Advertisement

Genomics of Eucalyptus, a Global Tree for Energy, Paper, and Wood

  • Dario Grattapaglia
Part of the Plant Genetics and Genomics: Crops and Models book series (PGG, volume 1)

Abstract

Planted Eucalyptus forests occupy more than 18 million hectares globally and have become the most widely planted hardwood tree in the world, supplying high quality woody biomass for several industrial applications. This chapter attempts to link current eucalypt breeding practice and the genomic tools available or in development. A brief introduction is presented on the main features of modern eucalypt breeding and clonal forestry to provide a better understanding of the challenges and opportunities that lie ahead. Some current low technological input applications of molecular markers in support of operational breeding and clonal deployment are introduced. After reviewing the status of QTL mapping and gene discovery by EST sequencing, the prospects for physical mapping and association genetics in Eucalyptus are discussed. Challenges and opportunities for the application of genomic information to improve relevant traits are described within the framework of molecular breeding for trait improvement. Finally, with the expectation of a draft of a Eucalyptus grandis genome within the next three years, a discussion is included on the prospects of gene identification and subsequent applications in breeding.

Keywords

Quantitative Trait Locus Quantitative Trait Locus Mapping Wood Property Specific Combine Ability Seed Orchard 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baril CP, Verhaegen D, Vigneron P, Bouvet JM, Kremer A (1997) Structure of the specific combining ability between two species of Eucalyptus. I. RAPD data. Theor Appl Genet 94:796–803Google Scholar
  2. Beavis WD (1998) QTL analyses: power, precision, and accuracy. pp. 145–162. In Paterson AH (ed) Molecular Dissection of Complex Traits. CRC Press, Boca Raton, FloridaGoogle Scholar
  3. Bhalerao R, Nilsson O, Sandberg G (2003) Out of the woods: forest biotechnology enters the genomic era. Curr Opin Biotechnol. 14(2):206–213PubMedGoogle Scholar
  4. Binkley D, Stape JL (2004) Sustainable management of eucalypt plantations in a changing world. pp. 11–15. In: Tomé M (ed) IUFRO Conf. Eucalyptus in a Changing World, RAIZ, Instituto Investigaçao de Floresta e Papel, Aveiro, PortugalGoogle Scholar
  5. Boerjan W (2005) Biotechnology and the domestication of forest trees. Curr Opin Biotechnol 16(2):159–166PubMedGoogle Scholar
  6. Borevitz JO, Liang D, Plouffe D, Chang HS, Zhu T, et al. (2003) Large-scale identification of single-feature polymorphisms in complex genomes. Genome Res 13:513–523PubMedGoogle Scholar
  7. Borralho NMG, Cotterill PP, Kanowski, PJ (1993) Breeding objectives for pulp production of Eucalyptus globulus under different industrial cost structures. Can J For Res 23:648–656Google Scholar
  8. Brandão LG, Campinhos E, Ikemori YK (1984) Brazil’s new forest soars to success. Pulp Pap Int 26:38–40Google Scholar
  9. Brommonschenkel SH; Brondani RPV, Bucelli RF, Lourenço RT, Novaes E, et al. (2005) A BAC library of Eucalyptus grandis: characterization, fingerprinting, bac-end sequencing and shotgun assembly of lignification genes. IUFRO Tree Biotechnology S3.08. http://www.eyevisual.co.za/biotree/viewAbstract.aspGoogle Scholar
  10. Brondani RPV, Brondani C, Tarchini R, Grattapaglia D (1998) Development, characterization and mapping of microsatellite markers in Eucalyptus grandis and E. urophylla. Theor Appl Genet 97:816–827Google Scholar
  11. Brondani RPV, Brondani C, Grattapaglia D (2002) Towards a genus-wide reference linkage map for Eucalyptus based exclusively on highly informative microsatellite markers. Mol Genet Genomics 267:338–347PubMedGoogle Scholar
  12. Brondani RPV, Williams ER, Brondani C, Grattapaglia D (2006) A microsatellite-based consensus linkage map for species of Eucalyptus and a novel set of 230 microsatellite markers for the genus. BMC Plant Biol 6:20PubMedGoogle Scholar
  13. Brune A, Zobel BJ (1981) Genetic base populations, gene pools and breeding populations for Eucalyptus in Brazil. Silvae Genetica 30:146–149Google Scholar
  14. Bundock PC, Hayden M, Vaillancourt RE (2000) Linkage maps of Eucalyptus globulus using RAPD and microsatellite markers. Silvae Genetica 49:223–232Google Scholar
  15. Burczyk J, Adams WT, Moran GF, Griffin AR (2002) Complex patterns of mating revealed in a Eucalyptus regnans seed orchard using allozyme markers and the neighbourhood model. Mol Ecol 11:2379–91PubMedGoogle Scholar
  16. Butler JM (2005) Forensic DNA Typing: Biology, Technology, and Genetics of STR Markers. (2nd Edition). Elsevier Academic Press, New York, 688 ppGoogle Scholar
  17. Byrne M, Murrell JC, Allen B, Moran GF (1995). An integrated genetic linkage map for Eucalyptus using RFLP, RAPD and isozyme markers. Theor Appl Genet 91:869–875Google Scholar
  18. Byrne M, Marquezgarcia MI, Uren T, Smith DS, Moran GF (1996) Conservation and genetic diversity of microsatellite loci in the genus Eucalyptus. Aust J Bot 44:331–341Google Scholar
  19. Byrne M, Murrell JC, Owen JV, Kriedemann P, Williams ER, et al. (1997a) Identification and mode of action of quantitative trait loci affecting seedling height and leaf area in Eucalyptus nitens. Theor Appl Genet 94:674–681Google Scholar
  20. Byrne M, Murrell JC, Owen JV, Williams ER, Moran GF (1997b) Mapping of quantitative trait loci influencing frost tolerance in Eucalyptus nitens. Theor Appl Genet 95:975–979Google Scholar
  21. Campinhos E (1980) More wood of better quality through intensive silviculture with rapid growth improved Brazilian Eucalyptus. Tappi 63:145–147Google Scholar
  22. Campinhos E, Ikemori YK (1977) Tree improvement program of Eucalyptus spp.: preliminary results, pp. 717–738. In: Third World Consultation on Forest Tree Breeding. CSIRO, Canberra, AustraliaGoogle Scholar
  23. Chaix G, Gerber S, Razafimaharo V, Vigneron P, Verhaegen D, et al. (2003) Gene flow estimation with microsatellites in a Malagasy seed orchard of Eucalyptus grandis. Theor Appl Genet 107:705–712PubMedGoogle Scholar
  24. Chen ZZ, Ho CK, Ahn IS, Chiang VL (2006) Eucalyptus. Methods Mol Biol 344:125–34PubMedGoogle Scholar
  25. Costa e Silva C, Grattapaglia D (1997) RAPD relatedness of elite clones, applications in breeding and operational clonal forestry. pp. 161–166 Proc. International IUFRO Conference on Eucalyptus Genetics and Silviculture, Salvador, Brazil Google Scholar
  26. de Assis TF (2000) Production and use of Eucalyptus hybrids for industrial purposes. pp. 63–74. In Nikles DG (ed) Proc QFRI/CRC Workshop on Hybrid Breeding and Genetics of Forest Trees. Department of Primary Industries, Brisbane, AustraliaGoogle Scholar
  27. de Assis TF (2001) The evolution of technology for cloning Eucalyptus in a large scale. Proc IUFRO Conference on Developing the Eucalypt of the Future. Valdivia, Chile, INFOR. 16 pp (CDROM)Google Scholar
  28. de Assis TF, Warburton P, Harwood C (2005a) Artificially induced protogyny: an advance in the controlled pollination of Eucalyptus. Austr Forestry 68:27–33Google Scholar
  29. de Assis TF, Rezende GDSP, Aguiar AM (2005b) Current status of breeding and deployment for clonal forestry with tropical eucalypt hybrids in Brazil. Intl Forestry Rev 7:61. XXII IUFRO World Congress. Forests in the Balance: Linking Tradition and Technology, Brisbane, AustraliaGoogle Scholar
  30. Dekkers JC (2004) Commercial application of marker-and gene-assisted selection in livestock: strategies and lessons. J Anim Sci. 82:313–328Google Scholar
  31. Dekkers JC, Hospital F (2002) The use of molecular genetics in the improvement of agricultural populations. Nat Genet Rev 3:22–32Google Scholar
  32. Doughty RW (2000) The Eucalyptus: A natural and commercial history of the gum tree. The Johns Hopkins University Press, Baltimore and LondonGoogle Scholar
  33. Eldridge K, Davidson J, Harwood C, van Wyk G (1993) Eucalypt domestication and breeding. Clarendon Press, Oxford 288 ppGoogle Scholar
  34. Evans R (1994) Rapid measurement of the transverse dimensions of tracheids in radial woodsections from Pinus radiata. Holzforschung 48:168–173Google Scholar
  35. Evans R, Kibblewhite RP, Stringer SL (2001) Variation in microfibril angle, density and fibre orientation in twenty-nine Eucalyptus nitens trees. Appita J 53(5):450–457.Google Scholar
  36. FAO (2000) global forest resources assessment 2000: main report. FAO Forestry paper http://www.fao.org /forestry/fo/fra/main/index.jspGoogle Scholar
  37. Faria DA, Alves TPM, Pereira RW, Grattapaglia D (2006). Frequência de SNPs e extensao do desequilìbrio de ligaçao ao longo dos genes CCR e CAD em E. grandis, E. globulus e E. urophylla. abstract GP251. 52nd Brazilian Genetics CongressGoogle Scholar
  38. Feuillet C, Boudet AM, Grima-Pettenati J (1993) Nucleotide sequence of a cDNA encoding cinnamyl alcohol dehydrogenase from Eucalyptus. Plant Physiol 103:1447PubMedGoogle Scholar
  39. Foucart C, Paux E, Ladouce N, San-Clemente H, Grima-Pettenati J, Sivadon P (2006) Transcript profiling of a xylem vs phloem cDNA subtractive library identifies new genes expressed during xylogenesis in Eucalyptus. New Phytol 170(4):739–752PubMedGoogle Scholar
  40. Franklin EC (1986) Estimation of genetic parameters through four generations of selection in Eucalyptus grandis. pp. 12–17. Proc IUFRO Joint Meeting of Working Parties on Breeding Theory, Progeny Testing and Seed OrchardsGoogle Scholar
  41. Gaiotto FA, Grattapaglia D (1997) Estimation of genetic variability in a breeding population of Eucalyptus urophylla using AFLP (amplified fragment length polymorphism) markers. pp. 46–52. Proc Intl IUFRO Conf Eucalyptus Genetics and SilvicultureGoogle Scholar
  42. Gaiotto FA, Bramucci M, Grattapaglia, D (1997) Estimation of outcrossing rate in a breeding population of Eucalyptus urophylla s.t. Blake with dominant RAPD and AFLP markers. Theor Appl Genet 95:842–849Google Scholar
  43. Gion J-M, Rech P, Grima-Pettenati J, Verhaegen D, Plomion C (2000) Mapping candidate genes in Eucalyptus with emphasis on lignification genes. Mol Breed 6:441–449Google Scholar
  44. Glaubitz JC, Emebiri LC, Moran GF (2001) Dinucleotide microsatellite from Eucalyptus sieberi: Inheritance, diversity, and improved scoring of single-base differences. Genome 44: 1014–1045Google Scholar
  45. Gonzàlez-Martìnez SC, Wheeler NC, Ersoz E, Nelson CD, Neale DB (2007) Association genetics in Pinus taeda L. I. Wood property traits. Genetics 175(1):399–409PubMedGoogle Scholar
  46. Grattapaglia D (2000) Molecular breeding of Eucalyptus - State of the art, operational applications and technical challenges. pp. 451–474. In: Jain SM, Minocha SC (eds) Molecular biology of woody plants. Kluwer Academic Publishers, The NetherlandsGoogle Scholar
  47. Grattapaglia D (2004) Integrating genomics into Eucalyptus breeding. Gen Mol Res 3:369–379Google Scholar
  48. Grattapaglia D, Sederoff R (1994) Genetic linkage maps of Eucalyptus grandis and Eucalyptus urophylla using a pseudo-testcross: mapping strategy and RAPD markers. Genetics 137:1121–1137Google Scholar
  49. Grattapaglia D, Chaparro J, Wilcox P, Mccord S, Werner D, Amerson H, Mckeand S, Bridgwater F, Whetten R, O’malley D, Sederoff R R (1992) Mapping in woody plants with RAPD markers: applications to breeding in forestry and horticulture. Proceedings of the Symposium “Applications of RAPD Technology to Plant Breeding”. Crop Science Society of America, American Society of Horticultural Science, American Genetic Association, pp. 37–40Google Scholar
  50. Grattapaglia D, O’Malley DM, Sederoff RR (1992) Multiple applications of RAPD markers to genetic analysis of Eucalyptus sp. pp. 436–450. Proc IUFRO Intl Conf “Breeding tropical trees” Section 2.02–08 Cali, ColombiaGoogle Scholar
  51. Grattapaglia D, Bertolucci FLG, Sederoff R (1995) Genetic mapping of QTLs controlling vegetative propagation in Eucalyptus grandis and E. urophylla using a pseudo-testcross mapping strategy and RAPD markers. Theor Appl Genet 90:933–947Google Scholar
  52. Grattapaglia D, Bertolucci FLG, Penchel R, Sederoff R (1996) Genetic mapping of quantitative trait loci controlling growth and wood quality traits in Eucalyptus grandis using a maternal half-sib family and RAPD markers. Genetics 144:1205–1214PubMedGoogle Scholar
  53. Grattapaglia D, Pimenta D, Campinhos EN, Rezende GDS, Assis TF (2003) Marcadores moleculares na proteçao varietal de Eucalyptus. pp. 1–13. Proc 8th Brazilian Forestry Congress. Published in CD, SBS, Brazilian Soc SilvicultureGoogle Scholar
  54. Grattapaglia D, Ribeiro VJ, Rezende, GD (2004) Retrospective selection of elite parent trees using paternity testing with microsatellite markers: an alternative short term breeding tactic for Eucalyptus. Theor Appl Genet 109:192–199PubMedGoogle Scholar
  55. Griffin AR, Burgess IP, Wolf L (1988) Patterns of natural and manipulated hybridisation in the genus Eucalyptus L’Herit: a review. Austr J Bot 36:41–66Google Scholar
  56. Hazen SP, Kay SA (2003) Gene arrays are not just for measuring gene expression. Trends Plant Sci 8:413–416PubMedGoogle Scholar
  57. Hertzberg M, Aspeborg H, Schrader J, Andersson A, Erlandsson R, et al. (2001) A transcriptional roadmap to wood formation. Proc Natl Acad Sci USA 98:14732–14737PubMedGoogle Scholar
  58. Ikemori YK, Penchel RM, Bertolucci FLG (1994) Integrating biotechnology into Eucalyptus breeding, pp. 79–84. Proc Intl Symp Wood Biotechnol, TAPPI, Japan Wood Research Society and Nippon Paper IndustriesGoogle Scholar
  59. Jansen RC, Nap JP (2001) Genetical genomics: the added value from segregation. Trends Genet 177:388–391Google Scholar
  60. Junghans DT, Alfenas AC, Brommonschenkel SH, Oda S, Mello EJ, et al. (2003) Resistance to rust (Puccinia psidii Winter) in Eucalyptus: mode of inheritance and mapping of a major gene with RAPD markers. Theor Appl Genet 108:175–80PubMedGoogle Scholar
  61. Kanowski PJ, Borralho NMG (2004) Economics of tree improvement. pp. 1561–1568. In: Youngquist JA (ed) Encyclopedia of Forest Science. Elsevier Science, OxfordGoogle Scholar
  62. Kawazu T, Dol K, Tatemichi Y, Ito K, Shibata M (1996) Regenaration of transgenic plants by nodule culture systems in Eucalyptus camaldulensis. pp. 492–497. In: Proc IUFRO Conf: “Tree improvement for sustainable tropical forestryGoogle Scholar
  63. Keil M, Griffin AR (1994) Use of random amplified polymorphic DNA (RAPD) markers in the discrimination and verification of genotypes in Eucalyptus. Theor Appl Genet 89: 442–450Google Scholar
  64. Kellison RC (2001) Present and future uses of eucalypts wood in the world. In: Barros S (ed) Developing the Eucalypt of the Future. IUFRO Intl Symp INFOR, Chile (published in CDROM)Google Scholar
  65. Kirst M, Brondani RPV, Brondani C, Grattapaglia D (1997) Screening of designed primer pairs for recovery of microsatellite markers and their transferability among species of Eucalyptus, pp. 167–171. Proc IUFRO Conf Eucalyptus Genetics and SilvicultureGoogle Scholar
  66. Kirst M, Myburg AA, De Leon JP, Kirst ME, Scott J, et al. (2004) Coordinated genetic regulation of growth and lignin revealed by quantitative trait locus analysis of cDNA microarray data in an interspecific backcross of Eucalyptus. Plant Physiol 135:2368–2378PubMedGoogle Scholar
  67. Kirst M, Cordeiro CM, Rezende GD, Grattapaglia, D (2005a) Power of microsatellite markers for fingerprinting and parentage analysis in Eucalyptus grandis breeding populations. J Hered 96:161–166Google Scholar
  68. Kirst M, Basten CJ, Myburg A, Zeng Z-B, Sederoff, R (2005b) Genetic architecture of transcript level variation in differentiating xylem of Eucalyptus hybrids. Genetics 169:2295–2303Google Scholar
  69. Kirst M, Marques CM, Sederoff R (2005c) Nucleotide diversity and linkage disequilibrium in three Eucalyptus globulus genes. Section 5, P 28. (abs) IUFRO Tree Biotechnol ConfGoogle Scholar
  70. Krutovsky KV, Neale DB (2005) Nucleotide diversity and linkage disequilibrium in cold-hardiness- and wood quality-related candidate genes in Douglas fir. Genetics. 171:2029–2041PubMedGoogle Scholar
  71. Ladiges PY, Udovicic F, Nelson, G (2003) Australian biogeographical connections and the phylogeny of large genera in the plant family Myrtaceae. J Biogeogr 30:989–998Google Scholar
  72. Lander ES, Botstein D (1989) Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121:185–199PubMedGoogle Scholar
  73. Litt M, Hauge X, Sharma V (1993) Shadow bands seen when typing polymorphic dinucleotide repeats: some causes and cures. BioTechniques 15:280–284PubMedGoogle Scholar
  74. Lourenço RT, Grattapaglia D, Pappas GJ Jr, Pereira GA (2005) Sample sequencing of 3 megabases of shotgun DNA of Eucalyptus grandis : genome structure, repetitive elements and genes. IUFRO Tree Biotechnology S1.08 http://www.eyevisual.co.za/biotree/viewAbstract.aspGoogle Scholar
  75. MacRae S, van Staden J (1999) Transgenic eucalyptus. In: Bajaj YPS (ed) Biotechnology in Agriculture and Forestry. 44:88–114. Springer, HeidelbergGoogle Scholar
  76. Machado LO, de Andrade GM, Cid LPB, Penchel RM, Brasileiro ACM (1997) Agrobacterium strain specificity and shooty tumour formation in eucalypt Eucalyptus grandis × E. urophylla. Plant Cell Rep 16:299–303Google Scholar
  77. Marcucci-Poltri SN, Zelener N, Rodriguez Traverso J, Gelid P, Hopp H (2003) Selection of a seed orchard of Eucalyptus dunnii based on genetic diversity criteria calculated using molecular markers. Tree Physiol 23:625–632PubMedGoogle Scholar
  78. Margulies M, Egholm M, Altman WE, Attiya S, Bader JS, et al. (2005) Genome sequencing in microfabricated high-density picolitre reactors. Nature 437:376–380PubMedGoogle Scholar
  79. Marques CM, Araujo JA, Ferreira JG, Whetten R, O’Malley DM, et al. (1998) AFLP genetic maps of Eucalyptus globulus and E. tereticornis. Theor Appl Genet 96:727–737Google Scholar
  80. Marques CM, Vasquez-Kool J, Carocha VJ, Ferreira JG, O’Malley DM, et al. (1999) Genetic dissection of vegetative propagation traits in Eucalyptus tereticornis and E. globulus. Theor Appl Genet 99:936–946Google Scholar
  81. Marques CM, Brondani RPV, Grattapaglia D, Sederoff R (2002) Conservation and synteny of SSR loci and QTLs for vegetative propagation in four Eucalyptus species. Theor Appl Genet 105: 474–478PubMedGoogle Scholar
  82. Martin B, Quillet J (1974) The propogation by cuttings of forest trees in the Congo. Bois et Forets des Tropiques 155:15–33Google Scholar
  83. Mauricio R (2001) Mapping quantitative trait loci in plants: uses and caveats for evolutionary biology. Nat Rev Genet 2:370–381PubMedGoogle Scholar
  84. Meuwissen TH, Hayes BJ, Goddard ME (2001) Prediction of total genetic value using genome-wide dense marker maps. Genetics 157:1819–1829PubMedGoogle Scholar
  85. Missiaggia AA, Piacezzi AL, Grattapaglia D (2005a) Genetic mapping of Eef1, a major effect QTL for early flowering in Eucalyptus grandis. Tree Genet Gen 1:79–84Google Scholar
  86. Missiaggia AA, Mamani EM, Novaes E, Pappas MCR, Padua JG, et al. (2005b) Microsatellite based QTL mapping and validation across multiple pedigrees of Eucalyptus. IUFRO Tree Biotechnology (abstr) s5.34 http://www.eyevisual. co.za/biotree/viewAbstract.aspGoogle Scholar
  87. Moran GF, Bell JC (1983) Eucalyptus. pp 423–441. In: Tanksley SD, Orton TJ (eds) Isozymes in plant genetics and breeding. Elsevier, AmsterdamGoogle Scholar
  88. Moran G, Bell JC, Griffin AR (1989) Reduction in levels of inbreeding in a seed orchard of Eucalyptus regnans F. Muell, compared with natural populations. Silvae Genetica 38:32–36Google Scholar
  89. Moran GF, Thamarus KA, Raymond CA, Qiu D, Uren T, et al. (2002) Genomics of Eucalyptus wood traits. Ann For Sci 59:645–650Google Scholar
  90. Myburg AA (2001) Genetic architecture of hybrid fitness and wood quality traits in a wide interspecific cross of Eucalyptus tree species. PhD thesis. North Carolina State University, Raleigh, NC (http://www.lib.ncsu.edu/theses/ available/etd-20010723–175234)Google Scholar
  91. Myburg AA (2004) The International Eucalyptus Genome Consortium (IEuGC): Opportunities and Resources for Collaborative Genome Research in Eucalyptus. In: Li B, McKeand S (eds) Forest Genetics and Tree Breeding in the Age of Genomics: Progress and Future, pp. 154–155. IUFRO Joint Conference Division 2, Conf Proc http://www.ncsu.edu/feop/iufro_genetics 2004/proceed ings.pdf Google Scholar
  92. Myburg AA, Griffin AR, Sederoff RR, Whetten RW (2003) Comparative genetic linkage maps of Eucalyptus grandis, Eucalyptus globulus and their F1 hybrid based on a double pseudo-backcross mapping approach. Theor Appl Genet 107:1028–1042PubMedGoogle Scholar
  93. Myburg AA, Potts B, Marques CM, Kirst M, Gion JM, et al. (2007) Eucalyptus, pp. 115–160; In Kole C (ed) Genome Mapping & Molecular Breeding in Plants Vol 7: Forest Trees. Springer, Heidelberg, Berlin, New York & TokyoGoogle Scholar
  94. Neale D.B., Williams C.G. (1991) Restriction fragment length polymorphism mapping in conifers and applications to forest genetics and tree improvement. Can J For Res. 21:545–554.Google Scholar
  95. Neale DB, Savolainen O (2004) Association genetics of complex traits in conifers. Trends Plant Sci 9:325–330PubMedGoogle Scholar
  96. Nesbitt KA, Potts BM, Vaillancourt RE, West AK, Reid JB (1995) Partitioning and distribution of RAPD variation in a forest tree species, Eucalyptus globulus (Myrtaceae). Heredity 74:628–637Google Scholar
  97. Nesbitt KA, Potts BM, Vaillancourt RE, Reid JB (1997) Fingerprinting and pedigree analysis in Eualyptus globulus using RAPDs. Silvae Genetica 46:6–11Google Scholar
  98. Novaes E, Drost D, Farmerie B, Kirst M (2007) Rapid, high-throughput gene discovery in Eucalyptus by massive parallel pyrosequencing. IUFRO Tree Biotechnol Conf (abstr) SIII.10p. http://www.itqb.unl.pt/iufro2007/SciProg .htmlGoogle Scholar
  99. O’Malley D, Sederoff R, Grattapaglia D (1994) Methods For Within Family Selection In Woody Perennials Using Genetic Markers United States Patent and Trademark Office - Pat #6,054,634 (www.uspto.gov)Google Scholar
  100. Ottewell KM, Donnellan SC, Moran GF, Paton DC (2005) Multiplexed microsatellite markers for the genetic analysis of Eucalyptus leucoxylon, Myrtaceae and their utility for ecological and breeding studies in other Eucalyptus species. J Hered 96:445–451PubMedGoogle Scholar
  101. Pasquali G, Bastolla FM, Kirch RP, Brondani RPV, Coelho ASG, et al. (2005) Sequencing of the Eucalyptus transcriptome in the Genolyptus project. IUFRO Tree Biotechnol (abstr) S1.21 http://www.eyevisual.co.za/biotree /viewAbstract .aspGoogle Scholar
  102. Paterson AH, Lander ES, Hewitt JD, Peterson S, Lincoln SE, et al. (1988) Resolution of quantitative traits into Mendelian factors by using a complete linkage map of restriction fragment length polymorphisms. Nature 335:721–726PubMedGoogle Scholar
  103. Paux E, Tamasloukht M, Ladouce N, Sivadon P, Grima-Pettenati J (2004) Identification of genes preferentially expressed during wood formation in Eucalyptus. Plant Mol Biol 55:263–80PubMedGoogle Scholar
  104. Paux E, Carocha V, Marques C, Mendes de Sousa A, Borralho N, et al. (2005) Transcript profiling of Eucalyptus xylem genes during tension wood formation. New Phytol 167(1):89–100PubMedGoogle Scholar
  105. Poke FS, Vaillancourt RE, Potts BM, Reid JB (2005) Genomic research in Eucalyptus. Genetica 125:79–101PubMedGoogle Scholar
  106. Potts BM (2004) Genetic improvement of eucalypts, pp. 1480–1490. In: Burley J, Evans J, Youngquist JA (eds) Encyclopedia of Forest Science. Elsevier Science, OxfordGoogle Scholar
  107. Potts BM, Dungey HS (2004) Hybridisation of Eucalyptus: key issues for breeders and geneticists. New Forests 27:115–138Google Scholar
  108. Potts BM, Vaillancourt RE, Jordan GJ, Dutkowski GW, Costa e Silva J, et al. (2004) Exploration of the Eucalyptus globulus gene pool. pp. 46–61. In: Tomé M (ed) Eucalyptus in a changing world. Aveiro, Portugal RAIZ, Instituto Investigaçao de Floresta e PapelGoogle Scholar
  109. Pryor LD (1976) The biology of eucalypts. Edward Arnold, LondonGoogle Scholar
  110. Pryor LD, Johnson LAS (1971) A classification of the eucalypts. Australian National University Press, CanberraGoogle Scholar
  111. Ranik M, Creux NM, Myburg AA. (2006) Within-tree transcriptome profiling in wood-forming tissues of a fast-growing Eucalyptus tree. Tree Physiol 26(3):365–75PubMedGoogle Scholar
  112. Raymond, CA (2000) Genetics of Eucalyptus wood properties. Ann For Sci 59:525–531Google Scholar
  113. Ribeiro VJ, Bertolucci FLG, Grattapaglia D (1997) RAPD marker - guided matings in a reciprocal recurrent selection program of Eucalyptus. pp. 156–160. Proc. Intl IUFRO Conf Eucalyptus Genetics and Silviculture, Salvador, BrazilGoogle Scholar
  114. Sansaloni C, Pappas GJ, Grattapaglia D (2007) Desenvolvimento de sistemas otimizados de fingerprinting de Eucalyptus baseados em microssatélites de tetra e pentanucleotìdeos. 53rd Brazilian Genetics Congr, Sao Lourenço (abstr) 15465Google Scholar
  115. Sato S, Yamada N, Nakamoto S, Hibino T (2005) Expression profiling of the Eucalyptus transcription factor in differentiating xylem tissues. Plant Animal Genome Conf 13:P520, pg 201Google Scholar
  116. Schimleck LR, Michell AJ, Vinden P (1996) Eucalypt wood classification by NIR spectroscopy and principal components analysis. Appita J 49:319–324Google Scholar
  117. Shepherd M, Jones M (2005) Molecular markers in tree improvement: Characterisation and use in Eucalyptus. pp. 399–409. In: Lorz H, Wenzel G (eds) Molecular marker systems in plant breeding and crop improvement. Springer-Verlag, HeidelbergGoogle Scholar
  118. Shepherd M, Chaparro JX, Teasdale R (1999) Genetic mapping of monoterpene composition in an interspecific eucalypt hybrid. Theor Appl Genet 99:1207–1215Google Scholar
  119. Steane DA, Vaillancourt RE, Russell J, Powell W, Marshall D, et al. (2001) Development and characterization microsatellite loci in Eucalyptus globulus (Myrtacea). Silvae Genet. 50:89–91Google Scholar
  120. Steane DA, Jones RC, Vaillancourt RE (2005) A set of chloroplast microsatellite primers for Eucalyptus, Myrtaceae. Mol Ecol Notes 5:538–541Google Scholar
  121. Strauss SH, Lande R, Namkoong G (1992) Obstacles to molecular-marker-aided selection in forest trees. Can J For Res 22:1050–1061Google Scholar
  122. Stuber CW, Moll RH, Goodman MM, Schaffer HE, Weir BS (1980) Allozyme frequency changes associated with selection for increased grain yield in maize. Genetics 95: 225–236PubMedGoogle Scholar
  123. Tanksley SD (1993) Mapping polygenes. Ann Rev Genet 27:205–233PubMedGoogle Scholar
  124. Thamarus K, Groom K, Murrell J, Byrne M, Moran G (2002) A genetic linkage map for Eucalyptus globulus with candidate loci for wood, fibre and floral traits. Theor Appl Genet 104:379–387PubMedGoogle Scholar
  125. Thamarus KA, Groom K, Bradley A, Raymond CA, Schimleck LR, et al. (2004) Identification of quantitative trait loci for wood and fibre properties in two full-sib pedigrees of Eucalyptus globulus. Theor Appl Genet 109:856–864PubMedGoogle Scholar
  126. Thumma RF, Nolan MF, Evans R, Moran GF (2005) Polymorphisms in cinnamoyl CoA reductase (CCR) are associated with variation in microfibril angle in Eucalyptus spp. Genetics 171:1257–1265PubMedGoogle Scholar
  127. Tournier V, Grat S, Marque C, El Kayal W, Penchel R, et al. (2003) An efficient procedure to stably introduce genes into an economically important pulp tree (Eucalyptus grandis Eucalyptus urophylla). Transgenic Res 12:403–411PubMedGoogle Scholar
  128. Turnbull JW (1999) Eucalypt plantations. New Forests 17: 37–52Google Scholar
  129. Tuskan GA, Difazio S, Jansson S, Bohlmann J, Grigoriev I, et al. 2006 The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science 313:1596–1604PubMedGoogle Scholar
  130. Vaillancourt RE, Potts BM, Watson M, Volker PW, Hodge GR, et al. (1995a) Prediction of heterosis using RAPD generated distances between Eucalyptus globulus trees. pp. 455–456. Proc CRC/IUFRO Conf Eucalypt plantations, improving fibre yield and quality. Hobart, AustraliaGoogle Scholar
  131. Vaillancourt RE, Potts BM, Manson A, Eldridge T, Reid JB (1995b) Using RAPD’s to detect QTLs in an interspecific F2 hybrid of Eucalyptus. pp. 430–433. Proc. CRC/IUFRO Conf Eucalypt plantations, improving fibre yield and quality, Hobart, AustraliaGoogle Scholar
  132. Verhaegen D, Plomion C (1996) Genetic mapping in Eucalyptus urophylla and E grandis. RAPD markers. Genome 39:1051–1061Google Scholar
  133. Verhaegen D, Plomion C, Gion JM, Poitel M, Costa P, et al. (1997) Quantitative trait dissection analysis in Eucalyptus using RAPD markers. 1. Detection of QTL in interspecific hybrid progeny, stability of QTL expression across different ages. Theor Appl Genet 95:597–608Google Scholar
  134. Waugh G (2004) Growing Eucalyptus globulus for high-quality sawn products. pp. 79–84. In: Tomé M (ed) Eucalyptus in a changing world. Aveiro, Portugal, Instituto Investigaço de Floresta e PapelGoogle Scholar
  135. West MA, van Leeuwen H, Kozik A, Kliebenstein DJ, Doerge RW, et al. (2006) High-density haplotyping with microarray-based expression and single feature polymorphism markers in Arabidopsis. Genome Res 16:787–795PubMedGoogle Scholar
  136. Young ND (1999) A cautiously optimistic view for marker-assisted selection. Mol Breed 5:505–510Google Scholar
  137. Zelener N, Poltri SN, Bartoloni N, Lopez CR, Hopp HE (2005) Selection strategy for a seedling seed orchard design based on trait selection index and genomic analysis by molecular markers: a case study for Eucalyptus dunnii. Tree Physiol 25:1457–1467PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Dario Grattapaglia
    • 1
  1. 1.Plant Genetics Laboratory, Embrapa - Recursos Genéticos e Biotecnologia, Parque Estação Biológica, Brasília 70770-970 DF, and Graduate Program in Genomic Sciences and BiotechnologyUniversidade Catolica de Brasília – SGAN 916 modulo BCharlottesvilleBrazil

Personalised recommendations