Genomics of Banana and Plantain (Musa spp.), Major Staple Crops in the Tropics

  • Nicolas Roux
  • Franc-Christophe Baurens
  • Jaroslav Doležel
  • Eva Hřibová
  • Pat Heslop-Harrison
  • Chris Town
  • Takuji Sasaki
  • Takashi Matsumoto
  • Rita Aert
  • Serge Remy
  • Manoel Souza
  • Pierre Lagoda
Part of the Plant Genetics and Genomics: Crops and Models book series (PGG, volume 1)

Abstract

This chapter on Musa (banana and plantain) genomics covers the latest information on activities and resources developed by the Global Musa Genomics Consortium. Section 4.1 describes the morphology of the plant, its socio-economical importance and usefulness as an experimental organism. Section 4.2 describes the complexity of Musa taxonomy and the importance of genetic diversity. Section 4.3 details the genetic maps which have recently been developed and those that are currently being developed. Section 4.4 presents the five BAC libraries which are now publicly available from the Musa Genome Resource Centre and can be distributed in various forms under a material transfer agreement. Section 4.5 gives an overview of cytogenetics and genome organization, showing that the genus Musa has a quite high proportion of repetitive DNA; the discovery of the first para-retrovirus integrated in the genome makes it unique. Section 4.6 explains the first attempts to sequence the genome by BAC end sequencing, whole BAC sequencing, and reduced representation sequencing. Section 4.7 addresses functional genomics with the description of cDNA libraries, gene validation using gene trapping, mutation induction and tilling techniques, as well as genetic transformation. Section 4.8 draws overall conclusions. This chapter demonstrates that by organizing the Global Musa Genomics Consortium (currently comprising 33 member institutions from 23 countries), duplication of effort can be minimized and the results of Musa genomics research are rapidly made accessible to taxonomists, breeders and the biotechnology community.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Acereto-Escoffié POM, Chi-Manzanero BH, Echeverría-Echeverría S, Grijalva R, James Kay A, et al. (2005) Agrobacterium-mediated transformation of Musa acuminata cv. “Grand Nain” scalps by vacuum infiltration. Sci Hortic 105:359–371CrossRefGoogle Scholar
  2. Aert R, Ság L, Volckaert G (2004) Gene content and density in banana (Musa acuminata) as revealed by genomic sequencing of BAC clones. Theor Appl Genet 109:129–139PubMedCrossRefGoogle Scholar
  3. Ahloowalia BS, Maluszynski M, Nichterlein K (2004) Global impact of mutation-derived varieties. Euphytica 135:187–204CrossRefGoogle Scholar
  4. Anonymous (1990) List of new mutant cultivars; Musa sp. (banana). Mutation Breed Newsl 35:32–41Google Scholar
  5. Anonymous (2005) All is good with the banana tree. Spore (FRA) 118:3Google Scholar
  6. Anonymous (2006) Technical Cooperation Projects Highlights. Plant Breed Genet Newsl 117:13Google Scholar
  7. Balint-Kurti PJ, Clendennen SK, Dolezelová M, Valárik M, Dolezel J, et al. (2000) Identification and chromosomal localization of the monkey retrotransposon in Musa sp. Mol Gen Genet 263:908–915PubMedCrossRefGoogle Scholar
  8. Barakat A, Gallois P, Raynal M, Mestre-Orteg D, Sallaud C, et al. (2000) The distribution of T-DNA in the genomes of transgenic Arabidopsis and rice. FEBS Lett 471:161–164PubMedCrossRefGoogle Scholar
  9. Bartoš J, Alkhimova O, Dolezelová M, De Langhe E, Dolezel J (2005) Nuclear genome size and genomic distribution of ribosomal DNA in Musa and Ensete (Musaceae): taxonomic implications. Cytogenet Genome Res 109:50–57PubMedCrossRefGoogle Scholar
  10. Baurens FC (1997) Identification par PCR des espèces impliquées dans la composition génomique des cultivars de bananier à l’aide de séquences répétées. PhD, Université Paul Sabatier, Toulouse, FranceGoogle Scholar
  11. Baurens FC, Noyer JL, Lanaud C Lagoda PJL (1996) Use of competitive PCR to assay copy number of repetitive elements in banana. Mol Gen Genet 253:57–64PubMedCrossRefGoogle Scholar
  12. Baurens FC, Noyer JL, Lanaud C, Lagoda PJL (1997a) A repetitive sequence family of banana (Musa sp.) shows homology to Copia-like elements. J Genet Breed 51:135–142Google Scholar
  13. Baurens FC, Noyer JL, Lanaud C, Lagoda PJL (1997b) Assessment of a species-specific element (Brep 1) in banana. Theor Appl Genet 95:922–931CrossRefGoogle Scholar
  14. Baurens FC, Noyer JL, Lanaud C, Lagoda PJL (1998) Inter-Alu PCR like genomic profiling in banana. Euphytica 99:137–142CrossRefGoogle Scholar
  15. Becker DK, Dugdale B, Smith MK, Harding RM, Dale JL (2000) Genetic transformation of Cavendish banana (Musa spp. AAA group) cv. ‘Grand Nain’ via particle bombardment. Plant Cell Rep 19:229–234CrossRefGoogle Scholar
  16. Brown SD, Peters J (1996) Combining mutagenesis and genomics in the mouse-closing the phenotype gap. Trends Genet 12:433–435PubMedCrossRefGoogle Scholar
  17. Buddenhagen IW (1987) Disease Susceptibility and Genetics in Relation to Breeding of Bananas and Plantains. In: Persley GJ DeLanghe EA (eds) Banana and Plantain Breeding Strategies. ACIAR, Canberra 21, pp 95–109Google Scholar
  18. Carreel F (1994) Etude de la diversité génétique des bananiers (genre Musa) à l’aide de marqueurs RFLP. PhD, Institut National Agronomique, Paris-Grignon, FranceGoogle Scholar
  19. Carreel F, Faure S, Gonzalez de Leon D, Lagoda PJL, Perrier X, et al. (1994) Evaluation de la diversité génétique chez les bananiers diploides (Musa sp.). Genet Sel Evol 26:125–136CrossRefGoogle Scholar
  20. Carreel F, Gonzalez de Leon D, Lagoda PJL, Lanaud C, Jenny C, et al. (2002) Ascertaining maternal and paternal lineage within Musa by chloroplast and mitochondrial DNA RFLP analyses. Genome 45:679–692PubMedCrossRefGoogle Scholar
  21. Chakrabarti A, Ganapathi TR, Mukherjee PK, Bapat VA (2003) MSI-99, a magainin analogue, imparts enhanced disease resistance in transgenic tobacco and banana. Planta 216:587–596PubMedGoogle Scholar
  22. Cheesman EE (1947) Classification of the bananas II. The Genus Musa L. Kew Bull 2:106–117CrossRefGoogle Scholar
  23. Clarke L, Carbon J (1976) A colony bank containing synthetic Col El hybrid plasmids representative of the entire E. coli genome. Cell 9: 91–99.PubMedCrossRefGoogle Scholar
  24. Coemans B, Matsumura H, Terauchi R, Remy S, Swennen R, et al. (2005) SuperSAGE combined with PCR walking allows global gene expression profiling of banana (Musa acuminata), a non-model organism. Theor Appl Genet 111:1118–1126PubMedCrossRefGoogle Scholar
  25. Côte FX, Domergue R, Mommarson S, Schwendiman J, Teisson C, et al. (1996) Embryogenic cell suspensions from the male flower of Musa AAA. Physiol Plant 97:285–290CrossRefGoogle Scholar
  26. Creste S, Tulmann Neto A, De Oliveira Silva S, Figueira A (2003) Genetic characterization of banana cultivars (Musa spp.) from Brazil using microsatellite markers. Euphytica 132:259–268CrossRefGoogle Scholar
  27. Crouch HK, Crouch JH, Jarret RL, Cregan PB, Ortiz R (1998) Segregation at Microsatellite loci in Haploid and Diploid gametes of Musa. Crop Sci 38:211–217CrossRefGoogle Scholar
  28. Crouch JH, Crouch HK, Constandt H, Van Gysel A, Breyne P, et al. (1999) Comparison of PCR-based marker analyses of Musa breeding populations. Mol Breed 5:233–244CrossRefGoogle Scholar
  29. D’Hont A, Paget-Goy A, Escoute J, Carreel F (2000) The interspecific genome structure of cultivated banana, Musa spp. revealed by genomic DNA in situ hybridization. Theor Appl Genet 100:177–183CrossRefGoogle Scholar
  30. De Langhe E, Pillay M, Tenkouano A, Swennen R (2005) Integrating morphological and molecular taxonomy in Musa: the african plantains (Musa spp. AAB group). Plant Syst Evol 255: 225–236CrossRefGoogle Scholar
  31. Dolezel J, Dolezelová M, Novák FJ (1994) Flow cytometric estimation of nuclear DNA amount in diploid bananas (Musa acuminata and Musa balbisiana). Biol Plant 36:351–357Google Scholar
  32. Dolezelová M, Dolezel J, Van den Houwe I, Roux N, Swennen R (2005) Focus on the Musa collection: Ploidy levels revealed. InfoMusa 14:34–36Google Scholar
  33. Dolezelová M, Valárik M, Swennen R, Horry JP, Dolezel J (1998) Physical mapping of the 18S–25S and 5S ribosomal RNA genes in diploid bananas. Biol Plant 41:497–505CrossRefGoogle Scholar
  34. Ewing B, Green P (1998) Base calling of automated sequencer traces using phred. II. Error probabilities. Genome Res 8:186–194PubMedGoogle Scholar
  35. FAO, (2005) http://faostat.fao.org/Google Scholar
  36. Fauré S, Bakry F, De León DG (1993a) Cytogenetic studies of diploid bananas In: Ganry J (ed) Proc Int Symp Breeding Banana and Plantain for Resistance to Diseases and Pests. CIRAD, Montpellier, pp 77–92Google Scholar
  37. Fauré S, Noyer JL, Carreel F, Horry JP, Bakry F, et al. (1993b) A molecular marker-based linkage map of diploid bananas (Musa acuminata). Theor Appl Genet 87:517–526CrossRefGoogle Scholar
  38. Cheung F, Town CD (2007) A BAC end view of the Musa acuminata genome. BMC Plant Biology 7:29PubMedCrossRefGoogle Scholar
  39. Ge XJ, Liu MH, Wang K, Schaal BA, Chiang TY (2005) Population structure of wild bananas, Musa balbisiana, in China determined by SSR fingerprinting and cpDNA PCR-RFLP. Mol Ecol 14:933–944PubMedCrossRefGoogle Scholar
  40. Global Musa Genomics Consortium (2002) Beyond Arabidopsis and Rice, Strategy for the Global Musa Genomics Consortium. Report of a meeting held in Arlington, USA, 17–20 July 2001, INIBAP, ProMUSA, pp 25–30Google Scholar
  41. Grapin A, Noyer JL, Dambier D, Carreel F, Lanaud C, et al. (1998) Diploid Musa acuminata genetic diversity with Sequence Tagged Microsatellite Sites. Electrophoresis 19:1374–1380PubMedCrossRefGoogle Scholar
  42. Harper G, Osuji JO, Heslop-Harrison JSP, Hull R (1999) Integration of banana streak badnavirus into the Musa genome: molecular and cytogenetic evidence. Virology 255:207–213PubMedCrossRefGoogle Scholar
  43. Harper LC, Cande WZ (2000) Mapping a new frontier development of integrated cytogenetic maps in plants. Rev Funct Integr Genom 1:89–98CrossRefGoogle Scholar
  44. Henikoff S, Till BJ, Comai L (2004) TILLING. Traditional mutagenesis meets functional genomics. Plant Physiol 135:630–636PubMedCrossRefGoogle Scholar
  45. Hermann SR, Becker DK, Harding RM, Dale JL (2001) Promoters derived from banana bunchy top virus-associated components S1 and S2 drive transgene expression in both tobacco and banana. Plant Cell Rep 20:642–646CrossRefGoogle Scholar
  46. Horry JP (1988) Distribution of anthocyanins in wild and cultivated banana varieties. Phytochemistry 27:2667–2672CrossRefGoogle Scholar
  47. Horry JP (1989) Chimio taxonomie et organisation génétique dans le genre Musa. I, II, III. Fruits 44:455–475, 509–520, 573–578Google Scholar
  48. Horry JP, Dolezel J, Dolezelová M, Lysák MA (1998) Do natural AxB tetraploid bananas exist? InfoMusa 7:5–6Google Scholar
  49. Hribová E, Macas J, Dolezelová M, Dolezel J (2006) Characterization of the highly repeated part of the banana genome. In: Abstracts of the 5th Plant Genomics European Meetings. The Italian Plant Genomics Network, Venice, p 205Google Scholar
  50. Hull R (2002) Matthews’ Plant Virology, 4th edn. San Diego, Academic PressGoogle Scholar
  51. Hull R, Harper G, Lockhart B (2000) Viral sequences integrated into plant genomes. Trends Plant Sci 5:362–365PubMedCrossRefGoogle Scholar
  52. IAEA, http://www-mvd.iaea.org/Google Scholar
  53. INIBAP (1992) Banana and Plantain – food for thought. In: Annual report 1992, INIBAP, Montpellier, France, pp 7–11Google Scholar
  54. INIBAP (1999) Musa production around the world – trends, varieties and regionnal importance. In: Annual Report 1998, INIBAP, Montpellier, pp 42–47Google Scholar
  55. James AC, Jimenez-Martinez R, Canto-Canche B, Peraza-Echeverria S (2006) Discovery and characterization of disease resistance gene homologues in a plant transformation competent BIBAC library of the banana Musa acuminata cv Tuu Gia (AA). Plant and Animal Genome XIV Abst W6, p 8Google Scholar
  56. Jarret RL, Litz RE (1986) Enzyme polymorphism in Musa acuminata Colla. J Hered 77:183–186Google Scholar
  57. Jarret RL, Gawel N, Whittemore A, Sharrock S (1992) RFLP based phylogeny of Musa species in Papua New Guinea. Theor Appl Genet 84:579–584CrossRefGoogle Scholar
  58. Khanna H, Becker D, Kleidon J, Dale J (2004) Centrifugation assisted Agrobacterium tumefaciens-mediated transformation (CAAT) of embryogenic cell suspensions of banana (Musa spp Cavendish AAA and Lady finger AAB). Mol Breed 14:239–252CrossRefGoogle Scholar
  59. Lamoureux D, Peterson DG, Li W, Fellers JP, Gill BS (2005) The efficacy of Cot-based gene enrichment in wheat (Triticum aestivum L.). Genome 48:1120–1126PubMedCrossRefGoogle Scholar
  60. Lanaud C, Tezenas du Montcel H, Jolivot MP, Glaszmann JC, González de León D (1992) Variation of ribosomal gene spacer length among wild and cultivated banana. Heredity 68:147–156Google Scholar
  61. Lebot V, Aradhya KM, Manchardt R, Meilleur B (1993) Genetic relationships among cultivated bananas and plantains from Asia and the Pacific. Euphytica 67:163–175CrossRefGoogle Scholar
  62. Lescot M, Piffanelli1 P, Ciampi AY, Ruiz M, Blanc G, et al. (2007) Molecular insights into the Musa genome: syntenic relationships to rice and between Musa species. BMC Genomics (under review)Google Scholar
  63. Lysák MA, Dolezelová M, Horry JP, Swennen R, Dolezel J (1999) Flow cytometric analysis of nuclear DNA content in Musa. Theor Appl Genet 98:1344–1350CrossRefGoogle Scholar
  64. Mak C, Ho YW, Tan YP, Ibrahim R (1996) Novaria - A new banana mutant induced by gamma irradiation. InforMusa 5:35–36Google Scholar
  65. May GD, Afza R, Mason HS, Wiecko A, Novak FJ, et al. (1995) Generation of transgenic banana (Musa acuminata) plants via Agrobacterium-mediated transformation. Bio/Technol 13:486–492CrossRefGoogle Scholar
  66. Miller RNG, Pappas GJ, Souza MT, Bertioli DJ (2006) Analysis of resistance gene analogs in Musa acuminata subps burmanicoides var Calcutta 4. Plant and Animal Genome XIV, Abst W7, p 8Google Scholar
  67. Nair AS, Teo CH, Schwarzacher T, Heslop Harrison P (2005) Genome classification of banana cultivars from South India using IRAP markers. Euphytica 144:285–290CrossRefGoogle Scholar
  68. Noyer JL, Causse S, Tomekpe K, Bouet A, Baurens FC (2005) A new image of plantain diversity assessed by SSR, AFLP and MSAP markers. Genetika 124:61–69CrossRefGoogle Scholar
  69. Noyer JL, Dambier D, Lanaud C, Lagoda PJL (1997) The saturated map of diploid banana Musa acuminata. Plant and Animal Genome V, Abst P335, p 138Google Scholar
  70. Ortiz-Vázquez E, Kaemmer D, Zhang HB, Muth J, Rodríguez-Mendiola M, et al. (2005) Construction and characterization of a plant transformation-competent BIBAC library of the black Sigatoka-resistant banana Musa acuminata cv. Tuu Gia (AA). Theor Appl Genet 110:706–713PubMedCrossRefGoogle Scholar
  71. Osuji JO, Crouch J, Harrison G, Heslop-Harrison JS (1998) Molecular cytogenetics of Musa species, cultivars and hybrids: location of 18S-5.8S-25S and 5S rDNA and telomere-like sequences. Ann Bot 82:243–248CrossRefGoogle Scholar
  72. Osuji JO, Harrison G, Crouch J, Heslop-Harrison JS (1997) Identification of the genomic constitution of Musa L. lines (bananas, plantains and hybrids) using molecular cytogenetics. Ann Bot 80:787–793CrossRefGoogle Scholar
  73. Pei XW, Chen SK, Wen RM, Ye S, Huang JQ, et al. (2005) Creation of transgenic bananas expressing human lysozyme gene for Panama Wilt resistance. J Integr Plant Biol 47:971–977CrossRefGoogle Scholar
  74. Pérez Hernández JB, Remy S, Galán Saúco V, Swennen R, Sági L (1999) Chemotactic movement and attachment of Agrobacterium tumefaciens to banana cells and tissues. J Plant Physiol 155:245–250Google Scholar
  75. Pérez Hernández JB, Remy S, Swennen R, Sági L (2006a) Banana (Musa sp.). In: Wang K (ed) Methods in Molecular Biology, vol 344: Agrobacterium Protocols, vol 2. Humana Press Inc, Totowa, NJ, pp 167–176Google Scholar
  76. Pérez Hernández JB, Swennen R, Sági L (2006b) Number and accuracy of T-DNA insertions in transgenic banana (Musa spp.) plants characterized by an improved anchored PCR technique. Transgenic Res 15:139–150CrossRefGoogle Scholar
  77. Persley GJ, DeLanghe EA (1987) Banana and Plantain Breeding Strategies ACIAR, Canberra 21Google Scholar
  78. Peterson DG, Schulze SR, Sciara EB, Lee SA, Bowers JE, et al. (2002) Integration of Cot analysis, DNA cloning, and high-throughput sequencing facilitates genome characterization and gene discovery. Genome Res 12:795–807PubMedCrossRefGoogle Scholar
  79. Pillay M, Nwakanma DC, Tenkouano A (2000) Identification of RAPD markers linked to A and B genome sequence in Musa L. Genome 43:763–767PubMedCrossRefGoogle Scholar
  80. Rabinowicz PD, Schutz K, Dedhia N, Yordan C, Parnell LD, et al. (1999) Differential methylation of genes and retrotransposons facilitates shotgun sequencing of the maize genome. Nature Genet 23:305–308PubMedCrossRefGoogle Scholar
  81. Raboin LM, Carreel F, Noyer J-L, Baurens F-C, Horry J-P, et al. (2005) Diploid Ancestors of Triploid Export Banana Cultivars: Molecular Identification of 2n Restitution Gamete Donors and n Gamete Donors. Molecular Breed 16:333–341CrossRefGoogle Scholar
  82. Remy S, Buyens A, Cammue BPA, Swennen R, Sági L (1998a) Production of transgenic banana plants expressing antifungal proteins. Acta Hort 490:433–436Google Scholar
  83. Remy S, François I, Cammue BPA, Swennen R, Sági L (1998b) Co-transformation as a potential tool to create multiple and durable resistance in banana (Musa spp.). Acta Hort 461:361–365Google Scholar
  84. Remy S, Thiry E, Coemans B, Windelinckx S, Swennen R, Sági L (2005) Improved T-DNA vector for tagging plant promoters via high-throughput luciferase screening. BioTechniques 38:763–770PubMedCrossRefGoogle Scholar
  85. Roux N, Dolezel J, Swennen R, Zapata-Arias FJ (2001) Effectiveness of three micropropagation techniques to dissociate cytochimeras in Musa spp. Plant Cell Tissue Organ Cult 66:189–197CrossRefGoogle Scholar
  86. Roux N, Toloza A, Radecki Z, Zapata-Arias FJ, Dolezel J (2003) Rapid detection of aneuploidy in Musa using flow cytometry. Plant Cell Rep 21:483–490PubMedGoogle Scholar
  87. Roux NS (2004) Mutation Induction in Musa – Review. In: Jain SM, Swennen R (eds) Banana Improvement: Cellular, Molecular Biology and Induced Mutations. Science Publishers, Inc, Enfield, pp 23–32Google Scholar
  88. Roux NS, Toloza A, Dolezel J, Panis B (2004) Usefulness of Embryonic Cell Suspension Cultures for the Induction and Selection of Mutations in Musa spp. In: Jain SM, Swennen R (eds) Banana Improvement: Cellular, Molecular Biology and Induced Mutations. Science Publishers, Inc, Enfield, pp 33–44Google Scholar
  89. Safár J, Noa-Carrazana JC, Vrána J, Bartoš J, Alkhimova O, et al. (2004) Creation of a BAC resource to study the structure and evolution of the banana (Musa balbisiana) genome. Genome 47:1182–1191PubMedCrossRefGoogle Scholar
  90. Sági L (2000) Engineering resistance to diseases caused by fungi. In: Jones D (ed) Diseases of Banana, Abacá and Enset. CABI, Wallingford, UK, pp 482–491Google Scholar
  91. Sági L, Panis B, Remy S, Schoofs H, De Smet K, et al. (1995) Genetic transformation of banana and plantain (Musa spp.) via particle bombardment. Bio/Technology 13:481–485PubMedCrossRefGoogle Scholar
  92. Sági L, Remy S, Panis B, Swennen R, Volckaert G (1994) Transient gene expression in electroporated banana (Musa spp., cv. ‘Bluggoe’, ABB group) protoplasts isolated from regenerable embryogenic cell suspensions. Plant Cell Rep 13:262–266CrossRefGoogle Scholar
  93. Samson JA (1986) Tropical fruits, 2nd edn. Longman Scientific and Technical, Harlow, UK, 335 ppGoogle Scholar
  94. Santos CMR, Martins NF, Hörberg HM, de Almeida ERP, Coelho MCF, et al. (2005) Analysis of expressed sequence tags from Musa acuminata spp. burmannicoides, var. Calcutta 4 leaves submitted to temperature stresses. Theor Appl Genet 110: 1517–1522PubMedCrossRefGoogle Scholar
  95. Schenk PM, Remans T, Sági L, Elliott AR, Dietzgen RG, et al. (2001) Promoters for pregenomic RNA of banana streak badnavirus are active for transgene expression in monocot and dicot plants. Plant Mol Biol 47:399–412PubMedCrossRefGoogle Scholar
  96. Shepherd K (1999) Cytogenetics of the genus Musa. International Network for the Improvement of Banana and Plantain, Montpellier, FranceGoogle Scholar
  97. Shepherd K, da Silva KM (1996a) Mitotic instability in banana varieties. Aberrations in conventional triploid plants. – Fruits 51:99–103Google Scholar
  98. Shepherd K, da Silva KM (1996b) Mitotic instability in banana varieties. I. Plants from callus and shoot tip cultures. – Fruits 51:5–11Google Scholar
  99. Shizuya H, Birren B, Kim UJ, Mancino V, Slepak T, et al. (1992) Cloning and stable maintenance of 300-kilobase-pair fragments of human DNA in Escherichia coli using an F-factor-based vector. Proc Natl Acad Sci (USA) 89:8794–8797CrossRefGoogle Scholar
  100. Simková H, Cíhalíková J, Vrána J, Lysák MA, Dolezel J (2003) Preparation of HMW DNA from plant nuclei and chromosomes isolated from root tips. Biol Plant 46:369–373CrossRefGoogle Scholar
  101. Simmonds NW, Shepherd K (1955) The taxonomy and origins of the cultivated bananas. J Linn Soc London (Bot) 5:302–312Google Scholar
  102. Slade AJ, Fuerstenberg SI, Loeffler D, Steine MN, Facciotti D (2005) A reverse genetic, nontransgenic approach to wheat crop improvement by TILLING. Nature Biotechnol 23:75–81CrossRefGoogle Scholar
  103. Souza Jr MT, Santos CM, Martins NF, da Silva FR, Togawa RC, et al. (2005) Transcriptoma de Musa acuminata no DATAMusa Boletim de Pesquisa e Desenvolvimento (109) da Embrapa Reccursos Genéticos e Biotecnologia. 21 pp (http://www.cenargen.embrapa. br/publica/download.html#bp2005)Google Scholar
  104. Springer PS (2000) Gene traps: tools for plant development and genomics. Plant Cell 12:1007–1020PubMedCrossRefGoogle Scholar
  105. Strosse H, Schoofs H, Panis B, Andre E, Reyniers K, et al. (2006) Development of embryogenic cell suspensions from meristematic tissue in bananas and plantains (Musa spp.). Plant Sci 170:104–112CrossRefGoogle Scholar
  106. Sunil Kumar GB, Ganapathi TR, Revathi CJ, Srinivas L, Bapat VA (2005) Expression of hepatitis B surface antigen in transgenic banana plants. Planta 222:484–493CrossRefGoogle Scholar
  107. Taxonomic Advisory Group (TAG) (2006) Launching the Taxonomic Advisory Group: Developing a strategic approach to the conversation and use of Musa diversity. Report of a meeting held in Limbe, Cameroon, 29 May–3 June 2006, INIBAPGoogle Scholar
  108. Teo CH, Tan SH, Othman YR, Schwarzacher T (2002) The cloning of Ty 1-copia-like retrotransposons from 10 varieties of banana (Musa sp). J Biochem Mol Biol Biophys 6:193–201PubMedCrossRefGoogle Scholar
  109. Tripathi L, Tripathi JN, Hughes Jd’A (2005) Agrobacterium-mediated transformation of plantain (Musa spp.) cultivar Agbagba. Afr J Biotechnol 4:1378–1383Google Scholar
  110. Ude G, Pillay M, Ogundiwin E, Tenkouano A (2002) Analysis of genetic diversity and sectional relationships in Musa using AFLP markers. Theor Appl Genet 104:1239–1245PubMedCrossRefGoogle Scholar
  111. Ude G, Pillay M, Ogundiwin E, Tenkouano A (2003) Genetic diversity in African plantain core collection using AFLP and RAPD markers. Theor Appl Genet 107:248–255PubMedCrossRefGoogle Scholar
  112. Valárik M, Simková H, Hribová E, Safár J, Dolezelová M, et al. (2002) Isolation, characterization and chromosome localization of repetitive DNA sequences in banana (Musa spp.). Chromosome Res 10:89–100PubMedCrossRefGoogle Scholar
  113. van der Frits L, Hilliou F, Memelink J (2001) T-DNA activation tagging as a tool to isolate regulators of a metabolic pathway from a genetically non-tractable plant species. Transgenic Res 10:513–521CrossRefGoogle Scholar
  114. Van Duren M, Morpurgo R, Dolezel J, Afza R (1996): Induction and verification of autotetraploids in diploid banana (Musa acuminata) by in vitro techniques. Euphytica 88:25–34CrossRefGoogle Scholar
  115. Venter JC (1993) Identification of new human receptor and transporter genes by high throughput cDNA (EST) sequencing. J Pharm Pharmacol 45 (Suppl 1):355–360Google Scholar
  116. Vilarinhos A, Carreel F, Rodier M, Hippolyte I, Benabdelmouna A, et al. (2006) Characterization of translocations in banana by FISH of BAC clones anchored to a genetic map. Plant and Animal Genome XIV, Abst W4, p 8Google Scholar
  117. Vilarinhos AD (2004) Cartographie génétique et cytogénétique chez le bananier : caractérisation des translocations. PhD thesis, Ecole Nationale Agronomique de Montpellier, Ecole doctorale biologie integrative, Montpellier, FranceGoogle Scholar
  118. Vilarinhos AD, Piffanelli P, Lagoda P, Thibivilliers S, Sabau X, et al. (2003) Construction and characterization of a bacterial artificial chromosome library of banana (Musa acuminata Colla). Theor Appl Genet 106:1102–1106PubMedGoogle Scholar
  119. Wenzl P, Carling J, Kudrna D, Jaccoud D, Huttner E, et al. (2004) Diversity arrays technology (DArT) for whole-genome profiling of barley. Proc Natl Acad Sci (USA) 101:9915–9920CrossRefGoogle Scholar
  120. Whitelaw CA, Barbazuk WB, Pertea G, Chan AP, Cheung F, et al. (2003) Enrichment of gene-coding sequences in maize by genome filtration. Science 302:2118–2120PubMedCrossRefGoogle Scholar
  121. Wilson GB (1946a) Cytological studies in the Musae. I. Meiosis in some triploid clones. Genetics 31:241–258Google Scholar
  122. Wilson GB (1946b) Cytological studies in the Musae. II. Meiosis in some diploid clones. Genetics 31:475–482Google Scholar
  123. Wilson GB (1946c) Cytological studies in the Musae. III. Meiosis in some seedling clones. Genetics 31:483–493Google Scholar
  124. Wong C, Kiew R, Argent G, Set O, Lee SK, et al. (2002) Assessment of the validity of the section in Musa (Musaceae) using AFLP. Ann Bot 90:231–238PubMedCrossRefGoogle Scholar
  125. Yuan Y, SanMiguel PJ, Bennetzen JL (2003) High-Cot sequence analysis of the maize genome. Plant J 34:249–255PubMedCrossRefGoogle Scholar
  126. Zubko E, Adams CJ, Machácková I, Malbeck J, Scollan C, et al. (2002) Activation tagging identifies a gene from Petunia hybrida responsible for the production of active cytokinins in plants. Plant J 29:797–808PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Nicolas Roux
    • 1
  • Franc-Christophe Baurens
  • Jaroslav Doležel
  • Eva Hřibová
  • Pat Heslop-Harrison
  • Chris Town
  • Takuji Sasaki
  • Takashi Matsumoto
  • Rita Aert
  • Serge Remy
  • Manoel Souza
  • Pierre Lagoda
  1. 1.Bioversity International, Parc ScientifiqueFrance

Personalised recommendations