Advertisement

Abstract

This chapter describes network DEA models, where a network consists of sub-technologies. A DEA model typically describes a technology to a level of abstraction necessary for the analyst’s purpose, but leaves out a description of the sub-technologies that make up the internal functions of the technology. These sub-technologies are usually treated as a “black box”, i.e., there is no information about what happens inside them. The specification of the sub-technologies enables the explicit examination of input allocation and intermediate products that together form the production process. The combination of sub-technologies into networks provides a method of analyzing problems that the traditional DEA models cannot address. We apply network DEA methods to three examples; a static production technology with intermediate products, a dynamic production technology, and technology adoption (or embodied technological change). The data and GAMS code for two examples of network DEA models are listed in appendices.

Keywords

Data Envelopment Analysis (DEA) Network Intermediate Products Dynamic Production Technology Adoption 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Brännlund, R., Färe, R., and Grosskopf, S. (1995). “Environmental Regulation and Profitability: An Application to Swedish Pulp and Paper Mills.” Environmental and Resource Economics, 6(1), 23-36.CrossRefGoogle Scholar
  2. 2.
    Dorfman, R., Samuelson, P., and Solow, R. (1958). Linear Programming & Economic Analysis, McGraw-Hill, New York.Google Scholar
  3. 3.
    Färe, R., and Grosskopf, S. (1996). Intertemporal production frontiers: With dynamic DEA, Kluwer Academic, In collaboration with R. Brännlund et al. Boston; London and Dordrecht.Google Scholar
  4. 4.
    Färe, R., and Grosskopf, S. (1997). “Efficiency and Productivity in Rich and Poor Countries.” Dynamics, economic growth, and international trade, B. S. Jensen and K. Wong, eds., University of Michigan Press, Studies in International Economics. Ann Arbor, 243-63.Google Scholar
  5. 5.
    Färe, R., Grosskopf, S., and Lee, W. F. (2004). “Property rights and profitability.” New Directions: Efficiency and Productivity, R. Färe and S. Grosskopf, eds., Kluwer Academic Publishers, Boston, 65-77.Google Scholar
  6. 6.
    Färe, R., and Whittaker, G. (1996). “Dynamic measurement of efficiency: an application to western public grazing.” Intertemporal production frontiers: With dynamic DEA, R. Fare and S. Grosskopf, eds., Kluwer Academic, Boston; London and Dordrecht, 168-186.Google Scholar
  7. 7.
    Jaenicke, E. C. (2000). “Testing for Intermediate Outputs in Dynamic DEA Models: Accounting for Soil Capital in Rotational Crop Production and Productivity Measures.” Journal of Productivity Analysis, 14(3), 247-266.CrossRefGoogle Scholar
  8. 8.
    Johansen, L. (1959). “Substitution versus fixed production coefficient in the theory of economic growth: a synthesis.” Econometrica, 27(2), 157-176.CrossRefGoogle Scholar
  9. 9.
    Kemeny, J. G., Morgenstern, O., and Thompson, G. L. (1956). “A generalization of the von Neumann model of an expanding economy.” Econometrica, 24, 115-135.CrossRefGoogle Scholar
  10. 10.
    Lewis, H. F., and Sexton, T. R. (2004). “Network DEA: Efficiency analysis of organizations with complex internal structure.” Computers and Operations Research, 31(9), 1365.CrossRefGoogle Scholar
  11. 11.
    May, E. (1992). Dynamische Produktionstheorie auf Basis der Aktivitätsanalyse, Physica-Verlag, Heidelberg.Google Scholar
  12. 12.
    Nemota, J., and Gota, M. (1999). “Dynamic data envelopment analysis: modeling intertemporal behavior of a firm in the presence of productive inefficiencies.” Economic Letters, 64, 51-56.CrossRefGoogle Scholar
  13. 13.
    Nemota, J., and Gota, M. (2003). “Measuring dynamic efficiency in production: An application of data envelopment analysis to Japanese electric utilities.” Journal of Productivity Analysis, 19, 191-210.CrossRefGoogle Scholar
  14. 14.
    Ramsey, R. (1928). “A Mathematical Theory of Saving.” Economic Journal, 38, 543-559.CrossRefGoogle Scholar
  15. 15.
    Sengupta, J. K. (1992). “Non-parametric approaches to dynamic efficiency: a non-parametric application of cointegration fo production frontiers.” Applied Economics, 24, 153-159.Google Scholar
  16. 16.
    Shephard, R. W. (1970). Theory of Cost and Production Functions, Princeton University Press, Princeton.Google Scholar
  17. 17.
    Shephard, R. W. and Färe, R (1975). “A dynamic theory of production correspondences,” ORC 75-13, OR Center, U.C. Berkeley.Google Scholar
  18. 18.
    Silva, E., and Stefanou, S. E. (in press). “Dynamic efficiency measurement: theory and applications.” American Journal of Agricultural Economics.Google Scholar
  19. 19.
    Solow, R. M. (1960). “Investment and technical progress.” Mathematical methods in the social sciences, K. J. Arrow, S. Karlin, and P. Suppes, eds., Stanford University Press, Stanford, CA.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Rolf Färe
    • 1
  • Shawna Grosskopf
    • 2
  • Gerald Whittaker
    • 3
  1. 1.Department of Economics and Department of Agricultural EconomicsOregon State UniversityCorvallisUSA
  2. 2.Department of EconomicsOregon State UniversityCorvallisUSA
  3. 3.National Forage Seed Production Research Center, Agricultural Research SeviceUSDACorvallisUSA

Personalised recommendations