. 1996. Dissection of TNF receptor 1 effector functions: JNK activation is not linked to apoptosis while NF-kappaB activation prevents cell death. Cell 87(3): 565–576.CrossRefPubMedGoogle Scholar
  46. MacNaul, K.L., N.I. Hutchinson, et al. 1990. Analysis of IL-1 and TNF-alpha gene expression in human rheumatoid synoviocytes and normal monocytes by in situ hybridization. J Immunol 145(12): 4154–4166.PubMedGoogle Scholar
  47. Maeda, S., L. Chang, et al. 2003. IKKbeta is required for prevention of apoptosis mediated by cell-bound but not by circulating TNFalpha. Immunity 19(5): 725–737.CrossRefPubMedGoogle Scholar
  48. Maini, R., E.W. St. Clair, et al. 1999. Infliximab (chimeric anti-tumour necrosis factor alpha monoclonal antibody) versus placebo in rheumatoid arthritis patients receiving concomitant methotrexate: a randomised phase III trial. ATTRACT Study Group. Lancet 354(9194): 1932–1939.CrossRefPubMedGoogle Scholar
  49. Maini, R.N., F.C. Breedveld, et al. 1998. Therapeutic efficacy of multiple intravenous infusions of anti-tumor necrosis factor alpha monoclonal antibody combined with low-dose weekly methotrexate in rheumatoid arthritis. Arthritis Rheum 41(9): 1552–1563.CrossRefPubMedGoogle Scholar
  50. Mercurio, F., H. Zhu, et al. 1997. IKK-1 and IKK-2: cytokine-activated IkappaB kinases essential for NF-kappaB activation. Science 2785339: 860–866.CrossRefGoogle Scholar
  51. Miagkov, A.V., D.V. Kovalenko, et al. 1998. NF-kappaB activation provides the potential link between inflammation and hyperplasia in the arthritic joint. Proc Natl Acad Sci U S A 95(23): 13859–13864.CrossRefPubMedGoogle Scholar
  52. Moreland, L.W., S.W. Baumgartner, et al. 1997. Treatment of rheumatoid arthritis with a recombinant human tumor necrosis factor receptor (p75)-Fc fusion protein. N Engl J Med 337(3): 141–7.CrossRefPubMedGoogle Scholar
  53. Moreland, L.W., M.H. Schiff, et al. 1999. Etanercept therapy in rheumatoid arthritis. A randomized, controlled trial. Ann Intern Med 130(6): 478–486.PubMedGoogle Scholar
  54. Mostov, K., and Z. Werb (1997). Journey across the osteoclast. Science 276(5310): 219–220.CrossRefPubMedGoogle Scholar
  55. Nakashima, T., T. Wada, et al. 2003. RANKL and RANK as novel therapeutic targets for arthritis. Curr Opin Rheumatol 15(3): 280–287.CrossRefPubMedGoogle Scholar
  56. Novack, D.V., L. Yin, et al. 2003. The IkappaB function of NF-kappaB2 p100 controls stimulated osteoclastogenesis. J Exp Med 198(5): 771–781.CrossRefPubMedGoogle Scholar
  57. Pettit, A.R., H. Ji, et al. 2001. TRANCE/RANKL knockout mice are protected from bone erosion in a serum transfer model of arthritis. Am J Pathol 159(5): 1689–1699.PubMedGoogle Scholar
  58. Reddi, A.H. 1997. Bone morphogenesis and modeling: soluble signals sculpt osteosomes in the solid state. Cell 89(2): 159–161.CrossRefPubMedGoogle Scholar
  59. Redlich, K., S. Hayer, et al. 2002. Osteoclasts are essential for TNF-alpha-mediated joint destruction. J Clin Invest 110(10): 1419–1427.PubMedGoogle Scholar
  60. Romas, E., N.A. Sims, et al. 2002. Osteoprotegerin reduces osteoclast numbers and prevents bone erosion in collagen-induced arthritis. Am J Pathol 161(4): 1419–1427.PubMedGoogle Scholar
  61. Roodman, G.D. 1999. Cell biology of the osteoclast. Exp Hematol 27(8): 1229–1241.CrossRefPubMedGoogle Scholar
  62. Rothwarf, D.M., and M. Karin. 1999. The NF-kappa B activation pathway: a paradigm in information transfer from membrane to nucleus. Sci STKE 1999(5): RE1.Google Scholar
  63. Ruocco, M.G., S. Maeda, et al. 2005. I{kappa}B kinase (IKK){beta}, but not IKK{alpha}, is a critical mediator of osteoclast survival and is required for inflammation-induced bone loss. J Exp Med 201(10): 1677–1687.CrossRefPubMedGoogle Scholar
  64. Sato, T., C. Selleri, et al. 1997. Expression and modulation of cellular receptors for interferon-gamma, tumour necrosis factor, and Fas on human bone marrow CD34+ cells. Br J Haematol 97(2): 356–365.CrossRefPubMedGoogle Scholar
  65. Schett, G., K. Redlich, et al. 2003. Osteoprotegerin protects against generalized bone loss in tumor necrosis factor-transgenic mice. Arthritis Rheum 48(7): 2042–2051.CrossRefPubMedGoogle Scholar
  66. Seetharaman, R., A.L. Mora, et al. 1999. Essential role of T cell NF-kappa B activation in collagen-induced arthritis. J Immunol 163(3): 1577–1583.PubMedGoogle Scholar
  67. Senftleben, U., Y. Cao, et al. 2001. Activation by IKKalpha of a second, evolutionary conserved, NF-kappa B signaling pathway. Science 293(5534): 1495–1499.CrossRefPubMedGoogle Scholar
  68. Senftleben, U., Z.W. Li, et al. 2001. IKKbeta is essential for protecting T cells from TNFalpha-induced apoptosis. Immunity 14(3): 217–230.CrossRefPubMedGoogle Scholar
  69. Shealy, D.J., P.H. Wooley, et al. 2002. Anti-TNF-alpha antibody allows healing of joint damage in polyarthritic transgenic mice. Arthritis Res 4(5): R7.CrossRefPubMedGoogle Scholar
  70. Shinkura, R., K. Kitada, et al. 1999. Alymphoplasia is caused by a point mutation in the mouse gene encoding Nf-kappa b-inducing kinase. Nat Genet 22(1): 74–77.CrossRefPubMedGoogle Scholar
  71. Simonet, W.S., D.L. Lacey, et al. 1997. Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell 89(2): 309–319.CrossRefPubMedGoogle Scholar
  72. Soriano, P., C. Montgomery, et al. 1991. Targeted disruption of the c-src proto-oncogene leads to osteopetrosis in mice. Cell 64(4): 693–702.CrossRefPubMedGoogle Scholar
  73. Suzuki, Y., F. Nishikaku, et al. 1998. Osteoclast-like cells in murine collagen induced arthritis. J Rheumatol 25(6): 1154–1160.PubMedGoogle Scholar
  74. Tak, P.P., and G.S. Firestein. 2001. NF-kappaB: a key role in inflammatory diseases. J Clin Invest 107(1): 7–11.CrossRefPubMedGoogle Scholar
  75. Tanaka, S., M. Amling, et al. 1996. c-Cbl is downstream of c-Src in a signalling pathway necessary for bone resorption. Nature 383(6600): 528–531.CrossRefPubMedGoogle Scholar
  76. Weinblatt, M.E., E.C. Keystone, et al. 2003. Adalimumab, a fully human anti-tumor necrosis factor alpha monoclonal antibody, for the treatment of rheumatoid arthritis in patients taking concomitant methotrexate: the ARMADA trial. Arthritis Rheum 48(1): 35–45.CrossRefPubMedGoogle Scholar
  77. Weinblatt, M.E., J.M. Kremer, et al. 1999. A trial of etanercept, a recombinant tumor necrosis factor receptor:Fc fusion protein, in patients with rheumatoid arthritis receiving methotrexate. N Engl J Med 340(4): 253–259.CrossRefPubMedGoogle Scholar
  78. Wong, B.R., D. Besser, et al. 1999. TRANCE, a TNF family member, activates Akt/PKB through a signaling complex involving TRAF6 and c-Src. Mol Cell 4(6): 1041–1049.CrossRefPubMedGoogle Scholar
  79. Zandi, E., D.M. Rothwarf, et al. 1997. The IkappaB kinase complex (IKK) contains two kinase subunits, IKKalpha and IKKbeta, necessary for IkappaB phosphorylation and NF-kappaB activation. Cell 91(2): 243–252.CrossRefPubMedGoogle Scholar
  80. Zhang, Y.H., A. Heulsmann, et al. 2001. Tumor necrosis factor-alpha (TNF) stimulates RANKL-induced osteoclastogenesis via coupling of TNF type 1 receptor and RANK signaling pathways. J Biol Chem 276(1): 563–568.CrossRefPubMedGoogle Scholar
  81. Zou, W., I. Hakim, et al. 2001. Tumor necrosis factor-alpha mediates RANK ligand stimulation of osteoclast differentiation by an autocrine mechanism. J Cell Biochem 83(1): 70–83.CrossRefPubMedGoogle Scholar
  82. Zwerina, J., S. Hayer, et al. 2004. Single and combined inhibition of tumor necrosis factor, interleukin-1, and RANKL pathways in tumor necrosis factor-induced arthritis: effects on synovial inflammation, bone erosion, and cartilage destruction. Arthritis Rheum 50(1): 277–290.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Maria Grazia Ruocco
    • 1
  • Michael Karin
    • 1
  1. 1.Laboratory of Gene Regulation and Signal TransductionUniversity of California, San DiegoLa JollaUSA

Personalised recommendations