The Lytic NK Cell Immunological Synapse and Sequential Steps in Its Formation

Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 601)

Abstract

Natural killer (NK) cells are lymphocytes of the innate immune system that are critical in host defense. They are best known for their ability to mediate cytotoxicity, which involves a coordinated series of events resulting in the directed secretion of lytic granules onto a target cell. This process requires the formation of an immunological synapse in NK cells. The NK cell immunological synapse involves the reorganization of the actin cytoskeleton and clustering of certain cell surface receptors in the NK cell at the interface with the target cell. The lytic NK cell immunological synapse, specialized for mediating cytotoxicity, is further distinguished by the polarization of lytic granules, which are then secreted through this region onto the target cell. These events unfold in a definitive sequence and lead to critical checkpoints that provide regulatory control at specific stages in the formation of the NK cell lytic synapse.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Badour, K., Zhang, J., Shi, F., McGavin, M.K., Rampersad, V., Hardy, L.A., Field, D. and Siminovitch, K.A. (2003) The Wiskott-Aldrich syndrome protein acts downstream of CD2 and the CD2AP and PSTPIP1 adaptors to promote formation of the immunological synapse. Immunity 18, 141–154.CrossRefPubMedGoogle Scholar
  2. Barda-Saad, M., Braiman, A., Titerence, R., Bunnell, S.C., Barr, V.A. and Samelson, L.E. (2005) Dynamic molecular interactions linking the T cell antigen receptor to the actin cytoskeleton. Nat. Immunol. 6, 80–89.CrossRefPubMedGoogle Scholar
  3. Biron, C.A., Nguyen, K.B., Pien, G.C., Cousens, L.P. and Salazar-Mather, T.P. (1999) Natural killer cells in antiviral defense: function and regulation by innate cytokines. Annu. Rev. Immunol. 17, 189–220.CrossRefPubMedGoogle Scholar
  4. Blom, W.M., de Bont, H.J., Meijerman, I., Kuppen, P.J., van Der Meulen, H., Mulder, G.J. and Nagelkerke, J.F. (2001) Remodeling of the actin cytoskeleton of target hepatocytes and NK cells during induction of apoptosis. Cell. Motil. Cytoskeleton 49, 78–92.CrossRefPubMedGoogle Scholar
  5. Bryceson, Y.T., March, M.E., Barber, D.F., Ljunggren, H.G. and Long, E.O. (2005) Cytolytic granule polarization and degranulation controlled by different receptors in resting NK cells. J. Exp. Med. 202, 1001–1012.CrossRefPubMedGoogle Scholar
  6. Burkhardt, J.K., McIlvain, J.M., Jr., Sheetz, M.P. and Argon, Y. (1993) Lytic granules from cytotoxic T cells exhibit kinesin-dependent motility on microtubules in vitro. J. Cell. Sci. 104, 151–162.PubMedGoogle Scholar
  7. Carpen, O., Virtanen, I., Lehto, V.P. and Saksela, E. (1983) Polarization of NK cell cytoskeleton upon conjugation with sensitive target cells. J. Immunol. 131, 2695–2698.PubMedGoogle Scholar
  8. Clark, R.H., Stinchcombe, J.C., Day, A., Blott, E., Booth, S., Bossi, G., Hamblin, T., Davies, E.G. and Griffiths, G.M. (2003) Adaptor protein 3-dependent microtubule-mediated movement of lytic granules to the immunological synapse. Nat. Immunol. 4, 1111–1120.CrossRefPubMedGoogle Scholar
  9. Comans-Bitter, W.M., de Groot, R., van den Beemd, R., Neijens, H.J., Hop, W.C., Groeneveld, K., Hooijkaas, H. and van Dongen, J.J. (1997) Immunophenotyping of blood lymphocytes in childhood. Reference values for lymphocyte subpopulations. J. Pediatr. 130, 388–393.Google Scholar
  10. Davis, D.M., Chiu, I., Fassett, M., Cohen, G.B., Mandelboim, O. and Strominger, J.L. (1999) The human natural killer cell immune synapse. Proc. Natl. Acad. Sci. USA 96, 15062–15067.CrossRefPubMedGoogle Scholar
  11. Davis, D.M. and Dustin, M.L. (2004) What is the importance of the immunological synapse? Trends Immunol. 25, 323–327.CrossRefPubMedGoogle Scholar
  12. Desai, A. and Mitchison, T.J. (1997) Microtubule polymerization dynamics. Annu. Rev. Cell Dev. Biol. 13, 83–117.CrossRefPubMedGoogle Scholar
  13. Fehniger, T.A., Cooper, M.A. and Caligiuri, M.A. (2002) Interleukin-2 and interleukin-15: immunotherapy for cancer. Cytokine Growth Factor Rev. 13, 169–183.CrossRefPubMedGoogle Scholar
  14. Feldmann, J., Callebaut, I., Raposo, G., Certain, S., Bacq, D., Dumont, C., Lambert, N., Ouachee-Chardin, M., Chedeville, G. and Tamary, H. (2003) Munc13-4 is essential for cytolytic granules fusion and is mutated in a form of familial hemophagocytic lymphohistiocytosis (FHL3). Cell 115, 461–473.CrossRefPubMedGoogle Scholar
  15. Freiberg, B.A., Kupfer, H., Maslanik, W., Delli, J., Kappler, J., Zaller, D.M. and Kupfer, A. (2002) Staging and resetting T cell activation in SMACs. Nat. Immunol. 3, 911–917.CrossRefPubMedGoogle Scholar
  16. Goley, E.D. and Welch, M.D. (2006) The ARP2/3 complex: an actin nucleator comes of age. Nat. Rev. Mol. Cell Biol. 7, 713–726.CrossRefPubMedGoogle Scholar
  17. Graham, D.B., Cella, M., Giurisato, E., Fujikawa, K., Miletic, A.V., Kloeppel, T., Brim, K., Takai, T., Shaw, A.S., Colonna, M. and Swat, W. (2006) Vav1 controls DAP10-mediated natural cytotoxicity by regulating actin and microtubule dynamics. J. Immunol. 177, 2349–2355.PubMedGoogle Scholar
  18. Grakoui, A., Bromley, S.K., Sumen, C., Davis, M.M., Shaw, A.S., Allen, P.M. and Dustin, M.L. (1999) The immunological synapse: a molecular machine controlling T cell activation. Science 285, 221–227.CrossRefPubMedGoogle Scholar
  19. Ito, M., Tanabe, F., Sato, A., Ishida, E., Takami, Y. and Shigeta, S. (1989) Inhibition of natural killer cell-mediated cytotoxicity by ML-9, a selective inhibitor of myosin light chain kinase. Int. J. Immunopharmacol. 11, 185–190.CrossRefPubMedGoogle Scholar
  20. Katz, P., Zaytoun, A.M. and Lee, J.H., Jr. (1982) Mechanisms of human cell-mediated cytotoxicity. III. Dependence of natural killing on microtubule and microfilament integrity. J. Immunol. 129, 2816–2825.PubMedGoogle Scholar
  21. Krummel, M.F., Sjaastad, M.D., Wulfing, C. and Davis, M.M. (2000) Differential clustering of CD4 and CD3zeta during T cell recognition. Science 289, 1349–1352.CrossRefPubMedGoogle Scholar
  22. Kuhn, J.R. and Poenie, M. (2002). Dynamic polarization of the microtubule cytoskeleton during CTL-mediated killing. Immunity 16, 111–121.CrossRefPubMedGoogle Scholar
  23. Kupfer, A., Dennert, G. and Singer, S.J. (1983) Polarization of the Golgi apparatus and the microtubule-organizing center within cloned natural killer cells bound to their targets. Proc Natl. Acad. Sci. USA 80, 7224–7228.CrossRefPubMedGoogle Scholar
  24. Lanier, L.L. (2005) NK cell recognition. Annu. Rev. Immunol. 23, 225–274.CrossRefPubMedGoogle Scholar
  25. Lavie, G., Leib, Z. and Servadio, C. (1985) The mechanism of human NK cell-mediated cytotoxicity. Mode of action of surface-associated proteases in the early stages of the lytic reaction. J. Immunol. 135, 1470–1476.PubMedGoogle Scholar
  26. Lee, K.H., Dinner, A.R., Tu, C., Campi, G., Raychaudhuri, S., Varma, R., Sims, T.N., Burack, W.R., Wu, H., Wang, J. and Shaw, A.S. (2003) The immunological synapse balances T cell receptor signaling and degradation. Science 302, 1218–1222.CrossRefPubMedGoogle Scholar
  27. Lee, K.H., Holdorf, A.D., Dustin, M.L., Chan, A.C., Allen, P.M. and Shaw, A.S. (2002) T cell receptor signaling precedes immunological synapse formation. Science 295, 1539–1542.CrossRefPubMedGoogle Scholar
  28. Lou, Z., Billadeau, D.D., Savoy, D.N., Schoon, R.A. and Leibson, P.J. (2001) A role for a RhoA/ROCK/LIM-kinase pathway in the regulation of cytotoxic lymphocytes. J. Immunol. 167, 5749–5757.PubMedGoogle Scholar
  29. Masilamani, M., Nguyen, C., Kabat, J., Borrego, F. and Coligan, J.E. (2006) CD94/NKG2A inhibits NK cell activation by disrupting the actin network at the immunological synapse. J. Immunol. 177, 3590–3596.PubMedGoogle Scholar
  30. McCann, F.E., Vanherberghen, B., Eleme, K., Carlin, L.M., Newsam, R.J., Goulding, D. and Davis, D.M. (2003) The size of the synaptic cleft and distinct distributions of filamentous actin, ezrin, CD43, and CD45 at activating and inhibitory human NK cell immune synapses. J. Immunol. 170, 2862–2870.PubMedGoogle Scholar
  31. Miller, J.S. (2001) The biology of natural killer cells in cancer, infection, and pregnancy. Exp. Hematol. 29, 1157–1168.CrossRefPubMedGoogle Scholar
  32. Moretta, L., Bottino, C., Pende, D., Mingari, M.C., Biassoni, R. and Moretta, A. (2002) Human natural killer cells: their origin, receptors and function. Eur. J. Immunol. 32, 1205–1211.CrossRefPubMedGoogle Scholar
  33. Moretta, L. and Moretta, A. (2004) Killer immunoglobulin-like receptors. Curr. Opin. Immunol. 16, 626–633.CrossRefPubMedGoogle Scholar
  34. Mossman, K.D., Campi, G., Groves, J.T. and Dustin, M.L. (2005) Altered TCR signaling from geometrically repatterned immunological synapses. Science 310, 1191–1193.CrossRefPubMedGoogle Scholar
  35. Orange, J.S. (2002) Human natural killer cell deficiencies and susceptibility to infection. Microbes Infect. 4, 1545–1558.CrossRefPubMedGoogle Scholar
  36. Orange, J.S. (2006) Human natural killer cell deficiencies. Curr. Opin. Allergy Clin. Immunol. 6, 399–409.CrossRefPubMedGoogle Scholar
  37. Orange, J.S. and Ballas, Z.K. (2006) Natural killer cells in human health and disease. Clin. Immunol. 118, 1–10.CrossRefPubMedGoogle Scholar
  38. Orange, J.S., Fassett, M.S., Koopman, L.A., Boyson, J.E. and Strominger, J.L. (2002a) Viral evasion of natural killer cells. Nat. Immunol. 3, 1006–1012.Google Scholar
  39. Orange, J.S., Harris, K.E., Andzelm, M.M., Valter, M.M., Geha, R.S. and Strominger, J.L. (2003) The mature activating natural killer cell immunologic synapse is formed in distinct stages. Proc. Natl. Acad. Sci. USA 100, 14151–14156.CrossRefPubMedGoogle Scholar
  40. Orange, J.S., Ramesh, N., Remold-O’Donnell, E., Sasahara, Y., Koopman, L., Byrne, M., Bonilla, F.A., Rosen, F.S., Geha, R.S. and Strominger, J.L. (2002b) Wiskott-Aldrich syndrome protein is required for NK cell cytotoxicity and colocalizes with actin to NK cell-activating immunologic synapses. Proc. Natl. Acad. Sci. USA 99, 11351–11356.Google Scholar
  41. Orange, J.S., Stone, K.D., Turvey, S.E. and Krzewski, K. (2004) The Wiskott-Aldrich syndrome. Cell. Mol. Life Sci. 61, 2361–2385.CrossRefPubMedGoogle Scholar
  42. Pende, D., Parolini, S., Pessino, A., Sivori, S., Augugliaro, R., Morelli, L., Marcenaro, E., Accame, L., Malaspina, A., Biassoni, R., Bottino, C., Moretta, L. and Moretta, A. (1999) Identification and molecular characterization of NKp30, a novel triggering receptor involved in natural cytotoxicity mediated by human natural killer cells. J. Exp. Med. 190, 1505–1516.CrossRefPubMedGoogle Scholar
  43. Pessino, A., Sivori, S., Bottino, C., Malaspina, A., Morelli, L., Moretta, L., Biassoni, R. and Moretta, A. (1998) Molecular cloning of NKp46: a novel member of the immunoglobulin superfamily involved in triggering of natural cytotoxicity. J. Exp. Med. 188, 953–960.CrossRefPubMedGoogle Scholar
  44. Poggi, A., Panzeri, M.C., Moretta, L. and Zocchi, M.R. (1996) CD31-triggered rearrangement of the actin cytoskeleton in human natural killer cells. Eur. J. Immunol. 26, 817–824.CrossRefPubMedGoogle Scholar
  45. Pollard, T.D. and Borisy, G.G. (2003) Cellular motility driven by assembly and disassembly of actin filaments. Cell 112, 453–465.CrossRefPubMedGoogle Scholar
  46. Purtic, B., Pitcher, L.A., van Oers, N.S. and Wulfing, C. (2005) T cell receptor (TCR) clustering in the immunological synapse integrates TCR and costimulatory signaling in selected T cells. Proc. Natl. Acad. Sci. USA 102, 2904–2909.CrossRefPubMedGoogle Scholar
  47. Quan, P.C., Ishizaka, T. and Bloom, B.R. (1982) Studies on the mechanism of NK cell lysis. J. Immunol. 128, 1786–1791.PubMedGoogle Scholar
  48. Radosevic, K., van Leeuwen, A.M., Segers-Nolten, I.M., Figdor, C.G., de Grooth, B. and Greve, J. (1995) Occurrence and a possible mechanism of penetration of natural killer cells into K562 target cells during the cytotoxic interaction. Cytometry 20, 273–280.CrossRefPubMedGoogle Scholar
  49. Sancho, D., Nieto, M., Llano, M., Rodriguez-Fernandez, J.L., Tejedor, R., Avraham, S., Cabanas, C., Lopez-Botet, M. and Sanchez-Madrid, F. (2000) The tyrosine kinase PYK-2/RAFTK regulates natural killer (NK) cell cytotoxic response, and is translocated and activated upon specific target cell recognition and killing. J. Cell. Biol. 149, 1249–1262.CrossRefPubMedGoogle Scholar
  50. Smith, K.A. (2001) Low-dose daily interleukin-2 immunotherapy: accelerating immune restoration and expanding HIV-specific T cell immunity without toxicity. Aids 15, S28–35.CrossRefPubMedGoogle Scholar
  51. Stebbins, C.C., Watzl, C., Billadeau, D.D., Leibson, P.J., Burshtyn, D.N. and Long, E.O. (2003) Vav1 dephosphorylation by the tyrosine phosphatase SHP-1 as a mechanism for inhibition of cellular cytotoxicity. Mol. Cell. Biol. 23, 6291–6299.CrossRefPubMedGoogle Scholar
  52. Stinchcombe, J.C., Majorovits, E., Bossi, G., Fuller, S. and Griffiths, G.M. (2006) Centrosome polarization delivers secretory granules to the immunological synapse. Nature 443, 462–465.CrossRefPubMedGoogle Scholar
  53. Tay, C.H., Szomolanyi-Tsuda, E. and Welsh, R.M. (1998) Control of infections by NK cells. Curr .Top. Microbiol. Immunol. 230, 193–220.PubMedGoogle Scholar
  54. Trambas, C.M. and Griffiths, G. (2003) Delivering the kiss of death. Nat. Immunol 4, 399–403.CrossRefPubMedGoogle Scholar
  55. Vicente-Manzanares, M. and Sanchez-Madrid, F. (2004) Role of the cytoskeleton during leukocyte responses. Nat. Rev. Immunol. 4, 110–122.CrossRefPubMedGoogle Scholar
  56. Vyas, Y.M., Maniar, H., Lyddane, C.E., Sadelain, M. and Dupont, B. (2004) Ligand binding to inhibitory killer cell Ig-like receptors induce colocalization with Src homology domain 2-containing protein tyrosine phosphatase 1 and interruption of ongoing activation signals. J. Immunol. 173, 1571–1578.PubMedGoogle Scholar
  57. Vyas, Y.M., Mehta, K.M., Morgan, M., Maniar, H., Butros, L., Jung, S., Burkhardt, J.K. and Dupont, B. (2001) Spatial organization of signal transduction molecules in the NK cell immune synapses during MHC class I-regulated noncytolytic and cytolytic interactions. J. Immunol. 167, 4358–4367.PubMedGoogle Scholar
  58. Wu, J., Song, Y., Bakker, A.B., Bauer, S., Spies, T., Lanier, L.L. and Phillips, J.H. (1999) An activating immunoreceptor complex formed by NKG2D and DAP10. Science 285, 730–732.CrossRefPubMedGoogle Scholar
  59. Wulfing, C. and Davis, M.M. (1998) A receptor/cytoskeletal movement triggered by costimulation during T cell activation. Science 282, 2266–2269.CrossRefPubMedGoogle Scholar
  60. Wulfing, C., Purtic, B., Klem, J. and Schatzle, J.D. (2003) Stepwise cytoskeletal polarization as a series of checkpoints in innate but not adaptive cytolytic killing. Proc. Natl. Acad. Sci. USA 100, 7767–7772.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Department of Pediatrics, The Children’s Hospital of PhiladelphiaUniversity of Pennsylvania School of MedicinePhiladelphiaUSA

Personalised recommendations