Immune Dysregulation, Polyendocrinopathy, Enteropathy, X-Linked Inheritance: Model for Autoaggression

Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 601)

Abstract

Patients with the rare X-linked syndrome, immune dysregulation, polyendocrinopathy, enteropathy (IPEX) may present early in life with type I diabetes, hyperthyroidism, chronic enteropathy, villous atrophy, dermatitis, autoimmune hemolytic anemia, and antibody- induced neutropenia and thrombocytopenia. Of the reported families with IPEX, most affected boys died before the age of 3 years of malabsorbtion, failure to thrive, infections, or other complications. Characteristic findings at autopsy include lymphocytic infiltrates affecting the lungs, endocrine organs, such as pancreas and thyroid and skin, and increased lymphoid elements in lymph nodes and spleen. Although symptomatic therapy with immunosuppressive drugs provides some beneficial effects, the only curative treatment is hematopoietic stem cell transplantation.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bacchetta, R., Gregori, S. and Roncarolo, M.G. (2005) CD4+ regulatory T cells: mechanisms of induction and effector function. Autoimmun. Rev. 4, 491–496.CrossRefPubMedGoogle Scholar
  2. Baud, O., Goulet, O., Canioni, D., Le Deist, F., Radford, I., Rieu, D., Dupuis-Girod, S., Cerf-Bensussan, N., Cavazzana-Calvo, M., Brousse, N., Fischer, A. and Casanova, J.L. (2001) Treatment of the immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) by allogeneic bone marrow transplantation. N. Engl. J. Med. 344, 1758–1762.CrossRefPubMedGoogle Scholar
  3. Bennett, C.L., Brunkow, M.E., Ramsdell, F., O’Briant, K.C., Zhu, Q., Fuleihan, R.L., Shigeoka, A.O., Ochs, H.D. and Chance, P.F. (2001a) A rare polyadenylation signal mutation of the FOXP3 gene (AAUAAA→AAUGAA) leads to the IPEX syndrome. Immunogenetics 53, 435–439.CrossRefPubMedGoogle Scholar
  4. Bennett, C.L., Christie, J., Ramsdell, F., Brunkow, M.E., Ferguson, P.J., Whitesell, L., Kelly, T.E., Saulsbury, F.T., Chance, P.F. and Ochs, H.D. (2001b) The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3. Nat. Genet. 27, 20–21.CrossRefPubMedGoogle Scholar
  5. Bettelli, E., Dastrange, M. and Oukka, M. (2005) Foxp3 interacts with nuclear factor of activated T cells and NF-kappa B to repress cytokine gene expression and effector functions of T helper cells. Proc. Natl. Acad. Sci. U.S.A. 102, 5138–5143.CrossRefPubMedGoogle Scholar
  6. Bindl, L., Torgerson, T., Perroni, L., Youssef, N., Ochs, H.D., Goulet, O. and Ruemmele, F.M. (2005) Successful use of the new immune-suppressor sirolimus in IPEX (immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome). J. Pediatr. 147, 256–259.CrossRefPubMedGoogle Scholar
  7. Brunkow, M.E., Jeffery, E.W., Hjerrild, K.A., Paeper, B., Clark, L.B., Yasayko, S.A., Wilkinson, J.E., Galas, D., Ziegler, S.F. and Ramsdell, F. (2001) Disruption of a new forkhead/winged-helix protein, scurfin, results in the fatal lymphoproliferative disorder of the scurfy mouse. Nat. Genet. 27, 68–73.CrossRefPubMedGoogle Scholar
  8. Carlsson, P. and Mahlapuu, M. (2002) Forkhead transcription factors: key players in development and metabolism. Dev. Biol. 250, 1–23.CrossRefPubMedGoogle Scholar
  9. Dubois, B., Chapat, L., Goubier, A. and Kaiserlian, D. (2003) CD4+CD25+ T cells as key regulators of immune responses. Eur. J. Dermatol. 13, 111–116.PubMedGoogle Scholar
  10. Fontenot, J.D., Gavin, M.A. and Rudensky, A.Y. (2003) Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat. Immunol. 4, 330–336.CrossRefPubMedGoogle Scholar
  11. Fontenot, J.D., Rasmussen, J.P., Williams, L.M., Dooley, J.L., Farr, A.G. and Rudensky, A.Y. (2005) Regulatory T cell lineage specification by the forkhead transcription factor foxp3. Immunity 22, 329–341.CrossRefPubMedGoogle Scholar
  12. Fontenot, J.D. and Rudensky, A.Y. (2005) A well adapted regulatory contrivance: regulatory T cell development and the forkhead family transcription factor Foxp3. Nat. Immunol. 6, 331–337.CrossRefPubMedGoogle Scholar
  13. Gambineri, E., Torgerson, T.R. and Ochs, H.D. (2003) Immune dysregulation, polyendocrinopathy, enteropathy, and X-linked inheritance (IPEX), a syndrome of systemic autoimmunity caused by mutations of FOXP3, a critical regulator of T cell homeostasis. Curr. Opin. Rheumatol. 15, 430–435.CrossRefPubMedGoogle Scholar
  14. Itoh, M., Takahashi, T., Sakaguchi, N., Kuniyasu, Y., Shimizu, J., Otsuka, F. and Sakaguchi, S. (1999) Thymus and autoimmunity: production of CD25+CD4+ naturally anergic and suppressive T cells as a key function of the thymus in maintaining immunologic self-tolerance. J. Immunol. 162, 5317–5326.PubMedGoogle Scholar
  15. Kim, J.M., Rasmussen, J.P. and Rudensky, A.Y. (2007) Regulatory T cells prevent catastrophic autoimmunity throughout the lifespan of mice. Nat. Immunol. 8, 191–197.CrossRefPubMedGoogle Scholar
  16. Kobayashi, I., Imamura, K., Yamada, M., Okano, M., Yara, A., Ikema, S. and Ishikawa, N. (1998) A 75-kD autoantigen recognized by sera from patients with X-linked autoimmune enteropathy associated with nephropathy. Clin. Exp. Immunol. 111, 527–531.CrossRefPubMedGoogle Scholar
  17. Lopes, J.E., Torgerson, T.R., Schubert, L.A., Anover, S.D., Ocheltree, E.L., Ochs, H.D. and Ziegler, S.F. (2006) Analysis of FOXP3 reveals multiple domains required for its function as a transcriptional repressor. J. Immunol. 177, 3133–3142.PubMedGoogle Scholar
  18. Loser, K., Hansen, W., Apelt, J., Balkow, S., Buer, J. and Beissert, S. (2005) In vitro-generated regulatory T cells induced by Foxp3-retrovirus infection control murine contact allergy and systemic autoimmunity. Gene Ther. 12, 1294–1304.CrossRefPubMedGoogle Scholar
  19. Mazzolari, E., Forino, C., Fontana, M., D’Ippolito, C., Lanfranchi, A., Gambineri, E., Ochs, H., Badolato, R. and Notarangelo, L.D. (2005) A new case of IPEX receiving bone marrow transplantation. Bone Marrow Transplant. 35, 1033–1034.CrossRefPubMedGoogle Scholar
  20. Nieves, D.S., Phipps, R.P., Pollock, S.J., Ochs, H.D., Zhu, Q., Scott, G.A., Ryan, C.K., Kobayashi, I., Rossi, T.M. and Goldsmith, L.A. (2004) Dermatologic and immunologic findings in the immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome. Arch. Dermatol. 140, 466–472.CrossRefPubMedGoogle Scholar
  21. Ormandy, L.A., Hillemann, T., Wedemeyer, H., Manns, M.P., Greten, T.F. and Korangy, F. (2005) Increased populations of regulatory T cells in peripheral blood of patients with hepatocellular carcinoma. Cancer Res. 65, 2457–2464.CrossRefPubMedGoogle Scholar
  22. Powell, B.R., Buist, N.R. and Stenzel, P. (1982) An X-linked syndrome of diarrhea, polyendocrinopathy, and fatal infection in infancy. J. Pediatr. 100, 731–737.CrossRefPubMedGoogle Scholar
  23. Randolph, D.A. and Fathman, C.G. (2006) Cd4+Cd25+ regulatory T cells and their therapeutic potential. Annu. Rev. Med. 57, 381–402.CrossRefPubMedGoogle Scholar
  24. Rao, A., Kamani, N., Filipovich, A., Lee, S.M., Davies, S.M., Dalal, J. and Shenoy, S. (2007) Successful bone marrow transplantation for IPEX syndrome after reduced-intensity conditioning. Blood 109, 383–385.CrossRefPubMedGoogle Scholar
  25. Russell, W.L., Russell, L.B. and Gower, J.S. (1959) Exceptional inheritance of a sex-linked gene in the mouse explained on the basis that the X/O sex-chromosome constitution is Female. Proc. Natl. Acad. Sci. U.S.A. 45, 554–560.CrossRefPubMedGoogle Scholar
  26. Schubert, L.A., Jeffery, E., Zhang, Y., Ramsdell, F. and Ziegler, S.F. (2001) Scurfin (FOXP3) acts as a repressor of transcription and regulates T cell activation. J. Biol. Chem. 276, 37672–37679.CrossRefPubMedGoogle Scholar
  27. Wildin, R.S., Ramsdell, F., Peake, J., Faravelli, F., Casanova, J.L., Buist, N., Levy-Lahad, E., Mazzella, M., Goulet, O., Perroni, L., Bricarelli, F.D., Byrne, G., McEuen, M., Proll, S., Appleby, M. and Brunkow, M.E. (2001) X-linked neonatal diabetes mellitus, enteropathy and endocrinopathy syndrome is the human equivalent of mouse scurfy. Nat. Genet. 27, 18–20.CrossRefPubMedGoogle Scholar
  28. Wildin, R.S., Smyk-Pearson, S. and Filipovich, A.H. (2002) Clinical and molecular features of the immunodysregulation, polyendocrinopathy, enteropathy, X linked (IPEX) syndrome. J. Med. Genet. 39, 537–545.CrossRefPubMedGoogle Scholar
  29. Wood, K.J. and Sakaguchi, S. (2003) Regulatory T cells in transplantation tolerance. Nat. Rev. Immunol. 3, 199–210.CrossRefPubMedGoogle Scholar
  30. Wu, Y., Borde, M., Heissmeyer, V., Feuerer, M., Lapan, A.D., Stroud, J.C., Bates, D.L., Guo, L., Han, A., Ziegler, S.F., Mathis, D., Benoist, C., Chen, L. and Rao, A. (2006) FOXP3 controls regulatory T cell function through cooperation with NFAT. Cell 126, 375–387.CrossRefPubMedGoogle Scholar
  31. Zhang, X., Izikson, L., Liu, L. and Weiner, H.L. (2001) Activation of CD25(+)CD4(+) regulatory T cells by oral antigen administration. J. Immunol. 167, 4245–4253.PubMedGoogle Scholar
  32. Zorn, E., Kim, H.T., Lee, S.J., Floyd, B.H., Litsa, D., Arumugarajah, S., Bellucci, R., Alyea, E.P., Antin, J.H., Soiffer, R.J. and Ritz, J. (2005) Reduced frequency of FOXP3+ CD4+CD25+ regulatory T cells in patients with chronic graft-versus-host disease. Blood 106, 2903–2911.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Division of ImmunologyUniversity of Washington and Children’s Hospital and Regional Medical CenterSeattleUSA

Personalised recommendations