Advertisement

Ontologising Competencies in an Interorganisational Setting

  • Stijn Christiaens
  • Pieter De Leenheer
  • Aldo De Moor
  • Robert Meersman
Part of the Computing for Human Experience book series (ADSW, volume 7)

This chapter summarises findings from CODRIVE1, a large-scale ontology project in the vocational training domain. This competency area is complex, and in order to achieve proper interoperability on the basis of ontologies, all involved stakeholders must participate in interorganisational ontology engineering. In particular, this chapter illustrates the DOGMA-MESS methodology, a community-driven approach to ontology management. It presents practical experiences for the issues addressed in the previous chapters, complementing them with illustrative data and hands-on knowledge.

Keywords

competency modelling case study context dependency management interorganisational ontology engineering ontology ontology engineering 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Banerjee, J., Kim, W. Kim, H., and Korth., H. (1987) Semantics and implementation of schema evolution in object-oriented databases. Proc. ACM SIGMOD Conf. Management of Data, 16(3), pp. 311-322Google Scholar
  2. Christiaens S, de Moor A. (2006). Tool interoperability from the trenches: the case of DOGMA-MESS. In: Proc. of the 1st Conceptual Structures Tool Interoperability Workshop (CS-TIW 2006) at the 14th International Conference on Conceptual Structures, Aalborg, DenmarkGoogle Scholar
  3. Delugach H. S. (2001) CharGer: A Graphical Conceptual Graph Editor. Workshop on Conceptual Graphs Tools at the 9th International Conference on Conceptual Structures, 2001, Stanford UniversityGoogle Scholar
  4. De Leenheer P., de Moor A. (2005). Context-driven disambiguation in ontology elicitation. In P. Shvaiko and J. Euzenat (eds), Context and Ontologies: Theory, Practice, and Applications. Proc. of the 1st Context and Ontologies Workshop, AAAI/IAAI 2005, Pittsburgh, USA, pp 17-24Google Scholar
  5. De Leenheer P., de Moor A., Meersman R. (2007). Context dependency management in ontology engineering: a formal approach. Journal on Data Semantics VIII, LNCS 4380, Springer, pp 26-56Google Scholar
  6. De Leenheer, P. and Meersman, R. (2007) Towards Community-based Evolution of Knowledge-intensive Systems. In Proc. of the 6th Int’l Conf. on Ontologies, DataBases, and Applications of Semantics (ODBASE 2007) (Vilamoura, Portugal), LNCS, SpringerGoogle Scholar
  7. de Moor A. (2005). Patterns for the Pragmatic Web. In Proc. Of the 13th International Conference on Conceptual Structures, Kassel, Germany, pp 1-18Google Scholar
  8. de Moor A., De Leenheer P., Meersman R. (2006). DOGMA-MESS: A meaning evolution support system for interorganizational ontology engineering. In: Proc. of the 14th International Conference on Conceptual Structures, Aalborg, Denmark. LNCS 4068, pp 189-203Google Scholar
  9. Diaz, A. (2005) Supporting Divergences in Knowledge Sharing Communities. PhD Thesis, Univesité Henry Poincarè, Nancy I, FranceGoogle Scholar
  10. Edgington T, Choi B, Henson K, Raghu TS, Vinze A (2004). Adopting ontology to facilitate knowledge sharing. Communications of the ACM, 47(11), pp 217-222CrossRefGoogle Scholar
  11. Fellbaum C., (1998). Wordnet: An Electronic Lexical Database (Language, Speech and Communication). The MIT PressGoogle Scholar
  12. Fillmore C. H. (1968). The case for case. In: Bach and Harms (eds), Universals in linguistic theory, Holt, Rinehart and Winston, New YorkGoogle Scholar
  13. Gómez-Pérez A., Corcho O., Fernández-López M. (2003). Ontological Engineering. Springer-Verlag, New York, LLCGoogle Scholar
  14. Jarrar, M., Demey, J., Meersman, R. (2003) On reusing conceptual data modeling for ontology engineering. Journal on Data Semantics 1(1):185-207Google Scholar
  15. Jarrar M., (2005). Towards methodological principles for ontology engineering. PhD Thesis, Vrije Universiteit Brussel.Google Scholar
  16. Jarrar M., (2006). Towards the notion of gloss, and the adoption of linguistic resources in formal ontology engineering. In: Proceedings of the 15th International World Wide Web Conference, WWW2006. Edinburgh, Scotland. May 2006. ACM, 2006Google Scholar
  17. LeeR. (2004). Scalabilityreportontriplestoreapplications. http://simile. mit. edu/reports/stores/
  18. Lenat D. B., Guha R. V. (1990). Building Large Knowledge-based Systems: Representation and Inference in the Cyc Project. Addison-Wesley, Boston, MassachusettsGoogle Scholar
  19. Lenat D. B. (1998). The dimensions of context-space. Cycorp technical report (http://www.cyc.com/doc/context-space.pdf)
  20. Meersman R., (2001). Ontologies and Databases: More than a Fleeting Resemblance. In: d’Atri, A., Missikoff M. (eds), OES/SEO 2001 Rome Workshop. Luiss PublicationsGoogle Scholar
  21. MillerE., Manola F. (2004). RDF primer. W3C recommendation, http://www.w3.org/TR/2004/REC-rdf-primer-20040210/
  22. Nijssen G. M., Halpin T. A. (1989). Conceptual schema and relational database design: a fact oriented approach. Prentice Hall, AustraliaGoogle Scholar
  23. Niles I., Pease A., (2001). Origins of the Standard upper Merged Ontology. In: Working Notes of the IJCAI-2001 Workshop on the IEEE Standard Upper Ontology, Seattle, Washington, August 6Google Scholar
  24. Nonaka I. and Takeuchi, H., (1995). The knowledge-creating company: how Japanese companies create the dynamics of innovation. Oxford University PressGoogle Scholar
  25. Polanyi, M. (1967) The Tacit Dimension, Garden City, NY, Double DayGoogle Scholar
  26. Reiter R. (1984). Towards a logical reconstruction of relational database theory. In: Brodie M., Mylopoulos J., Schmidt J. (eds) On conceptual modeling, pp 191-233Google Scholar
  27. Sowa, J. F. (1984). Conceptual structures: information processing in mind and machine. Addison-Wesley, Reading, MassachusettsGoogle Scholar
  28. Sowa J. F. (1999). Knowledge Representation: Logical, Philosophical, and Computational Foundations, Brooks Cole Publishing Co., Pacific Grove, CA, ©2000. Actual publication date, 16 August 1999.Google Scholar
  29. Spyns P., Meersman R., Jarrar M. (2002). Data modeling versus ontology engineering. SIGMOD Record, 31(4), pp 12-17CrossRefGoogle Scholar
  30. Trog D., Vereecken J., Christiaens S., De Leenheer P., Meersman R., T-Lex: A role-based ontology engineering tool. In: Meersman R, Zahir T, Herrero P (eds), On the move to meaningful internet systems 2006: OTM 2006 Workshops (ORM06), LNCS 4278, Springer-Verlag, pp 1191-1200Google Scholar
  31. van Harmelen F., McGuinness D. L. (2004). OWL Web Ontology Language overview. W3C recommendation. http://www.w3.org/TR/2004/REC-owl-features-20040210

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Stijn Christiaens
    • 1
  • Pieter De Leenheer
    • 1
  • Aldo De Moor
    • 2
  • Robert Meersman
    • 1
  1. 1.Vrije Universiteit BrusselBelgium
  2. 2.CommunitySenseNetherlands

Personalised recommendations