Combined New Technologies to Improve Dental Implant Success and Quantitative Ultrasound Evaluation of NIR-LED Photobiomodulation

  • Jerry E. Bouquot
  • Peter R. Brawn
  • John C. Cline
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 12)


The importance of LLLT (photobiomodulation) to improve and maintain the health of dental implants is described.


Dental implants ultrasonic evaluation photobiomodulation LED 


  1. 1.
    Mish CE. Density of bone: effect on treatment planning, surgical approach, and healing. In: Misch CE (ed). Contemporary implant dentistry. St. Louis: Mosby; 1993; pp. 469–485.Google Scholar
  2. 2.
    Zarb G, Lekholm U, Albrektsson T, Tenenbaum H (eds). Aging, osteoporosis, and dental implants. Carol Stream, IL: Quintessence Publishing; 1999.Google Scholar
  3. 3.
    Lindh C, Petersson A, Rohlin M. Assessment of the trabecular pattern before endosseous implant treatment: diagnostic outcome of periapical radiography in the mandible. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 1996; 82:335–343.CrossRefGoogle Scholar
  4. 4.
    Jacobs R, Van Steenberghe D. Bone quantity. In: Jacobs R, Van Steenberghe D (eds). Radiographic planning and assessment of endosseous oral implants. Berlin: Springer; 1998; pp. 64–80.Google Scholar
  5. 5.
    McMillan PJ, Riggs ML, Bogle GC, Crigger M. Variables that influence the relationship between osteointegration and bone adjacent to an implant. Int J Oral Maxillofac Implants 2000; 15:138–145.Google Scholar
  6. 6.
    Jonasson G, Bankvall G, Kiliaridis S. Estimation of skeletal bone mineral density by means of the trabecular pattern of the alveolar bone, its interdental thickness, and the bone mass of the mandible. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2001; 92:346–352.CrossRefGoogle Scholar
  7. 7.
    Bender JB, Seltzer S. Roentgenographic and direct observation of experimental lesions in bone. J Am Dent Assoc 1961; 62:152–160, 708–716.Google Scholar
  8. 8.
    Vanderstelt PF. Experimentally produced bone lesions. Oral Surg Oral Med Oral Pathol 1985; 59:306–312.CrossRefGoogle Scholar
  9. 9.
    Urbaniak JR, Jones JP Jr (eds). Osteonecrosis — etiology, diagnosis, and treatment. Chicago, IL: American Academy of Orthopaedic Surgeons; 1997.Google Scholar
  10. 10.
    Bouquot JE, Rohrer M, McMahon RE, Boc T. Focal osteoporotic marrow defect (FOMD) B literature review and report of 596 new cases. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2002; 94:211.Google Scholar
  11. 11.
    Orwoll ES, Bliziotes M (eds). Osteoporosis B pathophysiology and clinical management. Totowa, NJ: Humana Press; 2003.Google Scholar
  12. 12.
    Njeh CF, Hans D, Fuerst DT, Gluer C-C, Genant HK (eds). Quantitative ultrasound: assessment of osteoporosis and bone status. London: Martin Dunitz; 1999.Google Scholar
  13. 13.
    Bouxsein ML. Skeletal assessment using quantitative ultrasound. In: Orwoll ES, Bliziotes M (eds). Osteoporosis B pathophysiology and clinical management. Totowa, NJ: Humana Press; 2003; pp. 120–147.Google Scholar
  14. 14.
    Barkmann R, Laugier P, Moser U, Dencks S, Padilla F, Haiat G, Heller M, Glüer C-C. A method for the estimation of femoral bone mineral density from variables of ultrasound transmission through the human femur. Bone 2007; 40:37–44.CrossRefGoogle Scholar
  15. 15.
    Bouquot J, Margolis M, Shankland W, Imbeau J. Through-transmission Alveolar Ultrasonog-raphy (TAU) B A new technology for evaluation of medullary diseases. Correlation with histopathology of 285 scanned jaw sites. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2002; 94:210.Google Scholar
  16. 16.
    Bouquot JE, Margolis M, Shankland WE, II. Report to the Food & Drug Administration: Through-transmission sonography (“TTS”) ( A new technology for the evaluation of jawbone density and dessication. Comparison with pantographic radiographs at 167 biopsied sites and correlation with histopathology of 285 scanned alveolar sites. Washington, DC: McKenna & Cunea; November, 2001.Google Scholar
  17. 17.
    Takeda Y. Irradiation effect of low-energy laser on alveolar bone after tooth extraction. Experimental study in rats. Int J Oral Maxillofac Surg 1988; 17:388–391.CrossRefGoogle Scholar
  18. 18.
    Clokie C, Bentley KC, Head TW. The effects of the helium-neon laser on postsurgical discomfort: a pilot study. J Can Dent Assoc 1991; 57:584–586.Google Scholar
  19. 19.
    Barushka O, Yaakobi T, Oron U. Effect of low-energy laser (He-Ne) irradiation on the process of bone repair in the rat tibia. Bone 1995; 16:47–55.Google Scholar
  20. 20.
    Yaakobi T, Maltz L, Oron U. Promotion of bone repair in the cortical bone of the tibia in rats by low energy laser (He-Ne) irradiation. Calcif Tissue Int 1996; 59:297–300.CrossRefGoogle Scholar
  21. 21.
    Ozawa Y, Shimizu N, Kariya G, Abiko Y. Low-energy laser irradiation stimulates bone nodule formation at early stages of cell culture in rat calvarial cells. Bone 1998; 22:347–354.CrossRefGoogle Scholar
  22. 22.
    Dortbudak O, Haas R, Mallath-Pokorny G. Biostimulation of bone marrow cells with a diode soft laser. Clin Oral Implants Res 2000; 11:540–545.CrossRefGoogle Scholar
  23. 23.
    Guzzardella GA, Fini M, Torricelli P, Giavaresi G, et al. Laser stimulation on bone defect healing: an in vitro study. Laser Med Surg 2002; 17:216–230.CrossRefGoogle Scholar
  24. 24.
    Silva Junior AN, Pinheiro AL, Oliveira MG, Weismann R, et al. Computerized morphometric assessment of the effect of low-level laser therapy on bone repair: an experimental animal study. J Clin Laser Med Surg 2002; 20:83–87.CrossRefGoogle Scholar
  25. 25.
    Nicola RA, Jorgetti V, Rigau J, Pacheco MT, et al. Effect of low-power GaAlAs laser (660 nm) on bone structure and cell activity: an experimental animal study. Laser Med Sci 2003; 18:89–94.CrossRefGoogle Scholar
  26. 26.
    Ninomiya T, Miyamoto Y, Ito T, Yamashita A, et al. High-intensity pulsed laser irradiation accelerates bone formation in metaphyseal trabecular bone in rat femur. Bone Miner Metab 2003; 21:67–73.CrossRefGoogle Scholar
  27. 27.
    Ninomiya T, Hosoya A, Nakamura H, Sano K, Nishisaka T, Ozawa H. Increase of bone volume by a nanosecond pulsed laser irradiation is caused by a decreased osteolcast number and an activated osteoblasts. Bone 2007; 40:140–148.CrossRefGoogle Scholar
  28. 28.
    Pinheiro AL, Limeira Junior Fde A, Gerbi ME, Ramalho LM, et al. Effect of 830-nm laser light on the repair of bone defects grafted with inorganic bovine bone and decalcified cortical osseous membrane. J Clin Laser Med Surg 2003; 21:301–306.CrossRefGoogle Scholar
  29. 29.
    Khadra M, Ronold HJ, Lyngstadaas SP, Ellingsen JE, et al. Low-level laser therapy stimulates bone-implant interaction: an experimental study in rabbits. Clin Oral Implants Res 2004; 15:325–332.CrossRefGoogle Scholar
  30. 30.
    Goulart CS, Nouer PR, Mouramartins L, Garbin IU, et al. Photoradiation and orthodontic movement: experimental study with canines. Photomed Laser Surg 2006; 24:192–196.CrossRefGoogle Scholar
  31. 31.
    Khadra M. The effect of low level laser irradiation on implant-tissue interaction. In vivo and in vitro studies. Swed Dent J Suppl 2005; 172:1–63.Google Scholar
  32. 32.
    Bibikova A, Belkin V, Oron U. Enhancement of angiogenesis in regenerating gastrocnemius muscle of the toad (Bufo viridis) by low-energy laser irradiation. Anat Embyrol (Berl) 1994; 190:597–602.Google Scholar
  33. 33.
    Ghamsari SM, Taguchi K, Abe N, Acorda JA, et al. Evaluation of low level laser therapy on primary healing of experimentally induced full thickness teat wounds in dairy cattle. Vet Surg 1997; 26:114–120.CrossRefGoogle Scholar
  34. 34.
    Agaiby AD, Ghali LR, Wilson R, Dyson M. Laser modulation of angiogenic factor production by T-lymphocytes. Laser Surg Med 2000; 26:357–363.CrossRefGoogle Scholar
  35. 35.
    Maegawa Y, Itoh T, Hosokawa T, Yaegashi K, et al. Effects of near-infrared low-level laser irradiation on microcirculation. Laser Surg Med 2000; 27:427–437.CrossRefGoogle Scholar
  36. 36.
    Stadler I, Evans R, Kolb B, Naim JO, et al. In vitro effects of low-level laser irradiation at 660 nm on peripheral blood lymphocytes. Laser Surg Med 2000; 27:255–261.CrossRefGoogle Scholar
  37. 37.
    Ad N, Oron U. Impact of low level laser irradiation on infarct size in the rat following myocardial infarction. Int J Cardiol 2001; 80:109–116.CrossRefGoogle Scholar
  38. 38.
    Almeida-Lopes L, Rigau J, Zangaro RA, Guidugli-Neto J, et al. Comparison of the low level laser therapy effects on cultured human gingival fibroblast proliferation using different irradiance and same fluence. Laser Surg Med 2001; 29:179–184.CrossRefGoogle Scholar
  39. 39.
    Shimotoyodome A, Okajima M, Kobayashi H, Tokismitsu I, et al. Improvement of macromo-lecular clearance via lymph flow in hamster gingiva by low-power carbon dioxide laser-irradiation. Laser Surg Med 2001; 29:442–447.CrossRefGoogle Scholar
  40. 40.
    Whelan HT, Smits RL Jr, Buchman EV, Whelan NT, et al. Effect of NASA light-emitting diode irradiation on wound healing. J Clin Laser Med Surg 2001; 19:305–314.CrossRefGoogle Scholar
  41. 41.
    Pereira AN, Eduardo Cde P, Matson E, Marques MM. Effect of low-power laser irradiation on cell growth and procollagen synthesis of cultured fibroblasts. Laser Surg Med 2002; 31:263– 267.CrossRefGoogle Scholar
  42. 42.
    Schindl A, Merwald H, Schindl L, Kaun C, Wojta J. Direct stimulatory effect of low-intensity 670 nm laser irradiation on human endothelial cell proliferation. Br J Dermatol 2003; 148:224–336.CrossRefGoogle Scholar
  43. 43.
    Mendez TM, Pinheiro AL, Pacheco MT, Nascimento PM, et al. Dose and wavelength of laser light have influence on the repair of cutaneous wounds. J Clin Laser Med Surg 2004; 22:19– 25.CrossRefGoogle Scholar
  44. 44.
    Woodruff LD, Bounkeo JM, Brannon WM, Dawes KS, et al. The efficacy of laser therapy in wound repair; a meta-analysis of the literature. Photomed Laser Surg 2004; 22:241–247.CrossRefGoogle Scholar
  45. 45.
    Vladimirov YA, Osopov AN, Kledanov GI. Photobiological principles of therapeutic applications of laser radiation. Biochemistry 2004; 69:81–90.Google Scholar
  46. 46.
    Posten W, Wronge DA, Dover JS, Arndt KA, et al. Low-level laser therapy for wound healing: mechanism and efficacy. Dermatol Surg 2005; 31:334–340.CrossRefGoogle Scholar
  47. 47.
    Babilas P, Karrer S, Sidoroff A, Mandthaler M, Szeimies R-M. Photodynamic therapy in dermatology B an update. Photodermal Photoimmunol Photomed 2005; 21:142–149.CrossRefGoogle Scholar
  48. 48.
    Yeager RL, Franzosa JA, Millsap DS, Angelll-Yeage JL, et al. Effects of 670-nm phototherapy on development. Photomed Laser Surg 2005; 23:268–272.CrossRefGoogle Scholar
  49. 49.
    Elke MV, Cagnie BJ, Cornelissen MJ, Declercq HA, et al. Increased fibroblast proliferation induced by light emitting diode and low power laser irradiation. Laser Med Sci 2003; 18:95– 99.CrossRefGoogle Scholar
  50. 50.
    Kreisler M, Christoffers AB, Al-Haj H, Willershausen B, et al. Low level 809-nm diode laser-induced in vitro stimulation of the proliferation of human gingival fibroblasts. Laser Surg Med 2002; 30:365–369.CrossRefGoogle Scholar
  51. 51.
    Klebanov GI, Shuraeva N, Chichuk TV, Osipov AN, et al. A comparative study of the effects of laser and light-emitting diode irradiation on the wound healing and functional activity of wound exudate leukocytes. Biofizika 2005; 50:1137–1144.Google Scholar
  52. 52.
    Weiss RA, McDaniel DH, Geronemus RG, Weiss MA, et al. Clinical experience with light-emitting diode (LED) photomodulation. Dermatol Surg 2005; 31:1199–1205.CrossRefGoogle Scholar
  53. 53.
    Desmet KD, Paz DA, Corry JJ, Eelis JT, et al. Clinical and experimental applications of NIR-LED photobiomodulation. Photomed Laser Surg 2006; 24:121–128.CrossRefGoogle Scholar
  54. 54.
    Choi HR, Jang YY, Lim WB, Park JS, Kim OJ. Potential roles of light-emitting diode irradiation in cyclooxygenase, nitric oxide, prostaglandin E2 and reactive oxygen species production in arachidonic acid-treated human gingival fibroblasts. J Oral Pathol Med 2006; 35:429–430.Google Scholar
  55. 55.
    Tremblay JF, Sire DJ, Lowe NJ, Moy RL. Light-emitting diode 415 nm in the treatment of inflammatory acne: an open-label, multicentric, pilot investigation. Cosmet Laser Ther 2006; 8:31–33.CrossRefGoogle Scholar
  56. 56.
    Bouquot J, Shankland W, Margolis M. Through-transmission alveolar ultrasonography (TAU) B new technology for evaluation of bone density and desiccation. Comparison with radiology of 170 biopsied alveolar sites of osteoporotic and ischemic damage. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2002; 93:413–414.Google Scholar
  57. 57.
    Want SJ, Lewallen DG, Bolander ME, Chao EYS, Ilstrup DM, Greenleaf JF. Low intensity ultrasound treatment increases strength in a rat femoral fracture model. J Orthop Res 1994; 12:40–47.CrossRefGoogle Scholar
  58. 58.
    Sievanen H, Kannus P, Jarvinen TLN. Bone quality: an empty term. PLOS Med 2007; 4 (e27):1–4.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Jerry E. Bouquot
    • 1
  • Peter R. Brawn
    • 2
  • John C. Cline
    • 2
  1. 1.Department of Diagnostic SciencesUniversity of Texas, Dental Branch at HoustonHoustonUSA
  2. 2.Private PracticeNanaimoCanada

Personalised recommendations