DNA and Chromatin Fiber-Based Plant Cytogenetics

  • Jason G. WallingEmail author
  • Jiming Jiang
Part of the Plant Genetics and Genomics: Crops and Models book series (PGG, volume 4)


Development of the fluorescence in situ hybridization (FISH) technique revolutionized cytogenetic research. FISH on prepared chromosomes has become the most commonly used technique in plant molecular cytogenetics, especially as a physical mapping tool in plant genome research. Despite its popularity, chromosome-based FISH analysis is limited in its capacity to distinguish DNA probes that separated by less than a few megabases. Development of FISH methods based on extended DNA fibers has dramatically increased the resolving power of this technique to the point where one can identify clones separated by only a few kilobases. In addition to the conventional fiber-FISH analysis, specialized techniques have been developed to prepare DNA or chromatin fibers that are suitable for restriction mapping (optical mapping) or immunofluorescence assays. Fiber-FISH and its derivatives are now used extensively in various mapping and genome research projects.


DNA fibers · Fiber-FISH protocol · Plant nuclei isolation · DNA probe · Antibody detection · Fluorescence 



Bacterial artificial chromosome


Fluorescence in situ hybridization


Mitochondrial DNA



We are grateful to Drs. David C. Schwartz and Shiguo Zhou for their input on our summary of optical mapping and for providing the image in Fig. 5.2. The most recent cytogenetic mapping research in the authors’ laboratory has been supported by grants DBI-0421671 and DBI-0603927 from the National Science Foundation.


  1. Adawy SSM, Stupar RM, Jiang J (2004) Fluorescence in situ hybridization of knob-associated DNA elements analysis reveals multiple loci in one-knob and knobless maize lines. J Histochem Cytochem 52:1113–1116PubMedCrossRefGoogle Scholar
  2. Aston C, Mishra B, Schwartz DC (1999) Optical mapping and its potential for large-scale sequencing projects. Trends Biotech 17:297–302CrossRefGoogle Scholar
  3. Backert S, Dorfel P, Borner T (1995) Investigation of plant organellar DNAs by pulsed-field gel electrophoresis. Curr Genet 28:390–399PubMedCrossRefGoogle Scholar
  4. Blower MD, Sullivan BA, Karpen GH (2002) Conserved organization of centromeric chromatin in flies and humans. Dev Cell 2:319–330PubMedCentralPubMedCrossRefGoogle Scholar
  5. Cheng ZK, Dong F, Langdon T, Ouyang S, Buell CB, Gu MH, Blattner FR, Jiang J (2002) Functional rice centromeres are marked by a satellite repeat and a centromere-specific retrotransposon. Plant Cell 14:1691–1704PubMedCentralPubMedCrossRefGoogle Scholar
  6. Dimalanta ET, Lim A, Runnheim R, Lamers C, Churas C, Forrest DK, de Pablo JJ, Graham MD, Coppersmith SN, Goldstein S, Schwartz DC (2004) A microfluidic system for large DNA molecule arrays. Anal Chem 76:5293–5301PubMedCrossRefGoogle Scholar
  7. Feng Q, Zhang YJ, Hao P, Wang SY, Fu G, Huang YC, Li Y, Zhu JJ, Liu YL, Hu X, Jia PX, Zhang Y, Zhao Q, Ying K, Yu SL, Tang YS, Weng QJ, Zhang L, Lu Y, Mu J, Lu YQ, Zhang LS, Yu Z, Fan DL, Liu XH, Lu TT, Li C, Wu YR, Sun TG, Lei HY, Li T, Hu H, Guan JP, Wu M, Zhang RQ, Zhou B, Chen ZH, Chen L, Jin ZQ, Wang R, Yin HF, Cai Z, Ren SX, Lv G, Gu WY, Zhu GF, Tu YF, Jia J, Zhang Y, Chen J, Kang H, Cen XY, Shao CY, Sun Y, Hu QP, Zhang XL, Zhang W, Wang LJ, Ding CW, Sheng HH, Gu JL, Chen ST, Ni L, Zhu FH, Chen W, Lan LF, Lai Y, Cheng ZK, Gu MH, Jiang, JM, Li, JY, Hong GF, Xue YB, Han B (2002) Sequence and analysis of rice chromosome 4. Nature 420:316–320PubMedCrossRefGoogle Scholar
  8. Fransz PF, Alonso-Blanco C, Liharska TB, Peeters AJM, Zabel P, de Jong JH (1996) High-resolution physical mapping in Arabidopsis thaliana and tomato by fluorescence in situ hybridization to extended DNA fibres. Plant J 9:421–430PubMedCrossRefGoogle Scholar
  9. Haaf T, Ward DC (1994) Structural analysis of alpha satellite DNA and centromere proteins using extended chromatin and chromosomes. Hum Mol Genet 3:697–709PubMedCrossRefGoogle Scholar
  10. Houben A, Schroeder-Reiter E, Nagaki K, Nasuda S, Wanner G, Murata M, and Endo TR (2007) CENH3 interacts with the centromeric retrotransposon cereba and GC-rich satellites and locates to centromeric substructures in barley. Chromosoma 116:275–283PubMedCrossRefGoogle Scholar
  11. Jackson SA, Wang ML, Goodman HM, Jiang J (1998) Application of fiber-FISH in physical mapping of Arabidopsis thaliana. Genome 41:566–572PubMedGoogle Scholar
  12. Jackson SA, Dong FG, Jiang JM (1999) Digital mapping of bacterial artificial chromosomes by fluorescence in situ hybridization. Plant J 17:581–587PubMedCrossRefGoogle Scholar
  13. Jackson SA, Zhang P, Chen WP, Phillips RL, Friebe B, Muthukrishnan S, Gill BS (2001) High-resolution structural analysis of biolistic transgene integration into the genome of wheat. Theor Appl Genet 103:56–62CrossRefGoogle Scholar
  14. Jiang JM, Gill BS (2006) Current status and the future of fluorescence in situ hybridization (FISH) in plant genome research. Genome 49:1057–1068PubMedCrossRefGoogle Scholar
  15. Jiang J, Birchler JA, Parrott WA, Dawe RK (2003) A molecular view of plant centromeres. Trends Plant Sci 8:570–575PubMedCrossRefGoogle Scholar
  16. Jin WW, Melo JR, Nagaki K, Talbert PB, Henikoff S, Dawe RK, Jiang J (2004) Maize centromeres: organization and functional adaptation in the genetic background of oat. Plant Cell 16:571–581PubMedCentralPubMedCrossRefGoogle Scholar
  17. Jin WW, Lamb JC, Vega JM, Dawe RK, Birchler JA, Jiang J (2005) Molecular and functional dissection of the maize B centromere. Plant Cell 17:1412–1423PubMedCentralPubMedCrossRefGoogle Scholar
  18. Kidd JM, Cooper GM, Donahue WF, Hayden HS, Sampas N, Graves T, Hansen N, Teague B, Alkan C, Antonacci F, Haugen E, Zerr T, Yamada NA, Tsang P, Newman TL, Tuzun E, Cheng Z, Ebling HM, Tusneem N, David R, Gillett W, Phelps KA, Weaver M, Saranga D, Brand A, Tao W, Gustafson E, McKernan K, Chen L, Malig M, Smith JD, Korn JM, McCarroll SA, Altshuler DA, Peiffer DA, Dorschner M, Stamatoyannopoulos J, Schwartz D, Nickerson DA, Mullikin JC, Wilson RK, Bruhn L, Olson MV, Kaul R, Smith DR, Eichler EE (2008) Fine-scale mapping and sequencing of structural variation from eight human genomes. Nature 453:56–64PubMedCentralPubMedCrossRefGoogle Scholar
  19. Li HF, Valouev A, Schwartz DC, Waterman MS, Li LM (2007) A quantile method for sizing optical maps. J Comput Biol 14:255–266PubMedCrossRefGoogle Scholar
  20. Lilly JW, Havey MJ, Jackson SA, Jiang J (2001) Cytogenomic analyses reveal the structural plasticity of the chloroplast genome in higher plants. Plant Cell 13:245–254PubMedCentralPubMedGoogle Scholar
  21. Lin JY, Jacobus BH, SanMiguel P, Walling JG, Yuan Y, Shoemaker RC, Young ND, Jackson SA (2005) Pericentromeric regions of soybean (Glycine max L. Merr.) chromosomes consist of retroelements and tandemly repeated DNA and are structurally and evolutionarily labile. Genetics 170:1221–1230PubMedCrossRefGoogle Scholar
  22. Lin XY, Kaul SS, Rounsley S, Shea TP, Benito MI, Town CD, Fujii CY, Mason T, Bowman CL, Barnstead M, Feldblyum TV, Buell CR, Ketchum KA, Lee J, Ronning CM, Koo HL, Moffat KS, Cronin LA, Shen M, Pai G, Van Aken S, Umayam L, Tallon LJ, Gill JE, Adams MD, Carrera AJ, Creasy TH, Goodman HM, Somerville CR, Copenhaver GP, Preuss D, Nierman WC, White O, Eisen JA, Salzberg SL, Fraser CM, Venter JC (1999) Sequence and analysis of chromosome 2 of the plant Arabidopsis thaliana. Nature 402:761–768PubMedCrossRefGoogle Scholar
  23. Nagaki K, Song J, Stupar SM, Parokonny AS, Yuan Q, Ouyang S, Liu J, Hsiao J, Jones KM, Dawe RK, Buell CR, Jiang J (2003) Molecular and cytological analyses of large tracks of centromeric DNA reveal the structure and evolutionary dynamics of maize centromeres. Genetics 163:759–770PubMedGoogle Scholar
  24. Nakano A, Suzuki G, Yamamoto M, Turnbull K, Rahman S, Mukai Y (2005) Rearrangements of large-insert T-DNAs in transgenic rice. Mol Genet Genomics 273:123–129PubMedCrossRefGoogle Scholar
  25. Ohmido N, Kijima K, Akiyama Y, de Jong JH, Fukui K (2000) Quantification of total genomic DNA and selected repetitive sequences reveals concurrent changes in different DNA families in indica and japonica rice. Mol Gen Genet 263:388–394PubMedCrossRefGoogle Scholar
  26. Phan BH, Jin WW, Topp CN, Zhong CX, Jiang JM, Dawe RK, Parrott WA (2007) Transformation of rice with long DNA-segments consisting of random genomic DNA or centromere-specific DNA. Transgenic Res 16:341–351PubMedCrossRefGoogle Scholar
  27. Pich U, Schubert I (1998) Terminal heterochromatin and alternative telomeric sequences in Allium cepa. Chromosome Res 6:315–321PubMedCrossRefGoogle Scholar
  28. Sasaki T, Matsumoto T, Yamamoto K, Sakata K, Baba T, Katayose Y, Wu JZ, Niimura Y, Cheng ZK, Nagamura Y, Antonio BA, Kanamori H, Hosokawa S, Msukawa M, Arikawa K, Chiden Y, Hayashi M, Okamoto M, Ando T, Aoki H, Arita K, Hamada M, Harada C, Hijishita S, Honda M, Ichikawa Y, Idonuma A, Iijima M, Ikeno M, Ito S, Ito T, Ito Y, Ito Y, Iwabuchi A, Kamiya K, Karasawa W, Katagiri S, Kikuta A, Kobayashi N, Kono I, Machita K, Maehara T, Mizuno H, Mizubayashi T, Mukae Y, Nagasaki H, Nakashima M, Nakama Y, Nakamichi Y, Nakamura M, Namiki N, Negishi M, Ohta I, Ono N, Saji S, Sakai K, Shibata M, Shimokawa T, Shomura A, Song JY, Takazaki Y, Terasawa K, Tsuji, K, Waki K, Yamagata H, Yamane H, Yoshiki S, Yoshihara R, Yukawa K, Zhong HS, Iwama H, Endo T, Ito H, Hahn JH, Kim HI, Eun MY, Yano M, Jiang JM, Gojohori T (2002) The genome sequence and structure of rice chromosome 1. Nature 420:312–316PubMedCrossRefGoogle Scholar
  29. Schwartz DC, Li XJ, Hernandez LI, Ramnarain SP, Huff EJ, Wang YK (1993) Ordered restriction maps of Saccharomyces cerevisiae chromosomes constructed by optical mapping. Science 262:110–114PubMedCrossRefGoogle Scholar
  30. Shibata F, Murata M (2004) Differential localization of the centromere-specific proteins in the major centromeric satellite of Arabidopsis thaliana. J Cell Sci 117:2963–2970PubMedCrossRefGoogle Scholar
  31. Stupar RM, Lilly JW, Town CD, Cheng Z, Kaul S, Buell CR, Jiang J (2001) Complex mtDNA constitutes an approximate 620-kb insertion on Arabidopsis thaliana chromosome 2: implication of potential sequencing errors caused by large-unit repeats. Proc Natl Acad Sci USA 98:5099–5103PubMedCrossRefGoogle Scholar
  32. Sullivan BA, Karpen GH (2004) Centromeric chromatin exhibits a histone modification pattern that is distinct from both euchromatin and heterochromatin. Nat Struct Mol Biol 11:1076–1083PubMedCentralPubMedCrossRefGoogle Scholar
  33. Svitashev SK, Somers DA (2001) Genomic interspersions determine the size and complexity of transgene loci in transgenic plants produced by microprojectile bombardment. Genome 44:691–697PubMedCrossRefGoogle Scholar
  34. Tek AL, Jiang J (2004) The centromeric regions of potato chromosomes contain megabase-sized tandem arrays of telomere-similiar sequence. Chromosoma 113:77–83PubMedCrossRefGoogle Scholar
  35. Wolters A-MA, Trindade LM, Jacobsen E, Visser RGF (1998) Fluorescence in situ hybridization on extended DNA fibers as a tool to analyze complex T-DNA loci in potato. Plant J 13:837–847CrossRefGoogle Scholar
  36. Yan HH, Ito H, Nobuta K, Ouyang S, Jin WW, Tian SL, Lu C, Venu RC, Wang G-L, Green PJ, Wing RA, Buell CR, Meyers BC, Jiang J (2006) Genomic and genetic characterization of rice Cen3 reveals extensive transcription and evolutionary implications of a complex centromere. Plant Cell 18:2123–2133PubMedCentralPubMedCrossRefGoogle Scholar
  37. Yu WC, Han FP, Gao Z, Vega JM, Birchler JA (2007) Construction and behavior of engineered minichromosomes in maize. Proc Natl Acad Sci USA 104:8924–8929PubMedCrossRefGoogle Scholar
  38. Yu YS, Rambo T, Currie J, Saski C, Kim HR, Collura K, Thompson S, Simmons J, Yang TJ, Nah G, Patel AJ, Thurmond S, Henry D, Oates R, Palmer M, Pries G, Gibson J, Anderson H, Paradkar M, Crane L, Dale J, Carver MB, Wood T, Frisch D, Engler F, Soderlund C, Palmer LE, Tetylman L, Nascimento L, de la Bastide M, Spiegel L, Ware D, O’Shaughnessy A, Dike S, Dedhia N, Preston R, Huang E, Ferraro K, Kuit K, Miller B, Zutavern T, Katzenberger F, Muller S, Balija V, Martienssen RA, Stein L, Minx P, Johnson D, Cordum H, Mardis E, Cheng ZK, Jiang JM, Wilson R, McCombie Wr, Wing RA, Yuan QP, Su OY, Liu J, Jones KM, Gansberger K, Moffat K, Hill J, Tsitrin T, Overton L, Bera J, Kim M, Jin SH, Tallon L, Ciecko A, Pai G, Van Aken S, Utterback T, Reidmuller S, Bormann J, Feldblyum T, Hsiao J, Zismann V, Blunt S, de Vazeilles A, Shaffer T, Koo H, Suh B, YangQ, Haas B, Peterson J, Pertea M, Volfovsky N, Wortman J, White O, Salzberg SL, Fraser CM, Buell CR, Messing J, Song RT, Fuks G, Llaca V, Kovchak S, Young S, Bowers JE, Paterson AH, Johns MA, Mao L, Pan HW, Dean RA (2003) In-depth view of structure, activity, and evolution of rice chromosome 10. Science 300:1566–1569CrossRefGoogle Scholar
  39. Yuan Q, Hill J, Hsiao J, Moffat K, Ouyang S, Cheng Z, Jiang J, Buell CR (2002) Genome sequencing of a 239-kb region of rice chromosome 10 L reveals a high frequency of gene duplication and a large chloroplast DNA insertion. Mol Genet Genomics 267:713–720PubMedCrossRefGoogle Scholar
  40. Zhang WL, Lee H-R, Koo D-H, Jiang JM (2008) Epigenetic modification of centromeric chromatin: hypomethylation of DNA sequences in the CENH3-associated chromatin in Arabidopsis thaliana and maize. Plant Cell 20:25–34PubMedCentralPubMedCrossRefGoogle Scholar
  41. Zhong XB, Fransz PF, Wennekes-van Eden J, Ramanna MS, van Kammen A, Zabel P, de Jong JH (1998) FISH studies reveal the molecular and chromosomal organization of individual telomere domains in tomato. Plant J 13:507–517PubMedCrossRefGoogle Scholar
  42. Zhou S, Bechner MC, Place M, Churas CP, Pape L, Leong SA, Runnheim R, Forrest DK, Goldstein S, Livny M, Schwartz DC (2007) Validation of rice genome sequence by optical mapping. BMC Genomics 8: Art. No. 278Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of HorticultureUniversity of WisconsinMadisonUSA

Personalised recommendations