Genetic Improvement of Willow (Salix spp.) as a Dedicated Bioenergy Crop

  • Lawrence B. Smart
  • Kimberly D. Cameron

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abrahamson L.P., Robison D.J., Volk T.A., White E.H., Neuhauser E.F., Benjamin W.H., and Peterson J. M. (1998) Sustainability and environmental issues associated with willow bioenergy development in New York (U.S.A.). Biomass Bioenergy 15, 17–22.Google Scholar
  2. Adegbidi H.G., Briggs R.D., Volk T.A., White E.H., and Abrahamson L.P. (2003) Effect of organic amendments and slow-release nitrogen fertilizer on willow biomass production and soil chemical characteristics. Biomass Bioenergy 25, 389–398.Google Scholar
  3. Adegbidi H.G., Volk T.A., White E.H., Abrahamson L.P., Briggs R.D., and Bickelhaupt D.H. (2001) Biomass and nutrient removal by willow clones in experimental bioenergy plantations in New York State. Biomass Bioenergy 20, 399–411.Google Scholar
  4. Adler A., Verwijst T., and Aronsson P. (2005) Estimation and relevance of bark proportion in a willow stand. Biomass Bioenergy 29, 102–113.Google Scholar
  5. Åhman I. and Larsson S. (1994) Genetic improvement of willow (Salix) as a source of bioenergy. Norw. J. Agric. Sci. 18S, 47–56.Google Scholar
  6. Argus G.W. (1974) An experimental study of hybridization and pollination in Salix (willow). Can. J. Bot. 52, 1613–1619.Google Scholar
  7. Argus G.W. (1997) Infrageneric Classification of Salix (Salicaceae) in the New World. Systematic botany monographs, American Society of Plant Taxonomists, Ann Arbor, Mich., 121pp.Google Scholar
  8. Azuma T., Kajita T., Yokoyama J., and Ohashi H. (2000) Phylogenetic relationships of Salix (Salicaceae) based on rbcL sequence data. Am. J. Bot. 87, 67–75.PubMedGoogle Scholar
  9. Barker J.H., Pahlich A., Trybush S., Edwards K.J., and Karp A. (2003) Microsatellite markers for diverse Salix species. Molec. Ecol. Notes 3, 4–6.Google Scholar
  10. Barker J.H.A., Matthes M., Arnold G.M., Edwards K.J., Åhman I., Larsson S., and Karp A. (1999) Characterization of genetic diversity in potential biomass willows (Salix spp.) by RAPD and AFLP analyses. Genome 42, 173–183.PubMedGoogle Scholar
  11. Beismann H., Barker J.H.A., Karp A., and Speck T. (1997) AFLP analysis sheds light on distribution of two Salix species and their hybrid along a natural gradient. Mol. Ecol. 6, 989–993.Google Scholar
  12. Berg A. (2002) Breeding birds in short-rotation coppices on farmland in central Sweden–the importance of Salix height and adjacent habitats. Agric. Ecosyst. Environ. 90, 265–276.Google Scholar
  13. Blowers M.K. (2003) Xylan Extraction from Short Rotation Willow Biomass. M.S. thesis, State University of New York College of Environmental Science and Forestry, Syracuse, NY, 76pp.Google Scholar
  14. Broberg C.L., Borden J.H., and Humble L.M. (2001) Host range, attack dynamics, and impact of Cryptorhynchus lapathi (Coleoptera: Curculionidae) on Salix (Salicaceae) spp. Can. Entomol. 133, 119–130.Google Scholar
  15. Brunsfeld S.J., Soltis D.E., and Soltis P.S. (1992) Evolutionary patterns and processes in Salix sect Longifoliae – Evidence from chloroplast DNA. Systematic Botany, 17, 239–256.Google Scholar
  16. Collins C.M., Fellowes M.D.E., Sage R.B., and Leather S.R. (2001) Host selection and performance of the giant willow aphid, Tuberolachnus salignus Gmelin implications for pest management. Agric. Ecosyst. Environ. 3, 183–189.Google Scholar
  17. Czesak M.E., Knee M.J., Gale R.G., Bodach S.D., and Fritz R.S. (2004) Genetic architecture of resistance to aphids and mites in a willow hybrid system. Heredity 93, 619–626.PubMedGoogle Scholar
  18. Daigle B.I. and Simpson J.D. (2002) Seed viability of three Salix species after 24 months storage at two moisture contents and four temperatures. In: C.A. Thanos, T.L. Beardmore, K.F. Conner, and E.L. Tolentino Jr. (Eds.) Tree Seeds 2002, Annual Meeting of IUFRO Research Group for Seed Physiology and Technology, University of Athens Publications, Chania, Crete, Greece, pp. 40–45.Google Scholar
  19. Devantier Y.A., Moffatt B., Jone C., and Charest P.J. (1993) Microprojectile-mediated DNA delivery to the Salicaceae family. Can. J. Bot. 71, 1458–1466.Google Scholar
  20. Cameron K.D., Phillips I.S., Kopp R.F., Volk T.A., Maynard C.A., Abrahamson L.P., and Smart L.B. (2008) Quantitative genetics of traits indicative of biomass production and heterosis in 34 full-sib F1 Salix eriocephala families. Bioenerg. Res. 1, 80–90.Google Scholar
  21. Dhondt A.A., Wrege P.H., Cerretani J., and Sydenstricker K.V. (2007) Avian species richness and reproduction in short-rotation coppice habitats in central and western New York. Bird Study 54, 12–22.Google Scholar
  22. Dickmann D.I., Gold M.A., and Flore J.A. (1994) The ideotype concept and the genetic improvement of tree crops. Plant Breed. Rev. 12, 163–193.Google Scholar
  23. Dimitriou I. and Aronsson P. (2005) Willows for energy and phytoremediation in Sweden. Unasylva 56, 47–50.Google Scholar
  24. Dimitriou I., Eriksson J., Adler A., Aronsson P., and Verwijst T. (2006) Fate of heavy metals after application of sewage sludge and wood-ash mixtures to short-rotation willow coppice. Environ. Pollut. 142, 160–169.PubMedGoogle Scholar
  25. Eklund R., Galbe M., and Zacchi G. (1995) The influence of SO2 and H2SO4 impregnation of willow prior to steam pretreatment. Bioresource Technol. 52, 225–229.Google Scholar
  26. Eklund R. and Zacchi G. (1995) Simultaneous saccharification and fermentation of steampretreated willow. Enzyme Microbial Technol. 17, 255–259.Google Scholar
  27. Ericsson K., Rosenqvist H., Ganko E., Pisarek M., and Nilsson L. (2006) An agro-economic analysis of willow cultivation in Poland. Biomass Bioenergy 30, 16–27.Google Scholar
  28. Grönroos L., von Arnold S., and Eriksson T. (1989) Callus production and somatic embryogenesis from floral explants of basket willow (Salix viminalis L). J. Plant Physiol. 134, 558–566.Google Scholar
  29. Gullberg U. (1993) Towards making willows pilot species for coppicing production. Forest. Chron. 69, 721–726.Google Scholar
  30. Gullberg U. and Ryttman H. (1993) Genetics of field resistance to Melampsora in Salix viminalis. Eur. J. Forest Pathol. 23, 75–84.Google Scholar
  31. Hahn-Hägerdal B., Galbe M., Gorwa-Grauslund M.F., Liden G., and Zacchi G. (2006) Bio-ethanol – the fuel of tomorrow from the residues of today. Trends Biotechnol. 24, 549–556.PubMedGoogle Scholar
  32. Hanley S., Barker J.H.A., Ooijen J.W.V., Aldam C., Harris S.L., Åhman I., Larsson S., and Karp A. (2002) A genetic linkage map of willow (Salix viminalis) based on AFLP and microsatellite markers. Theor. Appl. Genet. 105, 1087–1096.PubMedGoogle Scholar
  33. Hanley S.J., Mallott M.D., and Karp A. (2006) Alignment of a Salix linkage map to the Populus genomic sequence reveals macrosynteny between willow and poplar genomes. Tree Genetics Genomes 3, 35–48.Google Scholar
  34. Hardig T.M., Brunsfeld S.J., Fritz R.S., Morgan M., and Orians C.M. (2000) Morphological and molecular evidence for hybridization and introgression in a willow (Salix) hybrid zone. Mol. Ecol. 9, 9–24.PubMedGoogle Scholar
  35. Hartsough B. and Spinelli R. (2001) Recent reports on SRC harvesters in Europe, Final project report to Oak Ridge National Laboratory. University of California, Davis, CA, p. 27.Google Scholar
  36. Helby P., Rosenqvist H., and Roos A. (2006) Retreat from Salix–Swedish experience with energy crops in the 1990s. Biomass Bioenergy 30, 422–427.Google Scholar
  37. Heller M.C., Keoleian G.A., Mann M.K., and Volk T.A. (2004) Life cycle energy and environmental benefits of generating electricity from willow biomass. Renewable Energy, 29, 1023–1042.Google Scholar
  38. Heller M.C., Keoleian G.A., and Volk T.A. (2003) Life cycle assessment of a willow bioenergy cropping system. Biomass Bioenergy 25, 147–165.Google Scholar
  39. Hoffmann D. and Weih M. (2005) Limitations and improvement of the potential utilisation of woody biomass for energy derived from short rotation woody crops in Sweden and Germany. Biomass Bioenergy 28, 267–279.Google Scholar
  40. Hunter T., Royle D.J., and Arnold G.M. (1996) Variation in the occurrence of rust (Melampsora spp) and other diseases and pests, in short-rotation coppice plantations of Salix in the British Isles. Ann. Applied Biol. 129, 1–12.Google Scholar
  41. Jirjis R. (2005) Effects of particle size and pile height on storage and fuel quality of comminuted Salix viminalis. Biomass Bioenergy 28, 193–201.Google Scholar
  42. Kádár Z., Maltha S.F., Szengyel Z., Réczey K., and De Laat W. (2007) Ethanol fermentation of various pretreated and hydrolyzed substrates at low initial pH. Appl. Biochem. Biotechnol. 137, 847–858.PubMedGoogle Scholar
  43. Karrenberg S. and Suter M. (2003) Phenotypic trade-offs in the sexual reproduction of Salicaeae from flood plains Am. J. Bot. 90, 749–754.Google Scholar
  44. Kendall D.A. and Wiltshire C.W. (1998) Life-cycles and ecology of willow beetles on Salix viminalis in England. Eur. J. Forest Pathol. 28, 281–288.Google Scholar
  45. Keoleian G.A. and Volk T.A. (2005) Renewable energy from willow biomass crops: Life cycle energy, environmental and economic performance. Crit. Rev. Plant Sci. 24, 385–406.Google Scholar
  46. Kopp R.F. (2000) Genetic Improvement of Salix Using Traditional Breeding and AFLP Fingerprinting. Ph.D., SUNY College of Environmental Science and Forestry, Syracuse, NY, 175pp.Google Scholar
  47. Kopp R.F., Abrahamson L.P., Nowak C.A., and White E.H. (1992) Pre-emergent herbicides for site preparation in Salix plantings. Forest. Chron. 68, 218–219.Google Scholar
  48. Kopp R.F., Maynard C.A., Rocha de Niella P., Smart L.B., and Abrahamson L.P. (2002) Collection and storage of pollen from Salix using organic solvents. Am. J. Bot. 89, 248–252.Google Scholar
  49. Kopp R.F., Smart L.B., Maynard C.A., Isebrands J.G., Tuskan G.A., and Abrahamson L.P. (2001) The development of improved willow clones for eastern North America. Forest. Chron. 77, 287–292.Google Scholar
  50. Kuzovkina Y.A. and Quigley M.F. (2005) Willows beyond wetlands: Uses of Salix L. species for environmental projects. Water Air Soil Poll. 162, 183–204.Google Scholar
  51. Kuzovkina Y.A., Weih M., Romero M.A., Charles J., Hurst S., McIvor I., Karp A., Trybush S., Labrecque M., Teodorescu T.I., Singh N.B., Smart L.B., and Volk T.A. (2008) Salix: Botany and Global Horticulture. In: J. Janick (Ed.) Horticultural Reviews, Vol. 34. John Wiley & Sons, Inc., Hoboken, NJ, 447–489.Google Scholar
  52. Labrecque M., Teodorescu T.I., and Daigle S. (1997) Biomass productivity and wood energy of Salix species after 2 years growth in SRIC fertilized with wastewater sludge. Biomass Bioenergy 12, 409–417.Google Scholar
  53. Larsson S. (1997) Commercial breeding of willow for short rotation coppice. Aspects Appl. Biol. 49, 215–218.Google Scholar
  54. Larsson S. (1998) Genetic improvement of willow for short-rotation coppice. Biomass Bioenergy 15, 23–26.Google Scholar
  55. Larsson S., Melin G., and Rosenquist H. (1998) Commercial harvest of willow wood chips in Sweden. In: H. Kopetz, T. Weber, W. Palz, P. Chartier, and G.L. Ferrero (Eds.) Tenth European Conference and Technology Exhibition: Biomass for Energy and Industry, Wurzburg, Germany, pp. 200–203.Google Scholar
  56. Lin J. (2006) Molecular Analysis and Assessment of the Genetic Diversity of Native and Naturalized Shrub Willows. Ph.D. dissertation, State University of New York College of Environmental Science and Forestry, Syracuse, NY, 174pp.Google Scholar
  57. Lin J.Z. and Zsuffa L. (1993) Quantitative genetic parameters for seven characters in a clonal test of Salix eriocephala II. Genetic and environmental correlations and efficiency of indirect selection. Silvae Genet. 42, 126–131.Google Scholar
  58. Lindegaard K.N. and Barker J.H.A. (1997) Breeding willows for biomass. Aspects Appl. Biol. 49, 155–162.Google Scholar
  59. Liu S., Amidon T.E., Francis R.C., Ramarao B.V., Lai Y.-Z., and Scott G.M. (2006) From forest biomass to chemicals and energy: Biorefinery initiative in New York State. Ind Biotechnol 2, 113–120.Google Scholar
  60. Lyyra S., Lima A., and Merkle S.A. (2006) In vitro regeneration of Salix nigra from adventitious shoots. Tree Physiol. 26, 969–975.PubMedGoogle Scholar
  61. Maroder H.L., Prego I.A., Facciuto G.R., and Maldonado S.B. (2000) Storage behaviour of Salix alba and Salix matsudana seeds. Ann. Bot. 86, 1017–1021.Google Scholar
  62. McCracken A.R. and Dawson W.M. (1997) Growing short rotation coppice willow (Salix) in clonal mixtures as a method of reducing the impact of rust disease caused by Melampsora epitea var. epitea. Eur. J. For. Pathol. 27, 319–328.Google Scholar
  63. McCracken A.R., Dawson W.M., and Bowden G. (2001) Yield responses of willow (Salix) grown in mixtures in short rotation coppice (SRC). Biomass Bioenergy 21, 311–319.Google Scholar
  64. McCracken A.R., Dawson W.M., and Carlisle D. (2005) Short-rotation coppice willow mixtures and rust disease development. In: M.H. Pei and A.R. McCracken (Eds.) Rust Diseases of Willow and Poplar. CABI Publishing, Cambridge, MA, pp. 185–194.Google Scholar
  65. Minor M.A., Volk T.A., and Norton R.A. (2004) Effects of site preparation techniques on communities of soil mites (Acari: Oribatida, Acari: Gamasida) under short-rotation forestry plantings in New York, USA. Appl. Soil Ecol. 25, 181–192.Google Scholar
  66. Mitchell C.P., Stevens E.A., and Watters M.P. (1999) Short-rotation forestry – operations, productivity and costs based on experience gained in the UK. For. Ecol. Manag. 121, 123–136.Google Scholar
  67. Mosseler A. (1989) Interspecific pollen-pistil incongruity in Salix. Can. J. For. Res. 19, 1161–1168.Google Scholar
  68. Mosseler A. (1990) Hybrid performance and species crossability relationships in willows (Salix). Can. J. Bot. 68, 2329–2338.Google Scholar
  69. Mosseler A., Zsuffa L., Stoehr M.U., and Kenney W.A. (1988) Variation in biomass production, moisture content, and specific gravity in some North American willows (Salix L.). Can. J. For. Res. 18, 1535–1540.Google Scholar
  70. Newsholme C. (1992) Willows: the genus Salix. Timber Press, Portland, OR, 224pp.Google Scholar
  71. Nordman E.E., Robison D.J., Abrahamson L.P., and Volk T.A. (2005) Relative resistance of willow and poplar biomass production clones across a continuum of herbivorous insect specialization: Univariate and multivariate approaches. For. Ecol. Manag. 217, 307–318.Google Scholar
  72. Palmqvist E., Hahn-Hägerdal B., Galbe M., and Zacchi G. (1996) The effect of water-soluble inhibitors from steam-pretreated willow on enzymatic hydrolysis and ethanol fermentation. Enzyme Microbial. Technol. 19, 470–476.Google Scholar
  73. Park B.B., Yanai R.D., Sahm J.M., Lee D.K., and Abrahamson L.P. (2005) Wood ash effects on plant and soil in a willow bioenergy plantation. Biomass Bioenergy 28, 355–365.Google Scholar
  74. Peacock L., Hunter T., Turner H., and Brain P. (2001) Does host genotype diversity affect the distribution of insect and disease damage in willow cropping systems? J. Appl. Ecol. 38, 1070–1081.Google Scholar
  75. Perttu K.L. and Kowalik P.J. (1997) Salix vegetation filters for purification of waters and soils. Biomass Bioenergy 12, 9–19.Google Scholar
  76. Phillips I.S. (2002) Quantitative Genetics of Traits Predictive of Biomass Yield in First- and Second-Generation Salix Eriocephala. M.S., SUNY College of Environmental Science and Forestry, Syracuse, NY, 119pp.Google Scholar
  77. Rocha S.P. (1991) Micropropagation and Agrobacterium Transformation of Willow (Salix lucida Muhl.). M.S. thesis, State University of New York College of Environmental Science and Forestry, Syracuse, NY, 73pp.Google Scholar
  78. Rönnberg-Wästljung A.C., Åhman I., Glynn C., and Widenfalk O. (2006) Quantitative trait loci for resistance to herbivores in willow: field experiments with varying soils and climates. Entomol. Exp. Appl. 118, 163–174.Google Scholar
  79. Rönnberg-Wästljung A.C., Glynn C., and Weih M. (2005) QTL analyses of drought tolerance and growth for a Salix dasyclados x Salix viminalis hybrid in contrasting water regimes. Theor. Appl. Genet. 110, 537–549.PubMedGoogle Scholar
  80. Rönnberg-Wästljung A.C. and Gullberg U. (1999) Genetics of breeding characters with possible effects on biomass production in Salix viminalis (L.). Theor. Appl. Genet. 98, 531– 540.Google Scholar
  81. Rönnberg-Wästljung A.C., Gullberg U., and Nilsson C. (1994) Genetic parameters of growth characteristics in Salix viminalis grown in Sweden. Can. J. For. Res. 24, 1960–1969.Google Scholar
  82. Rönnberg-Wästljung A.C., Tsarouhas V., Semerikov V., and Lagercrantz U. (2003) A genetic linkage map of a tetraploid Salix viminalis x S. dasyclados hybrid based on AFLP markers. For. Genetics 10, 185–194.Google Scholar
  83. Rosenqvist H. and Dawson M. (2005) Economics of willow growing in Northern Ireland. Biomass Bioenergy 28, 7–14.Google Scholar
  84. Rosenqvist H., Roos A., Ling E., and Hektor B. (2000) Willow growers in Sweden. Biomass Bioenergy 18, 137–145.Google Scholar
  85. Sassner P., Galbe M., and Zacchi G. (2005) Steam pretreatment of Salix with and without SO2 impregnation for production of bioethanol. Appl. Biochem. Biotechnol. 121, 1101–1117.PubMedGoogle Scholar
  86. Sassner P., Galbe M., and Zacchi G. (2006) Bioethanol production based on simultaneous saccharification and fermentation of steam-pretreated Salix at high dry-matter content. Enzyme Microbial Technol. 39, 756–762.Google Scholar
  87. Smart L.B., Volk T.A., Lin J., Kopp R.F., Phillips I.S., Cameron K.D., White E.H., and Abrahamson L.P. (2005) Genetic improvement of shrub willow (Salix spp.) crops for bioenergy and environmental applications in the United States. Unasylva 56, 51–55.Google Scholar
  88. Solomon J.D. and Randall W.K. (1978) Biology and damage of the willow shoot sawfly in willow and cottonwood. Ann. Entomol. Soc. Am. 71, 654–657.Google Scholar
  89. Stanosz J.C. and Stanosz G.R. (2002) Occurrence of willow pinecone galls induced by Rhabdophaga strobiloides in a Salix clone evaluation trial. Great Lakes Entomol. 35, 97–100.Google Scholar
  90. Stoehr M.U., Cai M.T., and Zsuffa L. (1989) In vitro plant-regeneration via callus-culture of mature Salix exigua. Can. J. For. Res. 19, 1634–1638.Google Scholar
  91. Stott K. G. (1984) Improving the biomass potential of willow by selection and breeding. In: K. Perttu (Ed.), Ecology and Management of Forest Biomass Production Systems. Swedish University of Agricultural Science, Uppsala, Sweden, pp. 233–260.Google Scholar
  92. Strong D.R., Larsson S., and Gullberg U. (1993) Heritability of host plant resistance to herbivory changes with gallmidge density during an outbreak on willow. Evolution 47, 291–300.Google Scholar
  93. Tahvanainen L. and Rytkonen V.-M. (1999) Biomass production of Salix viminalis in southern Finland and the effect of soil properties and climate conditions on its production and survival. Biomass Bioenergy 16, 103–117.Google Scholar
  94. Tharakan P.J., Volk T.A., Abrahamson L.P., and White E.H. (2003) Energy feedstock characteristics of willow and hybrid poplar clones at harvest age. Biomass Bioenergy 25, 571–580.Google Scholar
  95. Tharakan P.J., Volk T.A., Lindsey C.A., Abrahamson L.P., and White E.H. (2005) Evaluating the impact of three incentive programs on cofiring willow biomass with coal in New York State. Energy Policy 33, 337–347.Google Scholar
  96. Toivonen R.M. and Tahvanainen L.J. (1998) Profitability of willow cultivation for energy production in Finland. Biomass Bioenergy 15, 27–37.Google Scholar
  97. Triest L., De Greef B., De Bondt R., and Van Slycken J. (2000) RAPD of controlled crosses and clones from the field suggests that hybrids are rare in the Salix alba-Salix fragilis complex. Heredity 84, 555–563.PubMedGoogle Scholar
  98. Tsarouhas V., Gullberg U., and Lagercrantz U. (2002) An AFLP and RFLP linkage map and quantitative trait locus (QTL) analysis of growth traits in Salix. Theor. Appl. Genet. 105, 277–288.PubMedGoogle Scholar
  99. Serapiglia M.J., Cameron K.D., Stipanovic A.J., and Smart L.B. (2008) High-resolution thermogravimetric analysis for rapid characterization of biomass composition and selection of shrub willow varieties. Appl. Biochem. Biotechnol. 145, 3–11.PubMedGoogle Scholar
  100. Trybush S., Jahodová S., Macalpine W., and Karp A. (2008) A genetic study of a Salix germplasm resource reveals new insights into relationships among subgenera, sections, and species. Bioenerg. Res. 1, 67–79.Google Scholar
  101. Tsarouhas V., Gullberg U., and Lagercrantz U. (2004) Mapping of quantitative trait loci (QTLs) affecting autumn freezing resistance and phenology in Salix. Theor. Appl. Genet. 108, 1335–1342.PubMedGoogle Scholar
  102. Tuskan G.A., DiFazio S., Jansson S., Bohlmann J., Grigoriev I. et al. (2006) The Genome of Black Cottonwood, Populus trichocarpa (Torr. & Gray). Science 313, 1596–1604.PubMedGoogle Scholar
  103. Vahala T., Stabel P., and Eriksson T. (1989) Genetic transformation of willows (Salix spp.) by Agrobacterium tumefaciens. Plant Cell Rep. 8, 55–58.Google Scholar
  104. Verwijst T. (2001) Willows: An underestimated resource for environment and society. Forest. Chron., 77, 281–285.Google Scholar
  105. Vinterback J. (2004) Pellets 2002: the first world conference on pellets. Biomass Bioenerg., 27, 513–520.Google Scholar
  106. Volk T.A. (2002) Alternative Methods of Site Preparations and Coppice Management During the Establishment of Short-Rotation Woody Crops. Ph.D. dissertation, SUNY College of Environmental Science and Forestry, Syracuse, NY, 284pp.Google Scholar
  107. Volk T.A., Abrahamson L.P., Nowak C.A., Smart L.B., Tharakan P.J., and White E.H. (2006) The development of short-rotation willow in the northeastern United States for bioenergy and bioproducts, agroforestry and phytoremediation. Biomass Bioenergy 30, 715–727.Google Scholar
  108. Volk T.A., Ballard B., Robison D.J., and Abrahamson L.P. (2004a) Effect of cutting storage conditions during planting operations on the survival and biomass production of four willow (Salix L.) clones. New Forests 28, 63–78.Google Scholar
  109. Volk T.A., Verwijst T., Tharakan P.J., Abrahamson L.P., and White E.H. (2004b) Growing fuel: A sustainability assessment of willow biomass crops. Front. Ecol. Environ. 2, 411–418.Google Scholar
  110. Weih M., Rönnberg-Wästljung A.C., and Glynn, C. (2006) Genetic basis of phenotypic correlations among growth traits in hybrid willow (Salix dasyclados x S. viminalis) grown under two water regimes. New Phytol. 170, 467–477.PubMedGoogle Scholar
  111. Wood C.B., Pritchard H.W., and Lindegaard, K. (2003) Seed cryopreservation and longevity of two Salix hybrids. Cryo Letters 24, 17–26.PubMedGoogle Scholar
  112. Wright L. (2006) Worldwide commercial development of bioenergy with a focus on energy crop-based projects. Biomass Bioenergy 30, 706–714.Google Scholar
  113. Xing Z. (1995) Genetic Transformation and Regeneration of Willows (Salix spp). Ph.D. Dissertation, State University of New York College of Environmental Science and Forestry, Syracuse, NY, 130pp.Google Scholar
  114. Zapesochnaya G.G., Kurkin V.A., Braslavskii V.B., and Filatova, N.V. (2002) Phenolic compounds of Salix acutifolia bark. Chem. Nat. Comp. 38, 314–318.Google Scholar
  115. Zsuffa L. (1988) A review of the progress in selecting and breeding North American Salix species for energy plantations at the Faculty of Forestry, University of Toronto, Canada. Proc. of International Energy Agency Willow Breeding Symposium, Uppsala, Sweden, Aug. 31-Sept. 1, 1987, Dept. of Forest Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden, Research Notes 41, 41–51.Google Scholar
  116. Zsuffa L., Mosseler A., and Raj, Y. (1984) Prospects for interspecific hybridization in willow for biomass production. In: K. Perttu (Ed.), Ecology and Management of Forest Biomass Production Systems. Swedish University of Agricultural Sciences, Uppsala, Sweden, pp. 261–281.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Lawrence B. Smart
    • 1
  • Kimberly D. Cameron
    • 1
  1. 1.Department of Environmental and Forest BiologyState University of New York College of Environmental Science and ForestrySyracuseUSA

Personalised recommendations