History of Angiogenesis

  • Judah Folkman

The first use of the term angiogenesis was in 1787 by John Hunter, a British surgeon [1]. However, there were very few reports of tumor angiogenesis until almost 100 years later, and these were mainly anatomical studies. For example, the vascular morphology of tumors was studied in considerable detail beginning in the 1860s [2, 3]. By 1907, the vascular network in human and animal tumor specimens was visualized by intraarterial injections of bismuth in oil [4]. The vascular morphology was studied in both human and animal tumors in the first half of the 20th century, mainly to determine if vascular patterns could distinguish benign from malignant tumors, to understand the shedding of tumor emboli into the circulation, or to interpret the delivery of active agents into specific tumors [5–8].

Keywords

angiogenesis tumor blood vessel formation angiogenesis inhibitors VEGF bFGF polymer delivery 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hall AP. The role of angiogenesis in cancer. Comp Clin Path 2005; 13:95–99.Google Scholar
  2. 2.
    Virchow R. Die Krankhaften Geschwuste, August Hirschwald, Berlin, 1863; cited by Rogers W. et al., Surg Clin N Am 1967; 47:1473.Google Scholar
  3. 3.
    Thiersch C. Der Epithelialkrebs namentlich der Haut mit Atlas, Lepzig, 1865, as cited in Rogers W, Edlich RF, Lewis DV, Aust JB. Surg Clin North Am 1967; 47:1473.Google Scholar
  4. 4.
    Goldmann E. Growth of malignant disease in man and the lower animals with special reference to vascular system. Proc R Soc Med 1907; 1:1.Google Scholar
  5. 5.
    Thiessen NW. The vascularity of benign and malignant lesions of the stomach. Surg Gynecol Obstet 1936; 2:149.Google Scholar
  6. 6.
    Wright RD. The blood supply of abnormal tissues in the lung. J Pathol Bacteriol 1938; 47:489.Google Scholar
  7. 7.
    Lindgren AGH. The vascular supply of tumours with special references to the capillary angioarchitecture. Acta Pathol Microbiol Scand 1945; 22:493.Google Scholar
  8. 8.
    Peterson HI (ed). Tumor Blood Circulation: Angiogenesis, Vascular Morphology and Blood Flow of Experimental and Human Tumors. CRC Press, Boca Raton, Florida 1979.Google Scholar
  9. 9.
    Ide AG, Baker NH, Warren SL. Vascularization of the Brown-Pearce rabbit epithelioma transplant as seen in the transparent ear chamber. Am J Roentgenol 1939; 42:891.Google Scholar
  10. 10.
    Cowdry DR, Sheldon WF. The significance of hyperaemia around tumor transplants. Am J Pathol 1946; 22:821.Google Scholar
  11. 11.
    Lutz BR, Patt DI, Handler AH, Stevens DF. Serial sarcoma transplantation in the hamster cheek pouch and the effects of advanced neoplasia on the small blood vessels. Anat Rec 1950; 108:545.Google Scholar
  12. 12.
    Toolan HW. Proliferation and vascularization of adult human epithelium in subcutaneous tissues of x-irradiated heterologous hosts. Proc Soc Exp Biol Med 1951; 78:540.PubMedGoogle Scholar
  13. 13.
    Green HSN. The significance of the heterologous transplantability of human cancer. Cancer (Philadelphia) 1952; 5:24.Google Scholar
  14. 14.
    Wood S Jr. Pathogenesis of metastasis formation observed in vivo in the rabbit ear chamber. AMA Arch Pathol 1958; 66: 550–568.PubMedGoogle Scholar
  15. 15.
    Day ED, Planinsek JA, Pressman D. Localization of radio iodinated rat fibrogen in transplanted rat tumors. J Natl Cancer Inst 1959; 23:799.PubMedGoogle Scholar
  16. 16.
    Bierman HR, Kelly KH, Dod KS, Byron RL Jr. Studies on the blood supply of tumor in man. I. Fluorescence of cutaneous lesions. J Natl Cancer Inst 1951; 11:877.PubMedGoogle Scholar
  17. 17.
    Gullino PM, Grantham FH, Clark SH. The collagen content of transplanted tumors. Cancer Res 1962; 22:1031.PubMedGoogle Scholar
  18. 18.
    Urbach F, Graham JH. Anatomy of human skin tumour capillaries. Nature 1962; 194:652.PubMedGoogle Scholar
  19. 19.
    Rubin R, Casarett G. Microcirculation of tumors. I. Anatomy, function and necrosis. Clin Radiol 1966; 17:220.PubMedGoogle Scholar
  20. 20.
    Algire GH. Microscopic studies of the early growth of a transplantable melanoma of the mouse, using the transparent chamber technique. J Natl Cancer Inst 1943; 4:1.Google Scholar
  21. 21.
    Algire GH, Legallais FY, Park HD. Vascular reactions of normal and malignant tissues in vivo. II. The vascular reaction of normal and neoplastic tissues of mice to a bacterial polysaccharide from Serratia Marcescens (Bacillus prodigius) culture filtrates. J Natl Cancer Inst 1947; 8:53.Google Scholar
  22. 22.
    Ehrmann RL, Knoth M. Choriocarcinoma: Transfilter stimulation of vasoproliferation in the hamster cheek pouch – Studied by light and electron microscopy. J Natl Cancer Inst 1968; 41:1329–1341.PubMedGoogle Scholar
  23. 23.
    Goldacre RJ, Sylven B. On the access of blood borne dyes to various tumor regions. Br J Cancer 1962; 16:306.PubMedGoogle Scholar
  24. 24.
    Delarue J, Mignot J, Caulet T. Modifications vasculaires de la poche jugale du hamster doré au dours du développement de greffes d’une tumeur mélanique. C. R. Seances Soc Biol Patis 1963; 157 :69.Google Scholar
  25. 25.
    Day ED. Vascular relationships of tumor and host. Prog Exp Tumor Res 1964; 4:57.PubMedGoogle Scholar
  26. 26.
    Goodall CM, Sanders AG, Shubik P. Studies of vascular patterns in living tumors with a transparent chamber inserted in hamster cheek pouch. J Natl Cancer Inst 1965; 34:497.Google Scholar
  27. 27.
    Warren BA, Shubik P. The growth of the blood supply to melanoma transplants in the hamster cheek pouch chamber. Lab Invest 1966; 15:464.PubMedGoogle Scholar
  28. 28.
    Tannock IF. Population kinetics of carcinoma cells, capillary endothelial cells, and fibroblasts in a transplanted mouse mammary tumor. Cancer Res 1970; 30:2470.PubMedGoogle Scholar
  29. 29.
    Folkman J. Tumor angiogenesis: From bench to bedside. In: Marme D, Fusenig N, eds. Tumor Angiogenesis: Basic Mechanisms and Cancer Therapy. Springer-Verlag, Heidelberg, Germany, 2008:3–28.Google Scholar
  30. 30.
    Folkman MJ, Long DM, Becker FF. Tumor growth in organ culture. Surg Forum 1962; 13:164.Google Scholar
  31. 31.
    Folkman J, Long DM, Becker FF. Growth and metastasis of tumor in organ culture. Cancer 1963; 16.Google Scholar
  32. 32.
    Folkman J, Cole P, Zimmerman S. Tumor behavior in isolated perfused organs: in vitro growth and metastases of biopsy material in rabbit thyroid and canine intestinal segment. Ann Surg 1966; 164:491.PubMedGoogle Scholar
  33. 33.
    Gimbrone MA Jr, Leapman SB, Cotran RS, Folkman J. Tumor dormancy in vivo by prevention of neovascularization. J Exp Med 1972; 136(2):261.PubMedGoogle Scholar
  34. 34.
    Gimbrone MA Jr, Aster RH, Cotran RS, Corkery J, Jandl JH, Folkman J. Preservation of vascular integrity in organs perfused in vitro with a platelet-rich medium. Nature 1969; 222:33.PubMedGoogle Scholar
  35. 35.
    Folkman J. Tumor angiogenesis: therapeutic implications. N Engl J Med 1971; 285:1182.PubMedGoogle Scholar
  36. 35a.
    Lutty GA, Thompson DC, Gallup JY, Mello RJ, Patz A, Fenselau A. Vitreous: an inhibitor of retinal extract-induced neovascularization. Invest Ophthalmol Vis Sci 1983;24:52.PubMedGoogle Scholar
  37. 36.
    Cavallo T, Sade R, Folkman J, Cotran RS. Tumor angiogenesis: rapid induction of endothelial mitoses demonstrated by autoradiography. J Cell Biol 1972; 54:408.PubMedGoogle Scholar
  38. 37.
    Folkman J. Tumor angiogenesis. In Klein G, Weinhouse S, eds. Advances in Cancer Research. New York: Academic Press, 1974; Volume 19, 331.Google Scholar
  39. 38.
    Folkman J. Tumor angiogenesis: role in regulation of tumor growth. In: Hay, ED, King TJ, Papaconstantinou J, eds. Macromolecules Regulating Growth and Development. New York: Academic Press, 1974; 43.Google Scholar
  40. 39.
    Brem H, Folkman J. Inhibition of tumor angiogenesis mediated by cartilage. J Exp Med 1975; 141(2):427.PubMedGoogle Scholar
  41. 40.
    Folkman J, Gimbrone MA Jr. Perfusion of the thyroid gland. In: Hardman JG, O’Malley BW, eds. Methods in Enzymology, Hormone Action, Part D, Isolated Cells, Tissues and Organ Systems. New York: Academic Press 1975; 39:359.Google Scholar
  42. 41.
    Folkman J. Tumor angiogenesis. In: Becker FF, ed. Cancer: Comprehensive Treatise. New York: Plenum Press 1975; 3:355.Google Scholar
  43. 42.
    Folkman J, Klagsbrun M. Tumor angiogenesis: effect on tumor growth and immunity. In: Gottlieb AA, Plescia OJ, Bishop DHL, eds. Fundamental Aspects of Neoplasia. New York: Springer-Verlag 1975; 401.Google Scholar
  44. 43.
    Folkman J, Cotran RS. Relation of vascular proliferation to tumor growth. In: Richter GW, ed. International Review of Experimental Pathology. New York: Academic Press 1976; 16:207.Google Scholar
  45. 44.
    Folkman J. Tumor angiogenesis and tumor immunity. In: Castro JE, ed. Immunological Aspects of Cancer. Lancaster: MTP Press, Limited 1978; 267.Google Scholar
  46. 45.
    Folkman J. Angiogenesis: an organizing principle for drug discovery? Nat Rev Drug Discov. 2007; 6:273.PubMedGoogle Scholar
  47. 46.
    Gimbrone MA Jr, Cotran RS, Leapman SB, Folkman J. Tumor growth and neovascularization: an experimental model using rabbit cornea. J Natl Canc Inst 1974; 52(2):413.Google Scholar
  48. 47.
    Folkman J, Long DM. The use of silicone rubber as a carrier for prolonged drug therapy. J Surg Res 1964; 4:139.PubMedGoogle Scholar
  49. 48.
    Langer R, Folkman J. Polymers for the sustained release of proteins and other macromolecules. Nature 1976; 263(5580):797.PubMedGoogle Scholar
  50. 49.
    Brown LR, Wei CL, Langer R. In vivo and in vitro release of macromolecules from drug delivery systems. J Pharm Sci 1983; 72:1181.PubMedGoogle Scholar
  51. 50.
    Muthukkaruppan V, Auerbach R. Angiogenesis in the mouse cornea. Science 1979; 205:1416.PubMedGoogle Scholar
  52. 51.
    Ausprunk DH, Falterman K, Folkman J. The sequence of events in the regression of corneal capillaries. Lab Invest 1978; 38:284.PubMedGoogle Scholar
  53. 52.
    Chang LK, Garcia-Cardena G, Farnebo F, Fannon M, Chen EJ, Butterfield C, Moses MA, Mulligan RC, Folkman J, Kaipainen A. Dose-dependent response of FGF-2 for lymphangiogenesis. Proc Natl Acad Sci U S A 2004; 101:11658.PubMedGoogle Scholar
  54. 53.
    Gimbrone MA Jr, Cotran RS, Folkman J. Endothelial regeneration: Studies with human endothelial cell cultures. Series Haematol 1973; 6:453.Google Scholar
  55. 54.
    Jaffe EA, Nachman RL, Becker, CG & Minick CR. Culture of human endothelial cells derived from umbilical veins. Ientification by morphologic and immunologic criteria. J Clin Invest 1973; 52:2745.PubMedGoogle Scholar
  56. 55.
    Folkman J, Haudenschild CC, Zetter BR. Long-term culture of capillary endothelial cells. Proc Natl Acad Sci USA 1979; 76:5217.PubMedGoogle Scholar
  57. 56.
    Haudenschild CC, Zahniser D, Folkman J, Klagsbrun M. Human vascular endothelial cells in culture. Lack of response to serum growth factors. Exp Cell Res 1976; 98:175.PubMedGoogle Scholar
  58. 57.
    Folkman J, Moscona A. Role of cell shape in growth control. Nature 1978; 273:345.PubMedGoogle Scholar
  59. 58.
    Ingber DE, Madri JA, Folkman J. Endothelial growth factors and extracellular matrix regulate DNA synthesis through modulation of cell and nuclear expansion. In Vitro Cell Dev Biol 1987; 23(5):387.PubMedGoogle Scholar
  60. 59.
    Ingber DE, Folkman J. Mechanochemical switching between growth and differentiation during fibroblast growth factor- stimulated angiogenesis in vitro: role of extracellular matrix. J Cell Biol 1989; 109:317.PubMedGoogle Scholar
  61. 60.
    Ingber DE, Folkman J. How does extracellular matrix control capillary morphogenesis? Cell 1989; 58:803.PubMedGoogle Scholar
  62. 61.
    Ingber DE, Folkman J. Tension and compression as basic determinants of cell form and function: utilization of a cellular tensegrity mechanism. In: Stein W, Bronner F, eds. Cell Shape: Determinants, Regulation, and Regulatory Role. New York: Academic Press, 1989; 3.Google Scholar
  63. 62.
    Huang S, Ingber DE. Cell tension, matrix mechanics, and cancer development. Cancer Cell 2005; 8:175.PubMedGoogle Scholar
  64. 63.
    Bissell MJ, Farson D, Tung AS. Cell shape and hexose transport in normal and virus-transformed cells in culture. J Supramolecular Structure 1977; 6:1.Google Scholar
  65. 64.
    Folkman J, Haudenschild C. Angiogenesis in vitro. Nature 1980; 288:551.PubMedGoogle Scholar
  66. 65.
    Kamei M, Saunders WB, Bayless KJ, Dye L, Davis GE, Weinstein BM. Endothelial tubes assemble from intracellular vacuoles in vivo. Nature 2006; 442:453–456.PubMedGoogle Scholar
  67. 66.
    Bayliss PE, Bellavance KL, Whithead GG, Abrams JM, Aegerter S, Robbins HS, Cowan DB, Keating MT, O’Reilly T, Wood JM, Roberts TM, Chan J. Chemical modulation of receptor signaling inhibits regenerative angiogenesis in adult zebrafish. Nat Chem Biol 2006; 2(5):265–273.PubMedGoogle Scholar
  68. 67.
    Auerbach R, Kubai L, Knighton D, Folkman J. A simple procedure for the long-term cultivation of chicken embryo. Dev Biol 1974; 41:391.PubMedGoogle Scholar
  69. 68.
    Ausprunk DH, Knighton DR, Folkman J. Differentiation of vascular endothelium in the chick chorioallantois: a structural and autoradiographic study. Dev Biol 1974; 38:237.PubMedGoogle Scholar
  70. 69.
    Folkman J. Angiogenesis and its inhibitors. In: DeVita VT Jr, Hellman S, Rosenberg SA, eds. Important Advances in Oncology. Philadelphia: J.B. Lippincott, 1985; 42–62.Google Scholar
  71. 70.
    Ausprunk DH, Knighton DR, Folkman J. Vascularization of normal and neoplastic tissues grafted to the chick chorioallantois. Am J Pathol 1975 79(3):597.PubMedGoogle Scholar
  72. 71.
    Nguyen M, Shing Y, Folkman J. Quantitation of angiogenesis and antiangiogenesis in the chick embryo chorioallantoic membrane. Microvasc Res 1994; 47:31–40.PubMedGoogle Scholar
  73. 71a.
    Norrby K, Jakobsson A, Sorbo J. Quantitative angiogenesis in spreads of intact rat mesenteric windows. Microvasc Res 1990; 39(3): 341–348.PubMedGoogle Scholar
  74. 72.
    Ribatti D, Gualandris A, Bastaki M, Vacca A, Lurlaro M, Roncali L, Presta M. New model for the study of angiogenesis and antiangiogenesis in the chick embryo chorioallantoic membrane: the gelatin ponge/chorioallantoic membrane assay. J Vasc Res 1997; 34:455.PubMedGoogle Scholar
  75. 73.
    Ribatti D, Locci P, Marinucci L, Lilli C, Roncali L, Becchetti E. Exogenous heparin induces an increase in glycosaminoglycans of the chick embryo chorioallantoic membrane : its possible role in the regulation of angiogenic processes. Int J Microcirculation Clin Exp 1995; 15:181.Google Scholar
  76. 74.
    Ribatti D, Nico B, Bertossi M, Roncali L, Presta M. Basic fibroblast growth factor-induced angiogenesis in the chick embryo chorioallantoic membrane: an electron microscopy study. Microvascular Research. 1997;53:187.PubMedGoogle Scholar
  77. 75.
    Ribatti D, Crivellato E, Candussio L, et al. Angiogenic activity of rat mast cells in the chick embryo chorioallantoic membrane is down-regulated by treatment with recombinant human a2a interferon and partly mediated by fibroblast growth factor-2. Haematologica. 2002;87:465.PubMedGoogle Scholar
  78. 76.
    Murray JC. Angiogenesis Protocols, Humana Press, Totowa, New Jersey 2001.Google Scholar
  79. 77.
    Norrby K. In vivo models of angiogenesis. J Cell Mol Med 2006; 10:588.PubMedGoogle Scholar
  80. 78.
    Shing Y, Folkman J, Sullivan R, Butterfield C, Murray J, Klagsbrun M. Heparin affinity: purification of a tumor-derived capillary endothelial cell growth factor. Science 1984; 223:1296.PubMedGoogle Scholar
  81. 79.
    Esch F, Esch F, Baird A, Ling N, Ueno N, Hill F, Denoroy L, Klepper R, Gospodarowicz D, Bohlen P, Guillemin R. Primary structure of bovine pituitary basic fibroblast growth facto (FGF) and comparison with the amino-terminal sequence of bovine brain acidic FGF. Proc Natl Acad Sci USA 1985; 82:6507.PubMedGoogle Scholar
  82. 80.
    Gospodarowicz D. Localization of a fibroblast growth factor and its effect with hydrocortisone on 3T3 cell growth. Nature 1974; 249:123.PubMedGoogle Scholar
  83. 81.
    Gospodarowicz D, Moran J, Braun D, Birdwell C. Clonal growth of bovine endothelial cells: fibroblast growth factor as a survival agent. Proc Natl Acad Sci USA 1976; 73:4120.PubMedGoogle Scholar
  84. 82.
    Senger DR, Galli SJ, Dvorak AM, perruzzi CA, Harvey VS, Dvorak HF. Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid. Science 1983; 219:983.PubMedGoogle Scholar
  85. 83.
    Ferrara N, Henzel WJ. Pituitary follicular cells secrete a novel heparin-binding growth factor specific for vascular endothelial cells. Biochem Biophys Res Commun 1989; 161:851.PubMedGoogle Scholar
  86. 84.
    Rosenthal RA, Megyesi JF, Henzel WJ, Ferrara N, Folkman J. Conditioned medium from mouse sarcoma 180 cells contains vascular endothelial growth factor. Growth Factors 1990; 4:53.PubMedGoogle Scholar
  87. 85.
    Miao HQ, Lee P, Lin H, Soker S, Klagsbrun M. Neuropilin-1 expression by tumor cells promotes tumor angiogenesis and progression. FASEB J. 2000; 14:2532.PubMedGoogle Scholar
  88. 86.
    Vlodavsky I, Folkman J, Sullivan R, Fridman R, Ishai-Michaeli R, Sasse J, Klagsbrun M. Endothelial cell-derived basic fibroblast growth factor: Synthesis and deposition into subendothelial extracellular matrix. Proc Natl Acad Sci USA 1987; 84:2292.PubMedGoogle Scholar
  89. 87.
    Folkman J, Klagsbrun M, Sasse J, Wadzinski M, Ingber D, Vlodavsky I. A heparin-binding angiogenic protein - basic fibroblast growth factor - is stored within basement membrane. Am J Pathol 1988; 130(2):393.PubMedGoogle Scholar
  90. 88.
    Bashkin P, Doctrow S, Klagsbrun M, Svahn CM, Folkman J, Vlodavsky I. Basic fibroblast growth factor binds to subendothelial extracellular matrix and is released by heparitinase and heparin-like molecules. Biochem 1989; 28:1737.Google Scholar
  91. 89.
    Brem S, Brem H, Folkman J, Finkelstein D, Patz A. Prolonged tumor dormancy by prevention of neovascularization in the vitreous. Canc Res 1976; 36:2807.Google Scholar
  92. 90.
    Brouty-Boye D, Zetter B. Inhibition of cell motility by interferon. Science 1980; 208: 516.PubMedGoogle Scholar
  93. 91.
    Dvorak HF, Gresser I. Microvascular injury in pathogenesis of interferon-induced necrosis of subcutaneous tumors in mice. J Natl Cancer Inst 1989; 81:497.PubMedGoogle Scholar
  94. 92.
    White CW, Sondheimer HM, Crouch EC, Wilson H, Fan LL. Treatment of pulmonary hemangiomatosis with recombinant interferon alfa-2a. N Engl J Med 1989; 320:1197.PubMedGoogle Scholar
  95. 93.
    Folkman J. Successful treatment of an angiogenic disease. N Engl J Med 1989; 320:1211.PubMedGoogle Scholar
  96. 94.
    Singh RK, Gutman M, Bucana CD, Sanchez R, Llansa N, Fidler IJ. Interferons alpha and beta down-regulate the expression of basic fibroblast growth factor in human carcinomas. Proc Natl Acad Sci U S A 1995; 92: 4562.PubMedGoogle Scholar
  97. 95.
    Taylor S, Folkman J. Protamine is an inhibitor of angiogenesis. Nature 1982; 297: 307.PubMedGoogle Scholar
  98. 96.
    Crum R, Szabo S, Folkman J. A new class of steroids inhibits angiogenesis in the presence of heparin or a heparin fragment. Science 1985; 230:1375.PubMedGoogle Scholar
  99. 97.
    Chen NT, Corey EJ, Folkman J. Potentiation of angiostatic steroids by a synthetic inhibitor of arylsulfatase. Lab Invest 1988; 59:453.PubMedGoogle Scholar
  100. 98.
    Fotsis T, Zhang Y, Pepper MS, Adlercreutz H, Montesano R, Nawroth PP, Schweigerer L.The endogenous oestrogen metabolite 2-methoxyestradiol inhibits angiogenesis and suppresses tumor growth. Nature 1994; 368:237.PubMedGoogle Scholar
  101. 99.
    D’Amato RJ, Lin CM, Flynn E, Folkman J, Hamel E. 2-Methoxyestradiol, an endogenous mammalian metabolite, inhibits tubulin polymerization by interacting at the colchicine site. Proc Nat Acad Sci USA 1994; 91(9):3964.PubMedGoogle Scholar
  102. 100.
    Folkman J, Mulliken JB, Ezekowitz RAB. Antiangiogenic therapy of haemangiomas with interferon A. In: Stuart-Harris R, Penny R, eds. The Clinical Applications of the Interferons. Chapman & Hall Medical, London 1997; 255.Google Scholar
  103. 101.
    Folkman J. Endogenous angiogenesis inhibitors. Acta Pathologica, Microbiologica, et Immunologica Scandinavica 2004; 112:496.PubMedGoogle Scholar
  104. 102.
    Nyberg P, Xie L, Kalluri R. Endogenous inhibitors of angiogenesis. Cancer Res 2005; 65:3967.PubMedGoogle Scholar
  105. 103.
    Abdollahi A, Hahnfeldt P, Maercker C, Gröne, HJ, Debus J, Ansorge W, Folkman J, Hlatky L, Huber PE. Endostatin’s antiangiogenic signaling network. Molecular Cell 2004; 13:649.PubMedGoogle Scholar
  106. 104.
    Relf M, LeJeune S, Scott PA, Fox S, Smith K, Leek R, Moghaddam A, Whitehouse R, Bicknell R, Harris AL. Expression of the angiogenic factors vascular endothelial cell growth factor, acidic and basic fibroblast growth factor, tumor growth factor beta-1, platelet-derived endothelial cell growth factor, placenta growth factor, and pleiotrophin in human primary breast cancer and its relation to angiogenesis. Cancer Res 1997; 57:963.PubMedGoogle Scholar
  107. 105.
    Casanovas O, Hicklin DJ, Bergers G, Hanahan D. Drug resistance by evasion of antiangiogenic targeting of VEGF signaling in late-stage pancreatic islet tumors. Cancer Cell 2005; 8:299.PubMedGoogle Scholar
  108. 106.
    Viloria-Petit AM, Kerbel RS. Acquired resistance to EGFR inhibitors: mechanisms and prevention strategies. Int J Radiat Oncol Biol Phys 2004; 58:914.PubMedGoogle Scholar
  109. 107.
    Bianco C, Strizzi L, Ebert A, Chang C, Rehman A, Normanno N, Guedez L, Salloum R, Ginsburg E, Sun Y, Khan N, Hirota M, Wallace-Jones B, Wechselberger C, Vonderhaar BK, Tosato G, Stetler-Stevenson WG, Sanicola M, Salomon DS. Role of human cripto-1 in tumor angiogenesis. J Natl Cancer Inst 2005; 97:132–141.PubMedGoogle Scholar
  110. 108.
    Dor Y, Djonov V, Abramovitch R, Itin A, Fishman GI, Carmeliet P, Goelman G, Keshet E. Conditional switching of VEGF provides new insights into adult neovascularization and pro-angiogenic therapy. Embo J 2002; 21:1939.PubMedGoogle Scholar
  111. 109.
    Reynolds LE, Wyder L, Lively JC, Taverna D, Robinson SD, Huang X, Sheppard D, Hynes RO, Hodivala-Dilke KM. Enhanced pathological angiogenesis in mice lacking beta3 integrin or beta3 and beta5 integrins. Nat Med 2002; 8:27.PubMedGoogle Scholar
  112. 110.
    Mizukami Y, Jo WS, Duerr EM, Gala M, Li J, Zhang X, Zimmer MA, Iliopoulos O, Zukerberg LR, Kohgo Y, Lynch MP, Rueda BR, Chung DC. Induction of interleukin-8 preserves the angiogenic response in HIF-1alpha-deficient colon cancer cells. Nat Med 2005; 11:992.PubMedGoogle Scholar
  113. 111.
    Dorrell MI, Aguilar E, Scheppke L, Barnett FH, Friedlander M. Combination angiostatic therapy completely inhibits ocular and tumor angiogenesis. Proc Natl Acad Sci U S A 2007; 104:967.PubMedGoogle Scholar
  114. 112.
    Jain RK, Tong RT, Munn LL. Effect of vascular normalization by antiangiogenic therapy on interstitial hypertension, peritumor edema, and lymphatic metastasis: insights from a mathematical model. Cancer Res 2007; 67:2729.PubMedGoogle Scholar
  115. 113.
    Fukumura D, Jain RK. Tumor microvasculature and microenvironment: Targets for anti-angiogenesis and normalization. Microvasc Res 2007; 74(2–3):72–84.PubMedGoogle Scholar
  116. 114.
    Jain RK. Barriers to drug delivery in solid tumors. Sci Am. 1994;271:58–65.PubMedGoogle Scholar
  117. 115.
    Boucher Y, Jain RK. Microvascular pressure is the principal driving force for interstitial hypertension in solid tumors: implications for vascular collapse. Cancer Res 1992;52:5110.PubMedGoogle Scholar
  118. 116.
    Jain RK. Normalizing tumor vasculature with anti-angiogenic therapy: a new paradigm for combination therapy. Nat Med 2001; 7:987.PubMedGoogle Scholar
  119. 117.
    Slaton JW, Perrotte P, Inoue K, Dinney CP, Fidler IJ. Interferon-alpha-mediated down-regulation of angiogenesis-related genes and therapy of bladder cancer are dependent on optimization of biological dose and schedule. Clin Cancer Res 1999; 5:2726.PubMedGoogle Scholar
  120. 118.
    Panigrahy D, Singer S, Shen LQ, Butterfield CE, Freedman DA, Chen EJ, Moses MA, Kilroy S, Duensing S, Fletcher C, Fletcher JA, Hlatky L, Hahnfeldt P, Folkman J, Kaipainen A. PPARgamma ligands inhibit primary tumor growth and metastasis by inhibiting angiogenesis. J Clin Invest 2002; 110:923.PubMedGoogle Scholar
  121. 119.
    Celik I, Surucu O, Dietz C, Heymach JV, Force J, Hoschele I, Becker CM, Folkman J, Kisker O. Therapeutic efficacy of endostatin exhibits a biphasic dose-response curve. Cancer Res 2005; 65:11044.PubMedGoogle Scholar
  122. 120.
    Tjin Tham Sjin RM, Naspinski J, Birsner AE, Li C, Chan R, Lo KM, Gillies S, Zurakowski D, Folkman J, Samulski J, Javaherian K. Endostatin therapy reveals a U-shaped curve for antitumor activity. Cancer Gene Ther. 2006; 13(6):619–627.PubMedGoogle Scholar
  123. 121.
    Browder T, Butterfield CE, Kräling BM, Shi B, Marshall B, O’Reilly MS, Folkman J. Antiangiogenic scheduling of chemotherapy improves efficacy against experimental drug-resistant cancer. Cancer Res 2000; 60:1878.PubMedGoogle Scholar
  124. 122.
    Klement G, Baruchel S, Rak J, Man S, Clark K, Hicklin DJ, Bohlen P, Kerbel RS. Continuous low-dose therapy with vinblastine and VEGF receptor-2 antibody induces sustained tumor regression without overt toxicity. J Clin Invest 2000; 105:R15.PubMedGoogle Scholar
  125. 123.
    Hanahan D, Bergers G, Bergsland E. Less is more, regularly: metronomic dosing of cytotoxic drugs can target tumor angiogenesis in mice. J Clin Invest 2000; 105:1045.PubMedGoogle Scholar
  126. 123a.
    Bocci G, Francia G, Man S, Lawler J, Kerbel RS. Thrombospondin 1, a mediator of the antiangiogenic effects of low-dose metronomic chemotherapy. Proc Natl Acad Sci USA 2003; 100(22):12917–12922.PubMedGoogle Scholar
  127. 124.
    Hanahan D, Folkman J. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 1996; 86:353.PubMedGoogle Scholar
  128. 124a.
    Damber JE, Valbo C, Albertsson P, Lennernas B, Norrby K. The anti-tumor effect of low-dose continuous chemotherapy may partly be mediated by thrombospondin. Cancer Chemother Pharmacol 2006; 58(3):354–60.PubMedGoogle Scholar
  129. 125.
    Bouck N. Tumor angiogenesis: the role of oncogenes and tumor suppressor genes. Cancer Cells. 1990; 2:179.PubMedGoogle Scholar
  130. 126.
    Achilles E-G, Fernandez A, Allred EN, Kisker O, Udagawa T, Beecken W-D, Flynn E, Folkman J. Heterogeneity of angiogenic activity in a human liposarcoma: A proposed mechanism for ‘no take’ of human tumors in mice. J Natl Cancer Inst 2001; 93:1075.PubMedGoogle Scholar
  131. 127.
    Udagawa T, Fernandez A, Achilles EG, Folkman J, D’Amato RJ. Persistence of microscopic human cancers in mice: alterations in the angiogenic balance accompanies loss of tumor dormancy. FASEB J 2002; 16:1361.PubMedGoogle Scholar
  132. 128.
    Almog N, Henke V, Flores L, Hlatky L, Kung AL, Wright RD, Berger R, Hutchinson L, Naumov GN, Bender E, Akslen LA, Achilles EG, Folkman J. Prolonged dormancy of human liposarcoma is associated with impaired tumor angiogenesis. FASEB J 2006; 20: 947.PubMedGoogle Scholar
  133. 129.
    Naumov GN, Bender E, Zurakowski D, Kang SY, Sampson D, Flynn E, Watnick RS, Straume O, Akslen LA, Folkman J, Almog N. A model of human tumor dormancy: an angiogenic switch from the nonangiogenic phenotype. J Natl Cancer Inst 2006; 98: 316–325.PubMedCrossRefGoogle Scholar
  134. 130.
    Naumov GN, Folkman J. Strategies to prolong the nonangiogenic dormant state of human cancer. In: Davis DW, Herbst RS, Abbruzzese JL, eds. Antiangiogenic Cancer Therapy, CRC Press, Boca Raton, FL, 2007; 3.Google Scholar
  135. 131.
    Kaipainen A, Kieran MW, Huang S, Butterfield C, Bielenberg D, Mostoslavsky G, Mulligan R, Folkman J, Panigrahy D. PPARα deficiency in inflammatory cells suppresses tumor growth. PLoS ONE 2007; 2:e260.PubMedGoogle Scholar
  136. 132.
    Verheul HM, Pinedo HM. Tumor Growth: A putative role for platelets? Oncologist 1998; 3(2):II.PubMedGoogle Scholar
  137. 133.
    Folkman J, Browder T, Palmblad J. Angiogenesis research: Guidelines for translation to clinical application. Thromb Haemost 2001; 86:23–33.PubMedGoogle Scholar
  138. 134.
    Klement G, Kikuchi L, Kieran M, Almog N, Yip TT, Folkman J. Early tumor detection using platelets uptake of angiogenesis regulators. Proc 47th American Society of Hematology. Blood; December 2004; 104:239a, abstract 839.Google Scholar
  139. 135.
    Klement G, Cervi D, Yip T, Folkman J, Italiano J. Platelet PF-4 is an early marker of tumor angiogenesis. Blood 2006; 108:426a, abstract 1476.Google Scholar
  140. 136.
    Cervi D, Yip T-T, Bhattacharya N, Podust VN, Peterson J, Abou-slaybi A, Naumov GN, Bender E, Almog N, Italiano JE Jr., Folkman J, Klement GL. Platelet-associated PF-4 as a biomarker of early tumor detection. Blood; 2007; in press.Google Scholar
  141. 137.
    Italiano J, Richardson JL, Folkman J, Klement G. Blood platelets organize pro- and anti-angiogenic factors into separate, distinct alpha granules: implications for the regulation of angiogenesis. Blood 2006; 108:120a, abstract 393.Google Scholar
  142. 138.
    Stone EM. A very effective treatment for neovascular macular degeneration. N Engl J Med 2006; 355: 1493–5.PubMedGoogle Scholar
  143. 139.
    Adamis, AP, Shima DT, Yeo K-T, Yeo T-K, Brown LF, Berse B, D’Amore PA, Folkman J. Synthesis and secretion of vascular permeability factor/vascular endothelial growth factor by human retinal pigment epithelial cells. Biochem Biophys Res Commun, 1993; 193:631–638.PubMedGoogle Scholar
  144. 140.
    Miller JW, Adamis AP, Shima DT, D’Amore PA, Moulton RS, O’Reilly MS, Folkman J, Dvorak HF, Brown LF, Berse B, Yeo T-K, Yeo K-T. (1994). Vascular endothelial growth factor/vascular permeability factor is temporally and spatially correlated with ocular angiogenesis in a primate model. Am J Pathol; 145:574–584.PubMedGoogle Scholar
  145. 141.
    Adamis AP, Miller JW, Bernal M-T, D’Amico DJ, Folkman J, Yeo T-K, Yeo K-T. Increased vascular endothelial growth factor levels in the vitreous of eyes with proliferative diabetic retinopathy. Am J Ophthal; 1994; 118(4):445–450.PubMedGoogle Scholar
  146. 142.
    Aiello LP, Avery RL, Arrigg PG, et al. Vascular endothelial growth factor in ocular fluid of patients with diabetic retinopathy and other retinal disorders. N Engl J Med. 1994; 331:1480–1487.PubMedGoogle Scholar
  147. 143.
    Shima DT, Adamis AP, Ferrara N, Yeo K-T, Yeo T-K, Allende R, Folkman J, D’Amore PA. Hypoxic induction of endothelial cell growth factors in retinal cells: Identification and characterization of vascular endothelial growth factor (VEGF) as the mitogen. Mol Med; 1995; 1:182–193.PubMedGoogle Scholar
  148. 144.
    Adamis AP, Shima DT, Tolentino MJ, Gragoudas ES, Ferrara N, Folkman J, D’Amore PA, Miller JW. Inhibition of vascular endothelial growth factor prevents retinal ischemia-associated iris neovascularization in a nonhuman primate. Arch Ophthalmol; 1996; 114:66–71.PubMedGoogle Scholar
  149. 145.
    Folkman J. Is angiogenesis an organizing principle in biology and medicine? J Pediatr Surg. 2007; 42:1–11.PubMedGoogle Scholar
  150. 146.
    Folkman J. Historical Overview. In: Marme D, Fusenig N, eds. Tumor Angiogenesis: From Bench to Bedside. Springer- Verlag, Germany 2008:1–28.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Judah Folkman
    • 1
  1. 1.Department of Surgery Harvard Medical School and Vascular Biology ProgramChildren's Hospital BostonBostonUSA

Personalised recommendations