The Potential Application of Antioxidant Agents in Alzheimer Disease Therapeutics

  • Paula I. Moreira
  • Mark A. Smith
  • Xiongwei Zhu
  • Akihiko Nunomura
  • George Perry

Oxidative stress is a fundamental process contributing to the neuronal degeneration and death observed in Alzheimer disease, and many studies using markers of oxidative damage have provided evidence supporting this hypothesis. Consequently, antioxidants that prevent the detrimental consequences of oxidative stress are considered to be a promising approach to neuroprotection. While the clinical value of antioxidants for the prevention of AD is currently ambiguous, they still appear to be the most promising weapons that can be developed against disease progression.


Alzheimer Disease Senile Plaque Lipoic Acid Antioxidant Agent Alzheimer Disease Patient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Atwood, C. S., Huang, X., Moir, R. D., Tanzi, R. E., & Bush, A. I. (1999). Role of free radicals and metal ions in the pathogenesis of Alzheimer's disease. Metal Ions in Biological Systems, 36, 309–364.PubMedGoogle Scholar
  2. Atwood, C. S., Moir, R. D., Huang, X., Scarpa, R. C., Bacarra, N. M., Romano, D. M., et al. (1998). Dramatic aggregation of Alzheimer abeta by Cu(II) is induced by conditions representing physiological acidosis. The Journal of Biological Chemistry, 273, 12817–12826.CrossRefPubMedGoogle Scholar
  3. Bayer, T. A., Schafer, S., Simons, A., Kemmling, A., Kamer, T., Tepest, R., et al. (2003). Dietary Cu stabilizes brain superoxide dismutase 1 activity and reduces amyloid Abeta production in APP23 transgenic mice. Proceedings of the National Academy of Sciences of the United States of America, 100, 14187–14192.CrossRefPubMedGoogle Scholar
  4. Bianchetti, A., Rozzini, R., & Trabucchi, M. (2003). Effects of acetyl-L-carnitine in Alzheimer's disease patients unresponsive to acetylcholinesterase inhibitors. Current Medical Research and Opinion, 19, 350–353.CrossRefPubMedGoogle Scholar
  5. Bosetti, F., Brizzi, F., Barogi, S., Mancuso, M., Siciliano, G., Tendi, E. A., et al. (2002). Cytochrome c oxidase and mitochondrial F1F0-ATPase (ATP synthase) activities in platelets and brain from patients with Alzheimer's disease. Neurobiology of Aging, 23, 371–376.CrossRefPubMedGoogle Scholar
  6. Bubber, P., Haroutunian, V., Fisch, G., Blass, J. P., & Gibson, G. E. (2005). Mitochondrial abnormalities in Alzheimer brain: Mechanistic implications. Annals of Neurology, 57, 695–703.CrossRefPubMedGoogle Scholar
  7. Bush, A. I. (2003). The metallobiology of Alzheimer's disease. Trends in Neurosciences, 26, 207–214.CrossRefPubMedGoogle Scholar
  8. Bush, A. I., Pettingell, W. H., Multhaup, G., d Paradis, M., Vonsattel, J. P., Gusella, J. F., et al. (1994). Rapid induction of Alzheimer A beta amyloid formation by zinc. Science, 265, 1464–1467.CrossRefPubMedGoogle Scholar
  9. Bush, A. I., Pettingell, W. H., Jr., Paradis, M. D., & Tanzi, R. E. (1994). Modulation of A beta adhesiveness and secretase site cleavage by zinc. The Journal of Biological Chemistry, 269, 12152–12158.PubMedGoogle Scholar
  10. Cardoso, S. M., Proenca, M. T., Santos, S., Santana, I., & Oliveira, C. R. (2004). Cytochrome c oxidase is decreased in Alzheimer's disease platelets. Neurobiology of Aging, 25, 105–110.CrossRefPubMedGoogle Scholar
  11. Castellani, R., Hirai, K., Aliev, G., Drew, K. L., Nunomura, A., Takeda, A., et al. (2002). Role of mitochondrial dysfunction in Alzheimer's disease. Journal of Neuroscience Research, 70, 357–360.CrossRefPubMedGoogle Scholar
  12. Cherny, R. A., Atwood, C. S., Xilinas, M. E., Gray, D. N., Jones, W. D., McLean, C. A., et al. (2001). Treatment with a copper-zinc chelator markedly and rapidly inhibits beta-amyloid accumulation in Alzheimer's disease transgenic mice. Neuron, 30, 665–676.CrossRefPubMedGoogle Scholar
  13. Connor, J. R., Milward, E. A., Moalem, S., Sampietro, M., Boyer, P., Percy, M. E., et al. (2001). Is hemochromatosis a risk factor for Alzheimer's disease? Journal of Alzheimer's Disease, 3, 471–477.PubMedGoogle Scholar
  14. Cottrell, D. A., Borthwick, G. M., Johnson, M. A., Ince, P. G., & Turnbull, D. M. (2002). The role of cytochrome c oxidase deficient hippocampal neurones in Alzheimer's disease. Neuropathology and Applied Neurobiology, 28, 390–396.CrossRefPubMedGoogle Scholar
  15. Dong, J., Atwood, C. S., Anderson, V. E., Siedlak, S. L., Smith, M. A., Perry, G., et al. (2003). Metal binding and oxidation of amyloid-beta within isolated senile plaque cores: Raman microscopic evidence. Biochemistry, 42, 2768–2773.CrossRefPubMedGoogle Scholar
  16. Engelhart, M. J., Geerlings, M. I., Ruitenberg, A., van Swieten, J. C., Hofman, A., Witteman, J. C., et al. (2002). Dietary intake of antioxidants and risk of Alzheimer disease. The Journal of the American Medical Association, 287, 3223–3229.CrossRefGoogle Scholar
  17. Frolich, L., Gotz, M. E., Weinmuller, M., Youdim, M. B., Barth, N., Dirr, A., et al. (2004). (r)-, but not (s)-alpha lipoic acid stimulates deficient brain pyruvate dehydrogenase complex in vascular dementia, but not in Alzheimer dementia. Journal of Neural Transmission, 111, 295–310.CrossRefPubMedGoogle Scholar
  18. Gibson, G. E., Park, L. C., Sheu, K. F., Blass, J. P., & Calingasan, N. Y. (2000). The alpha-ketoglutarate dehydrogenase complex in neurodegeneration. Neurochemistry International, 36, 97–112.CrossRefPubMedGoogle Scholar
  19. Grundman, M. (2000). Vitamin E and Alzheimer disease: the basis for additional clinical trials. The American Journal of Clinical Nutrition, 71, 630S–636S.PubMedGoogle Scholar
  20. Gutzmann, H., & Hadler, D. (1998). Sustained efficacy and safety of idebenone in the treatment of Alzheimer's disease: Update on a 2-year double-blind multicentre study. Journal of Neural Transmission. Supplementum, 54, 301–310.PubMedGoogle Scholar
  21. Gutzmann, H., Kuhl, K. P., Hadler, D., & Rapp, M. A. (2002). Safety and efficacy of idebenone versus tacrine in patients with Alzheimer's disease: Results of a randomized, double-blind, parallel-group multicenter study. Pharmacopsychiatry, 35, 12–18.CrossRefPubMedGoogle Scholar
  22. Hagen, T. M., Ingersoll, R. T., Lykkesfeldt, J., Liu, J., Wehr, C. M., Vinarsky, V., et al. (1999). (R)-alpha-lipoic acid-supplemented old rats have improved mitochondrial function, decreased oxidative damage, and increased metabolic rate. The FASEB Journal, 13, 411–418.PubMedGoogle Scholar
  23. Hager, K., Marahrens, A., Kenklies, M., Riederer, P., & Munch, G. (2001). Alpha-lipoic acid as a new treatment option for Azheimer type dementia. Archives of Gerontology and Geriatrics, 32, 275–282.CrossRefPubMedGoogle Scholar
  24. Hebert, L. E., Scherr, P. A., Bienias, J. L., Bennett, D. A., & Evans, D. A. (2003). Alzheimer disease in the US population: Prevalence estimates using the 2000 census. Archives of Neurology, 60, 1119–1122.CrossRefPubMedGoogle Scholar
  25. Hirai, K., Aliev, G., Nunomura, A., Fujioka, H., Russell, R. L., Atwood, C. S., et al. (2001). Mitochondrial abnormalities in Alzheimer's disease. Journal of Neuroscience Research, 21, 3017–3023.Google Scholar
  26. Honda, K., Casadesus, G., Petersen, R. B., Perry, G., & Smith, M. A. (2004). Oxidative stress and redox-active iron in Alzheimer's disease. Annals of the New York Academy of Sciences, 1012, 179–182.CrossRefPubMedGoogle Scholar
  27. Huang, X., Atwood, C. S., Hartshorn, M. A., Multhaup, G., Goldstein, L. E., Scarpa, R. C., et al. (1999). The A beta peptide of Alzheimer's disease directly produces hydrogen peroxide through metal ion reduction. Biochemistry, 38, 7609–7616.CrossRefPubMedGoogle Scholar
  28. Huang, X., Cuajungco, M. P., Atwood, C. S., Hartshorn, M. A., Tyndall, J. D., Hanson, G. R., et al. (1999). Cu(II) potentiation of alzheimer abeta neurotoxicity. Correlation with cell-free hydrogen peroxide production and metal reduction. The Journal of Biological Chemistry, 274, 37111–37116.CrossRefPubMedGoogle Scholar
  29. Hudson, S., & Tabet, N. (2003). Acetyl-L-carnitine for dementia. Cochrane Database of Systematic Reviews, CD003158.Google Scholar
  30. Jesudason, E. P., Masilamoni, J. G., Jesudoss, K. S., & Jayakumar, R. (2005). The protective role of DL-alpha-lipoic acid in the oxidative vulnerability triggered by Abeta-amyloid vaccination in mice. Molecular and Cellular Biochemistry, 270, 29–37.CrossRefPubMedGoogle Scholar
  31. Keyse, S. M., & Tyrrell, R. M. (1989). Heme oxygenase is the major 32-kDa stress protein induced in human skin fibroblasts by UVA radiation, hydrogen peroxide, and sodium arsenite. Proceedings of the National Academy of Sciences of the United States of America, 86, 99–103.CrossRefPubMedGoogle Scholar
  32. Khachaturian, Z. S. (1985). Diagnosis of Alzheimer's disease. Archives of Neurology, 42, 1097–1105.PubMedGoogle Scholar
  33. Kumar, U., Dunlop, D. M., & Richardson, J. S. (1994). Mitochondria from Alzheimer's fibroblasts show decreased uptake of calcium and increased sensitivity to free radicals. Life Sciences, 54, 1855–1860.CrossRefPubMedGoogle Scholar
  34. Laurin, D., Masaki, K. H., Foley, D. J., White, L. R., & Launer, L. J. (2004). Midlife dietary intake of antioxidants and risk of late-life incident dementia: The Honolulu-Asia Aging Study. American Journal of Epidemiology, 159, 959–967.CrossRefPubMedGoogle Scholar
  35. Le Bars, P. L., Katz, M. M., Berman, N., Itil, T. M., Freedman, A. M., & Schatzberg, A. F. (1997). A placebo-controlled, double-blind, randomized trial of an extract of Ginkgo biloba for dementia. North American EGb Study Group. The Journal of the American Medical Association, 278, 1327–1332.CrossRefGoogle Scholar
  36. Liu, G., Garrett, M. R., Men, P., Zhu, X., Perry, G., & Smith, M. A. (2005). Nanoparticle and other metal chelation therapeutics in Alzheimer disease. Biochimica et Biophysica Acta, 1741, 246–252.PubMedGoogle Scholar
  37. Lovell, M. A., Robertson, J. D., Teesdale, W. J., Campbell, J. L., & Markesbery, W. R. (1998). Copper, iron and zinc in Alzheimer's disease senile plaques. Journal of the Neurological Sciences, 158, 47–52.CrossRefPubMedGoogle Scholar
  38. Luchsinger, J. A., Tang, M. X., Shea, S., & Mayeux, R. (2003). Antioxidant vitamin intake and risk of Alzheimer disease. Archives of Neurology, 60, 203–208.CrossRefPubMedGoogle Scholar
  39. Martinez-Cano, E., Ortiz-Genaro, G., Pacheco-Moises, F., Macias-Islas, M. A., Sanchez-Nieto, S., & Rosales-Corral, S. A. (2005). [Functional disorders of FOF1-ATPase in submitochondrial particles obtained from platelets of patients with a diagnosis of probable Alzheimer's disease]. Revista de Neurologia, 40, 81–85.PubMedGoogle Scholar
  40. May, P. M., & Bulman, R. A. (1983). The present status of chelating agents in medicine. Progress in Medicinal Chemistry, 20, 225–336.CrossRefPubMedGoogle Scholar
  41. McLachlan, D. R., Smith, W. L., & Kruck, T. P. (1993). Desferrioxamine and Alzheimer's disease: Video home behavior assessment of clinical course and measures of brain aluminum. Therapeutic Drug Monitoring, 15, 602–607.PubMedGoogle Scholar
  42. Mirra, S. S., Heyman, A., McKeel, D., Sumi, S. M., Crain, B. J., Brownlee, L. M., et al. (1991). The Consortium to Establish a Registry for Alzheimer's Disease (CERAD). Part II. Standardization of the neuropathologic assessment of Alzheimer's disease. Neurology, 41, 479–486.PubMedGoogle Scholar
  43. Montgomery, S. A., Thal, L. J., & Amrein, R. (2003). Meta-analysis of double blind randomized controlled clinical trials of acetyl-L-carnitine versus placebo in the treatment of mild cognitive impairment and mild Alzheimer's disease. International Clinical Psychopharmacology, 18, 61–71.CrossRefPubMedGoogle Scholar
  44. Moreira, P. I., Honda, K., Zhu, X., Nunomura, A., Casadesus, G., Smith, M. A., & Perry, G. (2006). Brain and brawn: Parallels in oxidative strength. Neurology, 66, S97–S101.CrossRefPubMedGoogle Scholar
  45. Moreira, P. I., Smith, M. A., Zhu, X., Santos, M. S., Oliveira, C. R., & Perry, G. (2004). Therapeutic potential of oxidant mechanisms in Alzheimer disease. Expert Reviews in Neurotherapeutics, 4, 995–1004.CrossRefGoogle Scholar
  46. Morris, M. C., Evans, D. A., Bienias, J. L., Tangney, C. C., Bennett, D. A., Aggarwal, N., et al. (2002). Dietary intake of antioxidant nutrients and the risk of incident Alzheimer disease in a biracial community study. The Journal of the American Medical Association, 287, 3230–3237.CrossRefGoogle Scholar
  47. Nunomura, A., Perry, G., Aliev, G., Hirai, K., Takeda, A., Balraj, E. K., et al. (2001). Oxidative damage is the earliest event in Alzheimer disease. Journal of Neuropathology and Experimental Neurology, 60, 759–767.PubMedGoogle Scholar
  48. Nunomura, A., Perry, G., Pappolla, M. A., Friedland, R. P., Hirai, K., Chiba, S., et al. (2000). Neuronal oxidative stress precedes amyloid-beta deposition in Down syndrome. Journal of Neuropathology and Experimental Neurology, 59, 1011–1017.PubMedGoogle Scholar
  49. Nunomura, A., Perry, G., Pappolla, M. A., Wade, R., Hirai, K., Chiba, S., et al. (1999). RNA oxidation is a prominent feature of vulnerable neurons in Alzheimer's disease. Journal of Neuroscience Research, 19, 1959–1964.Google Scholar
  50. Ojaimi, J., Masters, C. L., McLean, C., Opeskin, K., McKelvie, P., & Byrne, E. (1999). Irregular distribution of cytochrome c oxidase protein subunits in aging and Alzheimer's disease. Annals of Neurology, 46, 656–660.CrossRefPubMedGoogle Scholar
  51. Opazo, C., Huang, X., Cherny, R. A., Moir, R. D., Roher, A. E., White, A. R., et al. (2002). Metalloenzyme-like activity of Alzheimer's disease beta-amyloid. Cu-dependent catalytic conversion of dopamine, cholesterol, and biological reducing agents to neurotoxic H(2) O(2). The Journal of Biological Chemistry, 277, 40302–40308.CrossRefPubMedGoogle Scholar
  52. Packer, L., Tritschler, H. J., & Wessel, K. (1997). Neuroprotection by the metabolic antioxidant alpha-lipoic acid. Free Radical Biology & Medicine, 22, 359–378.CrossRefGoogle Scholar
  53. Perry, G., Nunomura, A., Hirai, K., Zhu, X., Perez, M., Avila, J., et al. (2002). Is oxidative damage the fundamental pathogenic mechanism of Alzheimer's and other neurodegenerative diseases? Free Radical Biology and Medicine, 33, 1475–1479.CrossRefPubMedGoogle Scholar
  54. Petersen, R. C., Thomas, R. G., Grundman, M., Bennett, D., Doody, R., Ferris, S., et al. (2005). Vitamin E and donepezil for the treatment of mild cognitive impairment. The New England Journal of Medicine, 352, 2379–2388.CrossRefPubMedGoogle Scholar
  55. Premkumar, D. R., Smith, M. A., Richey, P. L., Petersen, R. B., Castellani, R., Kutty, R. K., et al. (1995). Induction of heme oxygenase-1 mRNA and protein in neocortex and cerebral vessels in Alzheimer's disease. Journal of Neurochemistry, 65, 1399–1402.PubMedGoogle Scholar
  56. Ritchie, C. W., Bush, A. I., Mackinnon, A., Macfarlane, S., Mastwyk, M., MacGregor, L., et al. (2003). Metal-protein attenuation with iodochlorhydroxyquin (clioquinol) targeting Abeta amyloid deposition and toxicity in Alzheimer disease: a pilot phase 2 clinical trial. Archives of Neurology, 60, 1685–1691.CrossRefPubMedGoogle Scholar
  57. Rottkamp, C. A., Raina, A. K., Zhu, X., Gaier, E., Bush, A. I., Atwood, C. S., et al. (2001). Redox-active iron mediates amyloid-beta toxicity. Free Radical Biology and Medicine, 30, 447–450.CrossRefPubMedGoogle Scholar
  58. Sano, M., Ernesto, C., Thomas, R. G., Klauber, M. R., Schafer, K., Grundman, M., et al. (1997). A controlled trial of selegiline, alpha-tocopherol, or both as treatment for Alzheimer's disease. The Alzheimer's Disease Cooperative Study. The New England Journal of Medicine, 336, 1216–1222.CrossRefPubMedGoogle Scholar
  59. Savory, J., Huang, Y., Wills, M. R., & Herman, M. M. (1998). Reversal by desferrioxamine of tau protein aggregates following two days of treatment in aluminum-induced neurofibrillary degeneration in rabbit: Implications for clinical trials in Alzheimer's disease. Neurotoxicology, 19, 209–214.PubMedGoogle Scholar
  60. Sayre, L. M., Perry, G., Harris, P. L., Liu, Y., Schubert, K. A., & Smith, M. A. (2000). In situ oxidative catalysis by neurofibrillary tangles and senile plaques in Alzheimer's disease: A central role for bound transition metals. Journal of Neurochemistry, 74, 270–279.CrossRefPubMedGoogle Scholar
  61. Sayre, L. M., Zelasko, D. A., Harris, P. L., Perry, G., Salomon, R. G., & Smith, M. A. (1997). 4-Hydroxynonenal-derived advanced lipid peroxidation end products are increased in Alzheimer's disease. Journal of Neurochemistry, 68, 2092–2097.PubMedCrossRefGoogle Scholar
  62. Scarmeas, N., Stern, Y., Tang, M. X., Mayeux, R., & Luchsinger, J. A. (2006). Mediterranean diet and risk for Alzheimer's disease. Annals of Neurology, 59, 912–921.CrossRefPubMedGoogle Scholar
  63. Sheu, K. F., Kim, Y. T., Blass, J. P., & Weksler, M. E. (1985). An immunochemical study of the pyruvate dehydrogenase deficit in Alzheimer's disease brain. Annals of Neurology, 17, 444–449.CrossRefPubMedGoogle Scholar
  64. Smith, M. A., Harris, P. L., Sayre, L. M., & Perry, G. (1997). Iron accumulation in Alzheimer disease is a source of redox-generated free radicals. Proceedings of the National Academy of Sciences of the United States of America, 94, 9866–9868.CrossRefPubMedGoogle Scholar
  65. Smith, M. A., Kutty, R. K., Richey, P. L., Yan, S. D., Stern, D., Chader, G. J., et al. (1994). Heme oxygenase-1 is associated with the neurofibrillary pathology of Alzheimer's disease. The American Journal of Pathology, 145, 42–47.PubMedGoogle Scholar
  66. Smith, M. A., Nunomura, A., Lee, H. G., Zhu, X., Moreira, P. I., Avila, J., et al. (2005). Chronological primacy of oxidative stress in Alzheimer disease. Neurobiology of Aging, 26, 579–580; discussion 587–595.CrossRefPubMedGoogle Scholar
  67. Smith, M. A., Perry, G., Richey, P. L., Sayre, L. M., Anderson, V. E., Beal, M. F., et al. (1996). Oxidative damage in Alzheimer's. Nature, 382, 120–121.CrossRefPubMedGoogle Scholar
  68. Sparks, D. L., & Schreurs, B. G. (2003). Trace amounts of copper in water induce beta-amyloid plaques and learning deficits in a rabbit model of Alzheimer's disease. Proceedings of the National Academy of Sciences of the United States of America, 100, 11065–11069.CrossRefPubMedGoogle Scholar
  69. Stackman, R. W., Eckenstein, F., Frei, B., Kulhanek, D., Nowlin, J., & Quinn, J. F. (2003). Prevention of age-related spatial memory deficits in a transgenic mouse model of Alzheimer's disease by chronic Ginkgo biloba treatment. Experimental Neurology, 184, 510–520.CrossRefPubMedGoogle Scholar
  70. Suh, J. H., Wang, H., Liu, R. M., Liu, J., & Hagen, T. M. (2004). (R)-alpha-lipoic acid reverses the age-related loss in GSH redox status in post-mitotic tissues: Evidence for increased cysteine requirement for GSH synthesis. Archives of Biochemistry and Biophysics, 423, 126–135.CrossRefPubMedGoogle Scholar
  71. Thal, L. J., Grundman, M., Berg, J., Ernstrom, K., Margolin, R., Pfeiffer, E., et al. (2003). Idebenone treatment fails to slow cognitive decline in Alzheimer's disease. Neurology, 61, 1498–1502.PubMedGoogle Scholar
  72. Wallace, D. C. (1999). Mitochondrial diseases in man and mouse. Science, 283, 1482–1488.CrossRefPubMedGoogle Scholar
  73. Wang, J., Xiong, S., Xie, C., Markesbery, W. R., & Lovell, M. A. (2005). Increased oxidative damage in nuclear and mitochondrial DNA in Alzheimer's disease. Journal of Neurochemistry, 93, 953–962.CrossRefPubMedGoogle Scholar
  74. Weyer, G., Babej-Dolle, R. M., Hadler, D., Hofmann, S., & Herrmann, W. M. (1997). A controlled study of 2 doses of idebenone in the treatment of Alzheimer's disease. Neuropsychobiology, 36, 73–82.CrossRefPubMedGoogle Scholar
  75. Yamada, K., Tanaka, T., Han, D., Senzaki, K., Kameyama, T., & Nabeshima, T. (1999). Protective effects of idebenone and alpha-tocopherol on beta-amyloid-(1–42)-induced learning and memory deficits in rats: Implication of oxidative stress in beta-amyloid-induced neurotoxicity in vivo. The European Journal of Neuroscience, 11, 83–90.CrossRefPubMedGoogle Scholar
  76. Yao, Z. X., Han, Z., Drieu, K., & Papadopoulos, V. (2004). Ginkgo biloba extract (Egb 761) inhibits beta-amyloid production by lowering free cholesterol levels. The Journal of Nutritional Biochemistry, 15, 749–756.CrossRefPubMedGoogle Scholar
  77. Zandi, P. P., Anthony, J. C., Khachaturian, A. S., Stone, S. V., Gustafson, D., Tschanz, J. T., et al. (2004). Reduced risk of Alzheimer disease in users of antioxidant vitamin supplements: The Cache County Study. Archives of Neurology, 61, 82–88.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Paula I. Moreira
    • 1
  • Mark A. Smith
    • 1
  • Xiongwei Zhu
    • 1
  • Akihiko Nunomura
    • 2
  • George Perry
    • 1
  1. 1.Department of PathologyCase Western Reserve UniversityClevelandUSA
  2. 2.Department of Psychiatry and NeurologyAsahikawa Medical CollegeJapan

Personalised recommendations