Murine Models of Human Acute Myeloid Leukemia

  • Julie M. Fortier
  • Timothy A. GraubertEmail author
Part of the Cancer Treatment and Research book series (CTAR, volume 145)


Primary human AML cells can be isolated and studied in vitro, but many experimental questions can only be addressed using in vivo models. In particular, tractable animal models are needed to test novel therapies. The genetic complexity of human AML poses significant challenges for the generation of reliable animal models.

The hematopoietic systems of both zebrafish (Danio rerio) and Drosophila have been well characterized (reviewed in [5, 31]). Both organisms are well suited to forward genetics mutagenesis screens. Although this approach has been useful for identification of mutants with hematopoietic phenotypes (e.g., cloche), the impact on cancer biology and hematopoietic malignancies in particular has been limited. A zebrafish model of acute lymphoblastic leukemia has been generated [37] and Drosophila models have shed light on the biology of epithelial tumors (reviewed in [60]). Nonetheless, in vivo modeling of human AML relies most heavily on mice. Most cellular, molecular, and developmental features of the hematopoietic system are well conserved across mammalian species. The availability of the human and mouse genome sequences and the capability of manipulating the mouse genome make mice the most valuable model organism for AML research. Mice have additional practical value because they have a short reproductive cycle and are relatively inexpensive to house.


Side Population Recombinant Inbred Strain Thymic Lymphoma Normal HSCs Proviral Integration Site 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This study was supported by a grant from the G&P Foundation (T.A.G.). Jan Nolta, Michael Tomasson, Matthew Walter, and Tim Ley provided valuable comments and suggestions.


  1. 1.
    Ailles LE, Gerhard B, Kawagoe H, Hogge DE. Growth characteristics of acute myelogenous leukemia progenitors that initiate malignant hematopoiesis in nonobese diabetic/severe combined immunodeficient mice. Blood. 1999;94(5):1761–1772.PubMedGoogle Scholar
  2. 2.
    Bakker AB, van den Oudenrijn S, Bakker AQ, et al. C-type lectin-like molecule-1: a novel myeloid cell surface marker associated with acute myeloid leukemia. Cancer Res. 2004;64(22):8443–8450.CrossRefPubMedGoogle Scholar
  3. 3.
    Barabe F, Kennedy JA, Hope KJ, Dick JE. Modeling the initiation and progression of human acute leukemia in mice. Science. 2007;316(5824):600–604.CrossRefPubMedGoogle Scholar
  4. 4.
    Bedigian HG, Johnson DA, Jenkins NA, Copeland NG, Evans R. Spontaneous and induced leukemias of myeloid origin in recombinant inbred BXH mice. J Virol. 1984;51(3):586–594.PubMedGoogle Scholar
  5. 5.
    Berman JN, Kanki JP, Look AT. Zebrafish as a model for myelopoiesis during embryogenesis. Exp Hematol. 2005;33(9):997–1006.CrossRefPubMedGoogle Scholar
  6. 6.
    Blaydes SM, Kogan SC, Truong BT, et al. Retroviral integration at the Epi1 locus cooperates with Nf1 gene loss in the progression to acute myeloid leukemia. J Virol. 2001;75(19):9427–9434.CrossRefPubMedGoogle Scholar
  7. 7.
    Blunt T, Gell D, Fox M, et al. Identification of a nonsense mutation in the carboxyl-terminal region of DNA-dependent protein kinase catalytic subunit in the scid mouse. Proc Natl Acad Sci USA. 1996;93(19):10285–10290.CrossRefPubMedGoogle Scholar
  8. 8.
    Bogue M. Mouse Phenome Project: understanding human biology through mouse genetics and genomics. J Appl Physiol. 2003;95(4):1335–1337.PubMedGoogle Scholar
  9. 9.
    Bonnet D, Dick JE. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med. 1997. 3(7):730–737.CrossRefPubMedGoogle Scholar
  10. 10.
    Buchholz F., Refaeli Y, Trumpp A, Bishop JM. Inducible chromosomal translocation of AML1 and ETO genes through Cre/loxP-mediated recombination in the mouse. EMBO Rep. 2000;1(2):133–139.CrossRefPubMedGoogle Scholar
  11. 11.
    Castilla LH, Perrat P, Martinez NJ, et al. Identification of genes that synergize with Cbfb-MYH11 in the pathogenesis of acute myeloid leukemia. Proc Natl Acad Sci USA. 2004;101(14):4924–4929.CrossRefPubMedGoogle Scholar
  12. 12.
    Castilla LH, Garrett L, Adya N, et al. The fusion gene Cbfb-MYH11 blocks myeloid differentiation and predisposes mice to acute myelomonocytic leukaemia. Nat Genet. 1999;23(2):144–146.CrossRefPubMedGoogle Scholar
  13. 13.
    Cleary HJ, Wright E, Plumb M. Specificity of loss of heterozygosity in radiation-induced mouse myeloid and lymphoid leukaemias. Int J Radiat Biol. 1999;75(10):1223–1230.CrossRefPubMedGoogle Scholar
  14. 14.
    Cook WD, McCaw BJ, Herring C, et al. PU.1 is a suppressor of myeloid leukemia, inactivated in mice by gene deletion and mutation of its DNA binding domain. Blood. 2004;104(12):3437–3444.CrossRefPubMedGoogle Scholar
  15. 15.
    Dave UP, Jenkins NA, Copeland NG. Gene therapy insertional mutagenesis insights. Science. 2004;303(5656):333.CrossRefPubMedGoogle Scholar
  16. 16.
    Du Y, Jenkins NA, Copeland NG. Insertional mutagenesis identifies genes that promote the immortalization of primary bone marrow progenitor cells. Blood. 2005;106(12):3932–3939.CrossRefPubMedGoogle Scholar
  17. 17.
    Fenske TS, McMahon C, Edwin D, et al. Identification of candidate alkylator-induced cancer susceptibility genes by whole genome scanning in mice. Cancer Res. 2006;66(10). In press.Google Scholar
  18. 18.
    Fenske TS, Pengue G, Mathews V, et al. Stem cell expression of the AML1/ETO fusion protein induces a myeloproliferative disorder in mice. Proc Natl Acad Sci USA. 2004;101(42):15184–15189.CrossRefPubMedGoogle Scholar
  19. 19.
    Feuring-Buske M, Hogge DE. Hoechst 33342 efflux identifies a subpopulation of cytogenetically normal CD34(+)CD38(-) progenitor cells from patients with acute myeloid leukemia. Blood. 2001;97(12):3882–3889.CrossRefPubMedGoogle Scholar
  20. 20.
    Goodell MA, Brose K, Paradis G, Conner AS, Mulligan RC. Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo. J Exp Med. 1996;183(4):1797–1806.CrossRefPubMedGoogle Scholar
  21. 21.
    Graubert TA, Hug BA, Wesselschmidt R, et al. Stochastic, stage-specific mechanisms account for the variegation of a human globin transgene. Nucleic Acids Res. 1998;26(12):2849–2858.CrossRefPubMedGoogle Scholar
  22. 22.
    Grisolano JL, Wesselschmidt RL, Pelicci PG, Ley TJ. Altered myeloid development and acute leukemia in transgenic mice expressing PML-RAR alpha under control of cathepsin G regulatory sequences. Blood. 1997;89(2):376–387.PubMedGoogle Scholar
  23. 23.
    Guzman ML, Rossi RM, Karnischky L, et al. The sesquiterpene lactone parthenolide induces apoptosis of human acute myelogenous leukemia stem and progenitor cells. Blood. 2005;105(11):4163–4169.CrossRefPubMedGoogle Scholar
  24. 24.
    Hayata I, Seki M, Yoshida K, et al. Chromosomal aberrations observed in 52 mouse myeloid leukemias. Cancer Res. 1983;43(1):367–373.PubMedGoogle Scholar
  25. 25.
    Hess DA, Meyerrose TE, Wirthlin L, et al. Functional characterization of highly purified human hematopoietic repopulating cells isolated according to aldehyde dehydrogenase activity. Blood. 2004;104(6):1648–1655.CrossRefPubMedGoogle Scholar
  26. 26.
    Higuchi M, O'Brien D, Kumaravelu P, Lenny N, Yeoh EJ, Downing JR. Expression of a conditional AML1-ETO oncogene bypasses embryonic lethality and establishes a murine model of human t(8;21) acute myeloid leukemia. Cancer Cell. 2002;1(1):63–74.CrossRefPubMedGoogle Scholar
  27. 27.
    Huntly BJ, Shigematsu H, Deguchi K, et al. MOZ-TIF2, but not BCR-ABL, confers properties of leukemic stem cells to committed murine hematopoietic progenitors. Cancer Cell. 2004;6(6):587–596.CrossRefPubMedGoogle Scholar
  28. 28.
    Ishikawa F, Yoshida S, Saito Y, et al. Chemotherapy-resistant human AML stem cells home to and engraft within the bone-marrow endosteal region. Nat Biotechnol. 2007;25(11):1315–1321.CrossRefPubMedGoogle Scholar
  29. 29.
    Iwasaki M, Kuwata T, Yamazaki Y, et al. Identification of cooperative genes for NUP98-HOXA9 in myeloid leukemogenesis using a mouse model. Blood. 2005;105(2):784–793.CrossRefPubMedGoogle Scholar
  30. 30.
    Jordan CT, Upchurch D, Szilvassy SJ, et al. The interleukin-3 receptor alpha chain is a unique marker for human acute myelogenous leukemia stem cells. Leukemia. 2000;14(10):1777–1784.CrossRefPubMedGoogle Scholar
  31. 31.
    Jung SH, Evans CJ, Uemura C, Banerjee U. The Drosophila lymph gland as a developmental model of hematopoiesis. Development. 2005;132(11):2521–2533.CrossRefPubMedGoogle Scholar
  32. 32.
    Kelly LM, Liu Q, Kutok JL, Williams IR, Boulton CL, Gilliland DG. FLT3 internal tandem duplication mutations associated with human acute myeloid leukemias induce myeloproliferative disease in a murine bone marrow transplant model. Blood. 2002;99(1):310–318.CrossRefPubMedGoogle Scholar
  33. 33.
    Kelly LM, Kutok JL, Williams IR, et al. PML/RARalpha and FLT3-ITD induce an APL-like disease in a mouse model. Proc Natl Acad Sci USA. 2002;99(12):8283–8288.CrossRefPubMedGoogle Scholar
  34. 34.
    Kohn DB, Sadelain M, Glorioso JC. Occurrence of leukaemia following gene therapy of X-linked SCID. Nat Rev Cancer. 2003;3(7):477–488.CrossRefPubMedGoogle Scholar
  35. 35.
    Kollet O, Peled A, Byk T, et al. beta2 microglobulin-deficient (B2m(null)) NOD/SCID mice are excellent recipients for studying human stem cell function. Blood. 2000;95(10):3102–3105.PubMedGoogle Scholar
  36. 36.
    Kroon E, Thorsteinsdottir U, Mayotte N, Nakamura T, Sauvageau G. NUP98-HOXA9 expression in hemopoietic stem cells induces chronic and acute myeloid leukemias in mice. Embo J. 2001;20(3):350–361.CrossRefPubMedGoogle Scholar
  37. 37.
    Langenau DM, Traver D, Ferrando AA, et al. Myc-induced T cell leukemia in transgenic zebrafish. Science. 2003;299(5608):887–890.CrossRefPubMedGoogle Scholar
  38. 38.
    Lapidot T, Sirard C, Vormoor J et al. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature. 1994;367(6464):645–648.CrossRefPubMedGoogle Scholar
  39. 39.
    Larochelle A, Vormoor J, Hanenberg H, et al. Identification of primitive human hematopoietic cells capable of repopulating NOD/SCID mouse bone marrow: implications for gene therapy. Nat Med. 1996;2(12):1329–1337.CrossRefPubMedGoogle Scholar
  40. 40.
    Li J, Shen H, Himmel KL, et al. Leukaemia disease genes: large-scale cloning and pathway predictions. Nat Genet. 1999;23(3):348–353.CrossRefPubMedGoogle Scholar
  41. 41.
    Lumkul R, Gorin NC, Malehorn MT, et al. Human AML cells in NOD/SCID mice: engraftment potential and gene expression. Leukemia. 2002;16(9):1818–1826.CrossRefPubMedGoogle Scholar
  42. 42.
    Malkinson AM. Molecular comparison of human and mouse pulmonary adenocarcinomas. Exp Lung Res. 1998;24(4):541–555.CrossRefPubMedGoogle Scholar
  43. 43.
    Mazurier F, Doedens M, Gan OI, Dick JE. Rapid myeloerythroid repopulation after intrafemoral transplantation of NOD-SCID mice reveals a new class of human stem cells. Nat Med. 2003;9(7):959–963.CrossRefPubMedGoogle Scholar
  44. 44.
    Mucenski ML, Taylor BA, Ihle JN, et al. Identification of a common ecotropic viral integration site, Evi-1, in the DNA of AKXD murine myeloid tumors. Mol Cell Biol. 1988;8(1):301–308.PubMedGoogle Scholar
  45. 45.
    Okuda T, van Deursen J, Hiebert SW, Grosveld G, Downing JR. AML1, the target of multiple chromosomal translocations in human leukemia, is essential for normal fetal liver hematopoiesis. Cell. 1996;84(2):321–330.CrossRefPubMedGoogle Scholar
  46. 46.
    Okuda T, Cai Z, Yang S, et al. Expression of a knocked-in AML1-ETO leukemia gene inhibits the establishment of normal definitive hematopoiesis and directly generates dysplastic hematopoietic progenitors. Blood. 1998;91(9):3134–3143.PubMedGoogle Scholar
  47. 47.
    Pearce DJ, Taussig D, Zibara K, et al. AML engraftment in the NOD/SCID assay reflects the outcome of AML: implications for our understanding of the heterogeneity of AML. Blood. 2006;107(3):1166–1173.CrossRefPubMedGoogle Scholar
  48. 48.
    Pearce DJ, Taussig D, Simpson C, et al. Characterization of cells with a high aldehyde dehydrogenase activity from cord blood and acute myeloid leukemia samples. Stem Cells. 2005;23(6):752–760.CrossRefPubMedGoogle Scholar
  49. 49.
    Prochazka M, Gaskins HR, Shultz LD, Leiter EH. The nonobese diabetic scid mouse: model for spontaneous thymoma genesis associated with immunodeficiency. Proc Natl Acad Sci USA. 1992;89(8):3290–3294.CrossRefPubMedGoogle Scholar
  50. 50.
    Ren R. Modeling the dosage effect of oncogenes in leukemogenesis. Curr Opin Hematol. 2004;11(1):25–34.CrossRefPubMedGoogle Scholar
  51. 51.
    Resnitzky P, Estrov Z, Haran-Ghera N. High incidence of acute myeloid leukemia in SJL/J mice after X-irradiation and corticosteroids. Leuk Res. 1985;9(12):1519–1528.CrossRefPubMedGoogle Scholar
  52. 52.
    Rhoades KL, Hetherington CJ, Harakawa N, et al. Analysis of the role of AML1-ETO in leukemogenesis, using an inducible transgenic mouse model. Blood. 2000;96(6):2108–2115.PubMedGoogle Scholar
  53. 53.
    Rombouts WJ, Martens AC, Ploemacher RE. Identification of variables determining the engraftment potential of human acute myeloid leukemia in the immunodeficient NOD/SCID human chimera model. Leukemia. 2000;14(5):889–897.CrossRefPubMedGoogle Scholar
  54. 54.
    Russell WL, Kelly EM, Hunsicker PR, Bangham JW, Maddux SC, Phipps EL. Specific-locus test shows ethylnitrosourea to be the most potent mutagen in the mouse. Proc Natl Acad Sci USA. 1979;76(11):5818–5819.CrossRefPubMedGoogle Scholar
  55. 55.
    Shultz LD, Banuelos SJ, Leif J, et al. Regulation of human short-term repopulating cell (STRC) engraftment in NOD/SCID mice by host CD122+ cells. Exp Hematol. 2003;31(6):551–558.CrossRefPubMedGoogle Scholar
  56. 56.
    Stover EH, Chen J, Lee BH, et al. The small molecule tyrosine kinase inhibitor AMN107 inhibits TEL-PDGFRbeta and FIP1L1-PDGFRalpha in vitro and in vivo. Blood. 2005;106(9):3206–3213.CrossRefPubMedGoogle Scholar
  57. 57.
    Tomasson MH, Sternberg DW, Williams IR, et al. Fatal myeloproliferation, induced in mice by TEL/PDGFbetaR expression, depends on PDGFbetaR tyrosines 579/581. J Clin Invest. 2000;105(4):423–432.CrossRefPubMedGoogle Scholar
  58. 58.
    Torok S, Borgulya G, Lobmayer P, Jakab Z, Schuler D, Fekete G. Childhood leukaemia incidence in Hungary, 1973-2002. Interpolation model for analysing the possible effects of the Chernobyl accident. Eur J Epidemiol. 2005;20(11):899–906.CrossRefPubMedGoogle Scholar
  59. 59.
    van Rhenen A, van Dongen GA, Kelder A, et al. The novel AML stem cell associated antigen CLL-1 aids in discrimination between normal and leukemic stem cells. Blood. 2007;110(7):2659–2666.CrossRefPubMedGoogle Scholar
  60. 60.
    Vidal M, Cagan RL. Drosophila models for cancer research. Curr Opin Genet Dev. 2006;16(1):10–16.CrossRefPubMedGoogle Scholar
  61. 61.
    Walter MJ, Park JS, Ries RE, et al. Reduced PU.1 expression causes myeloid progenitor expansion and increased leukemia penetrance in mice expressing PML-RARalpha. Proc Natl Acad Sci USA. 2005;102(35):12513–12518.CrossRefPubMedGoogle Scholar
  62. 62.
    Wang Q, Stacy T, Binder M, Marin-Padilla M, Sharpe AH, Speck NA. Disruption of the Cbfa2 gene causes necrosis and hemorrhaging in the central nervous system and blocks definitive hematopoiesis. Proc Natl Acad Sci USA. 1996;93(8):3444–3449.CrossRefPubMedGoogle Scholar
  63. 63.
    Westervelt P, Lane AA, Pollock JL, et al. High-penetrance mouse model of acute promyelocytic leukemia with very low levels of PML-RARalpha expression. Blood. 2003;102(5):1857–1865.CrossRefPubMedGoogle Scholar
  64. 64.
    Westervelt P, Ley TJ. Seed versus soil: the importance of the target cell for transgenic models of human leukemias. Blood. 1999;93(7):2143–2148.PubMedGoogle Scholar
  65. 65.
    Wulf GG, Wang RY, Kuehnle I, et al. A leukemic stem cell with intrinsic drug efflux capacity in acute myeloid leukemia. Blood. 2001;98(4):1166–1173.CrossRefPubMedGoogle Scholar
  66. 66.
    Yamashita N, Osato M, Huang L, et al. Haploinsufficiency of Runx1/AML1 promotes myeloid features and leukaemogenesis in BXH2 mice. Br J Haematol. 2005;131(4):495–507.CrossRefPubMedGoogle Scholar
  67. 67.
    Yergeau DA, Hetherington CJ, Wang Q, et al. Embryonic lethality and impairment of haematopoiesis in mice heterozygous for an AML1-ETO fusion gene. Nat Genet. 1997;15(3):303–306.CrossRefPubMedGoogle Scholar
  68. 68.
    Yilmaz OH, Valdez R, Theisen BK, et al. Pten dependence distinguishes haematopoietic stem cells from leukaemia-initiating cells. Nature. 2006;441(7092):475–482.CrossRefPubMedGoogle Scholar
  69. 69.
    Yuan Y, Zhou L, Miyamoto T, et al. AML1-ETO expression is directly involved in the development of acute myeloid leukemia in the presence of additional mutations. Proc Natl Acad Sci USA. 2001;98(18):10398–10403.CrossRefPubMedGoogle Scholar
  70. 70.
    Zhang S, Ramsay ES, Mock BA. Cdkn2a, the cyclin-dependent kinase inhibitor encoding p16INK4a and p19ARF, is a candidate for the plasmacytoma susceptibility locus, Pctr1. Proc Natl Acad Sci USA. 1998;95(5):2429–2434.CrossRefPubMedGoogle Scholar
  71. 71.
    Zimonjic DB, Pollock JL, Westervelt P, Popescu NC, Ley TJ. Acquired, nonrandom chromosomal abnormalities associated with the development of acute promyelocytic leukemia in transgenic mice. Proc Natl Acad Sci USA. 2000;97(24):13306–13311.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Division of Oncology, Stem Cell Biology SectionWashington University School of MedicineSt. LouisUSA

Personalised recommendations