Skip to main content

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 600))

Abstract

Ahallmark of semaphorin receptors is their interaction with multiple GTPases. Plexins, the signal transducing component of semaphorin receptors, directly associate with several GTPases. In addition, they not only recruit guaninine nucleotide exchange factors (GEFs) and GTPase activating proteins (GAPs) but also are the only known integral membrane proteins that show a catalytic activity as GAPs for small GTPases. GTPases function upstream of semaphorin receptors and regulate the activity of plexins through an interaction with the cytoplasmic domain. The association of Plexin-A1 (Sema3A receptor) or Plexin-B1 (Sema4D receptor) with the GTPase Rnd1 and ligand-dependent receptor clustering are required for their activity as R-Ras GAPs. The GTPases R-Ras and Rho function downstream of plexins and are required for the repulsive effects of semaphorins. In this review, I will focus on the role of GTPases in signaling by two plexins that have been analyzed in most detail, Plexin-A1 and Plexin-B1

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fiore R, Püschel AW. The function of semaphorins during nervous system development. Front Biosci 2003; 8:484–499.

    Article  Google Scholar 

  2. He Z, Tessier-Lavigne M. Neuropilin is a receptor for the axonal chemorepellent Semaphorin III. Cell 1997, 90(4):739–751.

    Article  CAS  PubMed  Google Scholar 

  3. Kolodkin AL, Levengood DV, Rowe EG et al. Neuropilin is a semaphorin III receptor. Cell 1997; 90(4):753–762.

    Article  CAS  PubMed  Google Scholar 

  4. Rohm B, Ottemeyer A, Lohrum M et al. Plexin/neuropilin complexes mediate repulsion by the axonal guidance signal semaphorin 3A. Mech Dev. 2000; 93(1–2):95–104.

    Article  CAS  PubMed  Google Scholar 

  5. Takahashi T, Fournier A, Nakamura F et al. Plexin-neuropilin-1 complexes form functional semaphorin-3A receptors. Cell 1999; 99(1):59–69.

    Article  CAS  PubMed  Google Scholar 

  6. Tamagnone L, Artigiani S, Chen H et al. Plexins are a large family of receptors for transmembrane, secreted, and GPI-anchored semaphorins in vertebrates. Cell 1999; 99(1):71–80.

    Article  CAS  PubMed  Google Scholar 

  7. Gu C, Yoshida Y, Livet J et al. Semaphorin 3E and plexin-D1 control vascular pattern independently of neuropilins. Science 2005; 307(5707):265–268.

    Article  CAS  PubMed  Google Scholar 

  8. Artigiani S, Conrotto P, Fazzari P et al. Plexin-B3 is a functional receptor for semaphorin 5A. EMBO Rep 2004; 5(7):710–714.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Toyofuku T, Zhang H, Kumanogoh A et al. Dual roles of Sema6D in cardiac morphogenesis through region-specific association of its receptor, Plexin-A1, with off-track and vascular endothelial growth factor receptor type 2. Genes Dev 2004; 18(4):435–447.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Fan J, Mansfield SG, Redmond T et al. The organization of F-actin and microtubules in growth cones exposed to a brain-derived collapsing factor. J Cell Biol 1993; 121(4): 867–878.

    Article  CAS  PubMed  Google Scholar 

  11. Fan J, Raper JA. Localized collapsing cues can steer growth cones without inducing their full collapse. Neuron 1995; 14(2):263–274.

    Article  CAS  PubMed  Google Scholar 

  12. Mikule K, Gatlin JC, de la Houssaye BA et al. Growth cone collapse induced by semaphorin 3A requires 12/15-lipoxygenase. J Neurosci 2002; 22(12):4932–4941.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Serini G, Valdembri D, Zanivan S et al. Class 3 semaphorins control vascular morphogenesis by inhibiting integrin function. Nature 2003; 424(694):391–397.

    Article  CAS  PubMed  Google Scholar 

  14. Castellani V, Falk J, Rougon G. Semaphorin3A-induced receptor endocytosis during axon guidance responses is mediated by L1 CAM. Mol Cell Neurosci 2004; 26(1):89–100.

    Article  CAS  PubMed  Google Scholar 

  15. Jurney WM, Gallo G, Letourneau PC et al. Rac1-mediated endocytosis during ephrin-A2-and semaphorin 3A-induced growth cone collapse. J Neurosci 2002; 22(14):6019–6028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Fournier AE, Nakamura F, Kawamoto S et al. Semaphorin3A enhances endocytosis at sites of receptor-F-actin colocalization during growth cone collapse. J Cell Biol 2000; 149(2):411–422.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bagnard D, Sainturet N, Meyronet D et al. Differential MAP kinases activation during semaphorin3A-induced repulsion or apoptosis of neural progenitor cells. Mol Cell Neurosci 2004; 25(4):722–731.

    Article  CAS  PubMed  Google Scholar 

  18. Basile JR, Afkhami T, Gutkind JS. Semaphorin 4D/plexin-B1 induces endothelial cell migration through the activation of PYK2, Src, and the phosphatidylinositol 3-kinase-Akt pathway. Mol Cell Biol 2005; 25(16):6889–6898.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Brown M, Jacobs T, Eickholt B et al. Alpha2-chimaerin, cyclin-dependent Kinase 5/p53, and its target collapsin response mediator protein-2 are essential components in semaphorin 3A-induced growth-cone collapse. J Neurosci 2004; 24(41):8994–9004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Campbell DS, Holt CE. Apoptotic pathway and MAPKs differentially regulate chemotropic responses of retinal growth cones. Neuron 2003; 37(6):939–952.

    Article  CAS  PubMed  Google Scholar 

  21. Eickholt BJ, Walsh FS, Doherty P. An inactive pool of GSK-3 at the leading edge of growth cones is implicated in Semaphorin 3A signaling. J Cell Biol 2002; 157(2):211–217.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Fujioka S, Masuda K, Toguchi M et al. Neurotrophic effect of Semaphorin 4D in PC12 cells. Biochem Biophys Res Commun 2003; 301(2):304–310.

    Article  CAS  PubMed  Google Scholar 

  23. Mitsui N, Inatome R, Takahashi S et al. Involvement of Fes/Fps tyrosine kinase in semaphorin3A signaling. EMBO J 2002; 21:3274–3285.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Pasterkamp PJ, Peschon JJ, Spriggs MK et al. Semaphorin 7A promotes axon outgrowth through integrins and MAPKs. Nature 2003; 424(6947):398–405.

    Article  PubMed  CAS  Google Scholar 

  25. Sasaki Y, Cheng C, Uchida Y et al. Fyn and Cdk5 mediate semaphorin-3A signaling, which is involved in regulation of dendrite orientation in cerebral cortex. Neuron 2002; 35(5):907–920.

    Article  CAS  PubMed  Google Scholar 

  26. Schwamborn JC, Fiore R, Bagnard D et al. Semaphorin 3A stimulates neurite extension and regulates gene expression in PC12 cells. J Biol Chem 2004; 279(30):30923–30926.

    Article  CAS  PubMed  Google Scholar 

  27. Uchida Y, Ohshima T, Sasaki Y et al. Semaphorin3A signaling is mediated via sequential Cdk5 and GSK3beta phosphorylation of CRMP2: Implication of common phosphorylating mechanism underlying axon guidance and Alzheimer’ disease. Genes Cells 2005; 10(2):165–179.

    Article  CAS  PubMed  Google Scholar 

  28. Takahashi T, Strittmatter SM. PlexinA1 autoinhibition by the plexin sema domain. Neuron 2001; 29(2):429–439.

    Article  CAS  PubMed  Google Scholar 

  29. Oinuma I, Katoh H, Negishi M. Molecular dissection of the semaphorin 4D receptor plexin-B1-stimulated R-Ras GTPase-activating protein activity and neurite remodeling in hippocampal neurons. J Neurosci 2004; 24(50):11473–11480.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Antipenko A, Himanen JP, van Leyen K et al. Structure of the semaphorin-3A receptor binding module. Neuron 2003; 39(4):589–598.

    Article  CAS  PubMed  Google Scholar 

  31. Campbell ID, Ginsberg MH. The talin-tail interaction places integrin activation on FERM ground. Trends Biochem Sci 2004; 29(8):429–435.

    Article  CAS  PubMed  Google Scholar 

  32. Kim M, Carman CV, Springer TA Bidirectional transmembrane signaling by cytoplasmic domain separation in integrins. Science 2003; 301(5640):1720–1725.

    Article  CAS  PubMed  Google Scholar 

  33. Takagi J, Petre BM, Walz T et al. Global conformational rearrangements in integrin extracellular domains in outside-in and inside-out signaling. Cell 2002; 110(5):599–611.

    Article  CAS  PubMed  Google Scholar 

  34. Wennerberg K, Rossman KL, Der CJ. The Ras superfamily at a glance. J Cell Sci 2005; 118(5):843–846.

    Article  CAS  PubMed  Google Scholar 

  35. Wennerberg K, Der CJ. Rho-family GTPases: It’s not only Rac and Rho (and I like it). J Cell Sci 2004; 117(8):1301–1312.

    Article  CAS  PubMed  Google Scholar 

  36. Nobes CD, Lauritzen I, Mattei MG et al. A new member of the Rho family, Rnd1, promotes disassembly of actin filament structures and loss of cell adhesion. J Cell Biol 1998; 141(1):187–197.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Govek EE, Newey SE, Van Aelst L. The role of the Rho GTPases in neuronal development. Genes Dev 2005; 19(1):1–49.

    Article  CAS  PubMed  Google Scholar 

  38. Chiarugi P, Cirri P. Redox regulation of protein tyrosine phosphatases during receptor tyrosine kinase signal transduction. Trends Biochem Sci 2003; 28(9):509–514.

    Article  CAS  PubMed  Google Scholar 

  39. Jalink K, van Corven EJ, Hengeveld T et al. Inhibition of lysophosphatidate-and thrombin-induced neurite retraction and neuronal cell rounding by ADP ribosylation of the small GTP-binding protein Rho. J Cell Biol 1994; 126(3):801–810.

    Article  CAS  PubMed  Google Scholar 

  40. Wahl S, Barth H, Ciossek T et al. Ephrin-A5 induces collapse of growth cones by activating Rho and Rho kinase. J Cell Biol 2000; 149(2):263–270.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Aurandt J, Vikis HG, Gutkind JS et al. The semaphorin receptor plexin-B1 signals through a direct interaction with the Rho-specific nucleotide exchange factor, LARG. Proc Natl Acad Sci 2002; 99(19):12085–12090.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hirotani M, Ohoka Y, Yamamoto T et al. Interaction of plexin-B1 with PDZ domain-containing Rho guanine nucleotide exchange factors. Biochem Biophys Res Commun 2002; 297(1):32–37.

    Article  CAS  PubMed  Google Scholar 

  43. Oinuma I, Katoh H, Harada A et al. Direct interaction of Rnd1 with Plexin-B1 regulates PDZ-RhoGEF-mediated Rho activation by Plexin-B1 and induces cell contraction in COS-7 cells. J Biol Chem 2003; 278(28):25671–25677.

    Article  CAS  PubMed  Google Scholar 

  44. Swiercz JM, Kuner R, Behrens J et al. Plexin-B1 directly interacts with PDZ-RhoGEF/LARG to regulate RhoA and growth cone morphology. Neuron 2002; 35(1):51–63.

    Article  CAS  PubMed  Google Scholar 

  45. Jin Z, Strittmatter SM. Rac1 mediates collapsin-1-induced growth cone collapse. J Neurosci 1997; 15(17):6256–6563.

    Article  Google Scholar 

  46. Kuhn TB, Brown MD, Wilcox CL et al. Myelin and collapsin-1 induce motor neuron growth cone collapse through different pathways: Inhibition of collapse by opposing mutants of rac1. J Neurosci 1999; 19(6):1965–1975.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Västrik I, Eickholt BJ, Walsh FS et al. Sema3A-induced growth-cone collapse is mediated by Rac1 amino acids 17–32. Curr Biol 1999; 9(18):991–998.

    Article  PubMed  Google Scholar 

  48. Luo Y, Raible D, Raper JA. Collapsin: A protein in brain that induces the collapse and paralysis of neuronal growth cones. Cell 1993; 75(2):217–227.

    Article  CAS  PubMed  Google Scholar 

  49. Oinuma I, Ishikawa Y, Katoh H et al. The Semaphorin 4D receptor Plexin-B1 is a GTPase activating protein for R-Ras. Science 2004; 305(5685):862–865.

    Article  CAS  PubMed  Google Scholar 

  50. Toyofuku T, Yoshida J, Sugimoto T et al. FARP2 triggers signals for Sema3A-mediated axonal repulsion. Nat Neurosci 2005; 8(12):1712–1719.

    Article  CAS  PubMed  Google Scholar 

  51. Driessens MH, Hu H, Nobes CD et al. Plexin-B semaphorin receptors interact directly with active Rac and regulate the actin cytoskeleton by activating Rho. Curr Biol 2001; 11(5):339–344.

    Article  CAS  PubMed  Google Scholar 

  52. Rohm B, Rahim B, Kleiber B et al. The semaphorin 3A receptor may directly regulate the activity of small GTPases. FEBS Lett 2000; 486(1):68–72.

    Article  CAS  PubMed  Google Scholar 

  53. Vikis HG, Li W, He Z et al. the semaphorin receptor plexin-B1 specifically interacts with active rac in a ligand-dependent manner. Proc Natl Acad Sci USA 2000; 97(23):12457–12462.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Zanata SM, Hovatta I, Rohm B et al. Antagonistic effects of Rnd1 and RhoD GTPases regulate receptor activity in Semaphorin 3A induced cytoskeletal collapse. J Neurosci 2002; 22(2):471–477.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Turner LJ, Nicholls S, Hall A. The activity of the plexin-A1 receptor is regulated by rac. J Biol Chem 2004; 279(32):33199–33205.

    Article  CAS  PubMed  Google Scholar 

  56. Vikis HG, Li W, Guan KL. The plexin-B1/Rac interaction inhibits PAK activation and enhances Sema4D ligand binding. Genes Dev 2002; 16(7):836–845.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Hu H, Marton TF, Goodman CS. Plexin B mediates axon guidance in Drosophila by simultaneously inhibiting active rac and enhancing rhoA signaling. Neuron 2001; 32(1):39–51.

    Article  CAS  PubMed  Google Scholar 

  58. Scheffzek K, Ahmadian MR, Kabsch W et al. The Ras-RasGAP complex: Structural basis for GTPase activation and its loss in oncogenic Ras mutants. Science 1997; 277(5324):333–338.

    Article  CAS  PubMed  Google Scholar 

  59. Scheffzek K, Ahmadian MR, Wiesmuller L et al. Structural analysis of the GAP-related domain from neurofibromin and its implications. EMBO J 1998; 17(15):4313–4327.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Scheffzek K, Ahmadian MR, Wittinghofer A. GTPase-activating proteins: Helping hands to complement an active site. Trends Biochem Sci 1998; 23(7):257–262.

    Article  CAS  PubMed  Google Scholar 

  61. Nakamura F, Tanaka M, Takahashi T et al. Neuropilin-1 extracellular domains mediate semaphorin D/III-induced growth cone collapse. Neuron 1998; 21(5):1093–1100.

    Article  CAS  PubMed  Google Scholar 

  62. Kinbara K, Goldfinger LE, Hansen M et al. Ras GTPases: Integrins’ friends or foes? Nat Rev Mol Cell Biol 2003; 4(10):767–776.

    Article  CAS  PubMed  Google Scholar 

  63. Ling K, Doughman RL, Firestone AJ et al. Type I gamma phosphatidylinositol phosphate kinase targets and regulates focal adhesions. Nature 2002; 420(6911):89–93.

    Article  CAS  PubMed  Google Scholar 

  64. Di Paolo G, Pellegrini L, Letinic K et al. Recruitment and regulation of phosphatidylinositol phosphate kinase type 1 gamma by the FERM domain of talin. Nature 2002; 420(6911):85–89.

    Article  PubMed  CAS  Google Scholar 

  65. Aizawa H, Wakatsuki S, Ishii A et al. Phosphorylation of cofilin by LIM-kinase is necessary for semaphorin 3A-induced growth cone collapse. Nat Neurosci 2001; 4(4):367–373.

    Article  CAS  PubMed  Google Scholar 

  66. Pollard TD, Borisy GG. Cellular motility driven by assembly and disassembly of actin filaments. Cell 2003; 112(4):453–465.

    Article  CAS  PubMed  Google Scholar 

  67. Perrot V, Vazquez-Prado J, Gutkind JS. Plexin B regulates Rho through the guanine nucleotide exchange factors leukemia-associated Rho GEF (LARG) and PDZ-RhoGEF. J Biol Chem 2002; 277(45):43115–43120.

    Article  CAS  PubMed  Google Scholar 

  68. Barberis D, Casazza A, Sordella R et al. p190 Rho-GTPase activating protein associates with plexins and it is required for semaphorin signaling. J Cell Sci 2005; 118(20):4689–4700.

    Article  CAS  PubMed  Google Scholar 

  69. Giordano S, Corso S, Conrotto P et al. The semaphorin 4D receptor controls invasive growth by coupling with Met. Nat Cell Biol 2002; 4(9):720–724.

    Article  CAS  PubMed  Google Scholar 

  70. Swiercz JM, Kuner R, Offermanns S. Plexin-B1/RhoGEF-mediated RhoA activation involves the receptor tyrosine kinase ErbB-2. J Cell Biol 2004; 165(6):869–880.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Dalpe G, Zhang LW, Zheng H et al. Conversion of cell movement responses to Semaphorin-1 and Plexin-1 from attraction to repulsion by lowered levels of specific RAC GTPases in C. elegans. Development 2004; 131(9):2073–2088.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Püschel, A.W. (2007). GTPases in Semaphorin Signaling. In: Pasterkamp, R.J. (eds) Semaphorins: Receptor and Intracellular Signaling Mechanisms. Advances in Experimental Medicine and Biology, vol 600. Springer, New York, NY. https://doi.org/10.1007/978-0-387-70956-7_2

Download citation

Publish with us

Policies and ethics