Explosives: Fate, Dynamics, and Ecological Impact in Terrestrial and Marine Environments

  • Albert L. Juhasz
  • Ravendra Naidu
Part of the Reviews of Environmental Contamination and Toxicology book series (RECT, volume 191)


Explosive, or energetic compounds, may be defined as chemicals that, under the influence of thermal or chemical shock, decompose rapidly with the evolution of large amounts of heat and gas (Brannon and Pennington 2002). Numerous energetic compounds have been produced for varying industrial uses; however, secondary explosives pose the largest potential environmental concern because they are produced and used in defense activities in the greatest quantities. Secondary explosives may enter the environment following explosives manufacture, assembly, and packing, and explosives detonation. During these activities, soil, sediment, and water may become contaminated with energetic and related compounds with potential impacts on environmental and human health. Of the secondary explosives, trinitrotoluene (TNT) and Royal Demolition Explosive (hexahydro-1,3,5-trinitro-1,3,5-triazine) (RDX) production outweigh other secondary explosives as they are the major ingredients in nearly every munition formulation (Walsh et al. 1993). In addition to chemicals added to explosive formulations, residues may contain compounds such as production impurities or decomposition by-products. For example, High Melting Explosive (octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine) (HMX) may be found as an impurity in RDX (Army, U.S. Department of Defense 1994), and TNT may contain dinitrotoluene and trinitrotoluene isomers (Legett et al. 1977).


Phanerochaete Chrysosporium Environ Toxicol Nitroaromatic Compound Energetic Compound Arch Environ Contam Toxicol 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adrian NR, Arnett CM (2004) Anaerobic biodegradation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) by Acetobacterium malicum strain HAAP-1 isolated from a methanogenic mixed culture. Curr Microbiol 48:332–340.Google Scholar
  2. Adrian NR, Chow T (2001) Identification of hydroxylamino-dinitroso-1,3,5-triazine as a transient intermediate formed during the anaerobic biodegradation of hexahydro-1,3,5-trinitro-1,3,5-triazine. Environ Toxicol Chem 20:1874–1877.Google Scholar
  3. Adrian NR, Arnett CM, Hickey RF (2003) Stimulating the anaerobic biodegradation of explosives by the addition of hydrogen or electron donors that produce hydrogen. Water Res 37:3499–3507.Google Scholar
  4. Ainsworth CC, Harvey SD, Szecsodt JE, Simmons MA, Cullinan VI, Resch CT, Mong GH (1993) Relationship between the leachability characteristics of unique energetic compounds and soil properties. Project 91PP1800. U.S Army Biomedical Research and Development Laboratory, Fort Detrick, MD.Google Scholar
  5. Alvarez MA, Kitts CL, Botsford JL, Unkefer P (1995) Pseudomonas aeruginosa strain MA01 aerobically metabolises the aminodinitrotoluenes produced by 2,4,6-trinitrotoluene nitro-group reduction. Can J Microbiol 41:984–991.Google Scholar
  6. Ampleman G, Faucher D, Thiboutot S, Hawari J, Monteil-Rivera F (2004) Evaluation of underwater contamination by explosives and metals at Point Amour, Labrador and in the Halifax Harbour area. DRDC Valcartier TR 2004-125. Defence Research and Development, Toronto, Canada.Google Scholar
  7. Army, U.S. Department of Defense (1994) Military Explosives TM 9-1300-214. U.S Department of the Army, Washington D.C.Google Scholar
  8. Axtell C, Johnston CG, Bumpus JA (2000) Bioremediation of soil contaminated with explosives at the Naval Weapons Station Yorktown. Soil Sed Contam 9:537–548.Google Scholar
  9. Bajpai R, Parekh D, Herrmann S, Popovic M, Paca J, Qasim M (2004) A kinetic model of aqueous-phase alkali hydrolysis of 2,4,6-trinitrotoluene. J Hazard Mater 106:37–44.Google Scholar
  10. Balakrishnan VK, Halasz A, Hawari J (2003) Alkaline hydrolysis of the cyclic nitramine explosives RDX, HIVIX, and CL-20: new insights into degradation pathways obtained by the observation of novel intermediates. Environ Sci Technol 37:1838–1843.Google Scholar
  11. Bandstra JZ, Miehr R, Johnson RL, Tratnyek PG (2005) Reduction of 2,4,6-trinitrotoluene by iron metal: kinetic controls on product distributions in batch experiments. Environ Sci Technol 39:230–238.Google Scholar
  12. Belden JB, Lotufo GR, Lydy MJ (2005a) Accumulation of hexahydro-1,3,5-trinitro-1,3,5-triazine in channel catfish (Ictalurus punctatus) and aquatic oligochaetes (Lumbriculus variegatus). Environ Toxicol Chem 24:1962–1967.Google Scholar
  13. Belden JB, Ownby DR, Lotufo GR, Lydy MJ (2005b) Accumulation of trinitrotoluene (TNT) in aquatic organisms. Part 2: Bioconcentration in aquatic invertebrates and potential for trophic transfer to channel catfish (Ictalurus punctatus). Chemosphere 58:1161–1168.Google Scholar
  14. Beller HR (2002) Anaerobic biotransformation of RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine) by aquifer bacteria using hydrogen as the sole electron donor. Water Res 36:2533–2540.Google Scholar
  15. Best EPH, Kvesitadze G, Khatisashvili G, Sadunishvili T (2005) Plant processes important for the transformation and degradation of explosives contaminants. Z Naturforsch Sect C J Biosci 60:340–348.Google Scholar
  16. Best EPH, Geter KN, Tatem HE, Lane BK (2006) Effects, transfer, and fate of RDX from aged soil in plants and worms. Chemosphere 62:616–625.Google Scholar
  17. Bhadra R, Wayment DG, Hughes JB, Shanks JV (1999) Confirmation of conjugation processes during TNT metabolism by axenic plant roots. Environ Sci Technol 33:446–452.Google Scholar
  18. Bhatt M, Zhao JS, Monteil-Rivera F, Hawari M (2005) Biodegradation of cyclic nitramines by tropical marine sediment bacteria. J Ind Microbiol Biotechnol 32:261–267.Google Scholar
  19. Bhushan B, Halasz A, Spain J, Thiboutot S, Ampleman G, Hawari J (2002) Biotransformation of hexahydro-1,3,5-trinitro-1,3,5-triazine catalyzed by a NAD(P)H: nitrate oxidoreductase from Aspergillus niger. Environ Sci Technol 36:3104–3108.Google Scholar
  20. Bhushan B, Trott S, Spain JC, Halasz A, Paquet L, Hawari J (2003a) Biotransformation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) by a rabbit liver cytochrome p450: insight into the mechanism of RDX biodegradation by Rhodococcus sp. strain DN22. Appl Environ Microbiol 69:1347–1351.Google Scholar
  21. Bhushan B, Paquet L, Halasz A, Spain JC, Hawari J (2003b) Mechanism of xanthine oxidase catalyzed biotransformation of HMX under anaerobic conditions. Biochem Biophys Res Commun 306:509–515.Google Scholar
  22. Bhushan B, Halasz A, Thiboutot S, Ampleman G, Hawari J (2004) Chemotaxismediated biodegradation of cyclic nitramine explosives RDX9 HMX, and CL-20 by Clostridium sp. EDB2. Biochem Biophys Res Commun 316:816–821.Google Scholar
  23. Binks PR, Nicklin S, Bruce NC (1995) Degradation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) by Stenotrophomonas maltophilia PB1. Appl Environ Microbiol 61:1318–1322.Google Scholar
  24. Boopathy R (1994) Transformation of nitroaromatic compounds by methanogenic bacterium Methanococcus sp. (strain B). Arch Microbiol 162:131–137.Google Scholar
  25. Boopathy R (2001) Enhanced biodegradation of cyclotetramethylenetetranitramine (HMX) under mixed electron-acceptor condition. Bioresour Technol 76:241–244.Google Scholar
  26. Boopathy R, Manning JF (1996) Characterisation of partial anaerobic metabolic pathway for 2,4,6-trinitrotoluene degradation by sulfate-reducing bacterial consortium. Can J Microbiol 42:1203–1208.Google Scholar
  27. Boopathy R, Melancon E (2004) Metabolism of compounds with nitro-functions by Klebsiella pneumoniae isolated from a regional wetland. Int Biodeterior Biodegrad 54:269–275.Google Scholar
  28. Boopathy R, Kulpa CF, Wilson M (1993) Metabolism of 2,4,6-trinitrotoluene (TNT) by Desulfovibrio sp. (B strain). Appl Microbiol Biotechnol 39:270–275.Google Scholar
  29. Boopathy R, Manning J, Kulpa CF (1997) Optimisation of environmental factors for the biological treatment of trinitrotoluene-contaminated soil. Arch Environ Contam Toxicol 32:94–98.Google Scholar
  30. Boopathy R, Kulpa CF, Manning J (1998) Anaerobic biodegradation of explosives and related compounds by sulfate-reducing and methanogenic bacteria: a review. Bioresour Technol 63:81–89.Google Scholar
  31. Brannon JM, Myers TE (1997) Review of fate and transport processes of explosives Technical Report IRRP-97-2. U.S Army Engineer Waterways Experiment Station, Vicksburg, MS.Google Scholar
  32. Brannon JM, Pennington JC (2002) Environmental fate and transport process descriptors for explosives. ERDC/EL TR-02-10. U.S Army Engineer Research and Development Center, Vicksburg, MS.Google Scholar
  33. Brannon JM, Price CB, Hayes C, Yost SL (2002) Aquifer soil cation substitution and adsorption of TNT, RDX, and HMX. Soil Sed Contam 11:327–338.Google Scholar
  34. Bumpus JA, Tatarko M (1994) Biodegradation of 2,4,6-trinitrotoluene by Phanerochaete chrysosporium: identification of initial degradation products and the discovery of a TNT metabolite that inhibits lignin peroxidases. Curr Microbiol 28:185–190.Google Scholar
  35. Burton DT, Turley SD, Peters GT (1994) The acute and chronic toxicity of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) to the flathead minnow (Pimephales promelas). Chemosphere 29:567–579.Google Scholar
  36. Caballero A, Lazaro JJ, Ramos JL, Esteve-Nunez A (2005a) PnrA, a new nitroreductase-family enzyme in the TNT-degrading strain Pseudomonas putida JLR11. Environ Microbiol 7:1211–1219.Google Scholar
  37. Caballero A, Esteve-Nunez A, Zylstra GJ, Ramos JL (2005b) Assimilation of nitrogen from nitrite and trinitrotoluene in Pseudomonas putida JLR11. J Bacteriol 187:396–399.Google Scholar
  38. Carr RS, Nipper M (2003) Assessment of environmental effects of ordnance compounds and their transformation products in coastal ecosystems. Technical Report TR-2234-ENV. Naval Facilities Engineering Service Center, Port Hueneme, CA.Google Scholar
  39. Cataldo DA, Harvey SD, Fellows RM, Bean RM, McVeety BD (1989) Uptake of TNT by bush beans. Report ADA 223340. Pacific Northwest Laboratory, Richland, WA.Google Scholar
  40. Coleman NV, Duxbury T (1999) Biodegradation of RDX by Rhodococcus sp. Strain DN22 Presented at the 2nd International Symposium on the Biodegradation of Nitroaromatic Compounds and Explosives, Leesburg, VA. 8–9 September 1999.Google Scholar
  41. Coleman NV, Nelson DR, Duxbury T (1998) Anaerobic biodegradation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) as a nitrogen source by a Rhodococcus sp. strain DN22. Soil Biol Biochem 30:1159–1167.Google Scholar
  42. Coleman NV, Spain JC, Duxbury T (2002) Evidence that RDX biodegradation by Rhodococcus strain DN22 is plasmid-borne and involves a cytochrome p-450. J Appl Microbiol 93:463–472.Google Scholar
  43. Conder JM, La Point TW, Bowen AT (2004a) Preliminary kinetics and metabolism of 2,4,6-trinitrotoluene and its reduced metabolites in an aquatic oligochaete. Aquat Toxicol 69:199–213.Google Scholar
  44. Conder JM, La Point TW, Steevens JA, Lotufo GR (2004b) Recommendations for the assessment of TNT toxicity in sediment. Environ Toxicol Chem 23:141–149.Google Scholar
  45. Davis JL, Wani AH, O’Neal BR, Hansen LD (2004) RDX biodegradation column study: comparison of electron donors for biologically induced reductive transformation in groundwater. J Hazard Mater 112:45–54.Google Scholar
  46. Devlin JF, Klausen J, Schwarzenbach RP (1998) Kinetics of nitroaromatic reduction on granular iron in recirculating batch experiments. Environ Sci Technol 32:1941–1947.Google Scholar
  47. Dilley JV, Tyson CA, Spanggord RJ, Sasmore DP, Newell GW, Dacre JC (1982) Short-term oral toxicity of 2,4,6-trinitrotoluene in mice, rats and dogs. J Toxicol Environ Health 9:565–585.Google Scholar
  48. Dodard SG, Renoux AY, Hawari J, Ampleman G, Thiboutot S, Sunahara GI (1999) Ecotoxicity characterization of dinitrotoluenes and some of their reduced metabolites. Chemosphere 38:2071–2079.Google Scholar
  49. Dodard SG, Renoux AY, Powlowski J, Sunahara GI (2003) Lethal and subchronic effects of 2,4,6-trinitrotoluene (TNT) on Enchytraeus albidus in spiked artificial soil. Ecotoxicol Environ Saf 54:131–138.Google Scholar
  50. Dodard SG, Powlowski J, Sunahara GI (2004) Biotransformation of 2,4,6-trinitrotoluene (TNT) by enchytraeids (Enchytraeus albidus) in vivo and in vitro. Environ Pollut 131:263–273.Google Scholar
  51. Dodard SG, Sunahara GI, Kuperman RG, Sarrazin M, Gong P, Ampleman G (2005) Survival and reproduction of enchytraeid worms, oligochaeta, in different soil types amended with energetic cyclic nitramines. Environ Toxicol Chem 24:2579–2587.Google Scholar
  52. Donnelly KC, Chen JC, Huebner HJ, Brown KE, Autenrieth RL, Bonner JS (1997) Utility of four strains of white-rot fungi for the detoxification of 2,4,6-trinitrotoluene in liquid culture. Environ Toxicol Chem 16:1105–1110.Google Scholar
  53. Drzyzga O, Gorontzy T, Schmidt A, Blotevogel KH (1995) Toxicity of explosives and related compounds to the luminescent bacterium Vibrio fischeri NRRL-B-11177. Arch Environ Contam Toxicol 28:229–235.Google Scholar
  54. Dutta SK, Jackson MM, Hou LH, Powell D, Tatem HE (1998) Non-ligninolytic TNT mineralisation in contaminated soil by Phanerochaete chrysosporium. Bioremed J 2:97–103.Google Scholar
  55. Eilers A, Rungeling E, Stundl UM, Gottschalk G (1999) Metabolism of 2,4,6-trinitrotoluene by the white-rot fungus Bjerkandera adusta DSM 3375 depends on cytochrome P-450. Appl Microbiol Biotechnol 53:75–80.Google Scholar
  56. Ek H, Dave G, Sturve J, Almroth BC, Stephensen E, Forlin L, Birgersson G (2005) Tentative biomarkers for 2,4,6-trinitrotoluene (TNT) in fish (Oncorhynchus mykiss). Aquat Toxicol 72:221–230.Google Scholar
  57. Emmrich M (1999) Kinetics of the alkaline hydrolysis of 2,4,6-trinitrotoluene in aqueous solution and highly contaminated soils. Environ Sci Technol 33:3802–3805.Google Scholar
  58. Esteve-Nunez A, Ramos JL (1998) Metabolism of 2,4,6-trinitrotoluene by Pseudomonas sp. JLR11. Environ Sci Technol 32:3802–3808.Google Scholar
  59. Fernando T, Aust SD (1991) Biodegradation of munition waste TNT (2,4,6-trinitrotoluene) and RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine) by Phanerochaete chrysosporium. Ind Eng Chem ACS Symp 486:214–232.Google Scholar
  60. Fernando T, Bumpus JA, Aust SD (1990) Bioremediation of TNT (2,4,6-trinitrotoluene) by Phanerochaete chrysosporium. Appl Environ Microbiol 56:1666–1671.Google Scholar
  61. Fiorella PD, Spain JC (1997) Transformation of 2,4,6-trinitrotoluene by Pseudomonas pseudoalcaligenes JS52. Appl Environ Microbiol 63:2007–2015.Google Scholar
  62. Fournier D, Halasz A, Spain J, Fiurasek P, Hawari J (2002) Determination of key metabolites during biodegradation of hexahydro-1,3,5-trinitro-1,3,5-triazine with Rhodococcus sp. strain DN22. Appl Environ Microbiol 68:166–172.Google Scholar
  63. Fournier D, Halasz A, Spain J, Spanggord RJ, Bottaro JC, Hawari J (2004a) Biodegradation of the hexahydro-1,3,5-trinitro-1,3,5-triazine ring cleavage product 4-nitro-2,4-diazabutanal by Phanerochaete chrysospotium. Appl Environ Microbiol 70:1123–1128.Google Scholar
  64. Fournier D, Halasz A, Thiboutot S, Ampleman G, Manno D, Hawari J (2004b) Biodegradation of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) by Phanerochaete chrysosporium: new insight into the degradation pathway. Environ Sci Technol 38:4130–4133.Google Scholar
  65. French CE, Nicklin S, Bruce NC (1998) Aerobic degradation of 2,4,6-trinitrotoluene by Enterobacter cloacae PB2 and pentaerythritol tetranitrate reductase. Appl Environ Microbiol 64:2864–2868.Google Scholar
  66. Frische T (2002) Screening for soil toxicity and mutagenicity using luminescent bacteria: a case study of the explosive 2,4,6-trinitrotoluene. Ecotoxicol Environ Saf 51:133–144.Google Scholar
  67. Fuller ME, Manning JF Jr (1997) Aerobic gram-positive and gram-negative bacteria exhibit differential sensitivity to and transformation of 2,4,6-trinitrotoluene (TNT). Curr Microbiol 35:77–83.Google Scholar
  68. Gensemer R, Caldwell R, Paulus S, Crawford P (2004) Derivation of toxicity reference values for the acute and chronic toxicity of RDX to marine organisms. PH022, Fourth SETAC World Congress, 14–18 November 2004, Portland, OR.Google Scholar
  69. Glover DJ, Hoffsommer JC (1979) Photolysis of RDX. Identification and reactions of products. Technical Report NSWC TR-79-349. Naval Surface Weapons Centre, Silver Spring, MD.Google Scholar
  70. Gong P, Wilke BM, Fleischmann S (1999) Soil-based phytotoxicity of 2,4,6-trinitrotoluene (TNT) to terrestrial higher plants. Arch Environ Contam Toxicol 36:152–157.Google Scholar
  71. Gregory KB, Larese-Casanova P, Parkin GF, Scherer MM (2004) Abiotic transformation of hexahydro-1,3,5-trinitro-1,3,5-triazine by fell bound to magnetite. Environ Sci Technol 38:1408–1414.Google Scholar
  72. Groom CA, Beaudet S, Halasz A, Paquet L, Hawari J (2001) Detection of the cyclic nitramine explosives hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazine (HMX) and their degradation products in soil environments. J Chromatogr A 909:53–60.Google Scholar
  73. Haderlein SB, Weissmahr KW, Schwarzenbach RP (1996) Specific adsorption of nitroaromatic explosives and pesticides to clay minerals. Environ Sci Technol 30:612–622.Google Scholar
  74. Haidour A, Ramos JL (1996) Identification of products resulting from biological reduction of 2,4,6-trinitrotoluene, 2,4-dinitrotoluene and 2,6-dinitrotoluene by Pseudomonas sp. Environ Sci Technol 30:2365–2370.Google Scholar
  75. Hannink NK, Rosser SJ, Bruce NC (2002) Phytoremediation of explosives. Crit Rev Plant Sci 21:511–538.Google Scholar
  76. Hawari J (2000) Biodegradation of RDX and HMX: from basic research to field application. In: Biodegradation of Nitroaromatic Compounds and Explosives. CRC Press, Boca Raton, FL. pp 277–310.Google Scholar
  77. Hawari J, Halasz A, Beaudet S, Ampleman G, Thiboutot S (1999) Biotransformaiton of 2,4,6-trinitrotoluene (TNT) with Phanerochaete chrysosporium in agitated cultures at pH 4.5. Appl Environ Microbiol 65:2977–2986.Google Scholar
  78. Hawari J, Beaudet S, Halasz A, Thiboutot S, Ampleman G (2000a) Microbial degradation of explosives: biotransformation versus mineralization. Appl Microbiol Biotechnol 54:605–618.Google Scholar
  79. Hawari J, Shen CF, Guiot SR, Greer CW, Rho D, Sunahara G, Ampleman G, Thiboutot S (2000b) Bioremediation of highly energetic compounds: a search for remediation technologies. Water Sci Technol 42:385–393.Google Scholar
  80. Hawari J, Halasz A, Sheremata T, Beaudet S, Groom C, Paquet L, Rhofir C, Ampleman G, Thiboutot S (2000c) Characterization of metabolites during biodegradation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) with municipal anaerobic sludge. Appl Environ Microbiol 66:2652–2657.Google Scholar
  81. Hawari J, Halasz A, Beaudet S, Paquet L, Ampleman G, Thiboutot S (2001) Biotransformation routes of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine by municipal anaerobic sludge. Environ Sci Technol 35:70–75.Google Scholar
  82. Hawthorne SB, Lagadec AJM, Kalderis D, Lilke AV, Miller DJ (2000) Pilot-scale destruction of TNT, RDX, and HMX on contaminated soils using subcritical water. Environ Sci Technol 34:3224–3228.Google Scholar
  83. Hess TF, Schrader PS (2002) Coupled abiotic-biotic mineralization of 2,4,6-trinitrotoluene (TNT). J Environ Qual 31:736–744.Google Scholar
  84. Hodgson J, Rho G, Guiot SR, Ampleman G, Thinoutot S, Hawari J (2000) Tween 80 enhanced TNT mineralisation by Phanerochaete chrysosporium. Can J Microbiol 46:110–118.Google Scholar
  85. Hofstetter TB, Heijman CG, Haderlein SB, Holliger C, Schwarzenbach RP (1999) Complete reduction of TNT and other (poly)nitroaromatic compounds under iron reducing subsurface conditions. Environ Sci Technol 33:1479–1487.Google Scholar
  86. Huang G, Xiao H, Chi J, Shiu W, MacKay D (2000) Effects of pH on the aqueous solubility of selected chlorinated phenols. J Chem Eng Data 45:441–414.Google Scholar
  87. Hughes JB, Wang C, Yesland K, Richardson A, Bhadra R, Bennett G, Rudolph F (1998) Bamberger rearrangement during TNT metabolism by Clostridium acetobutylicum. Environ Sci Technol 32:494–500.Google Scholar
  88. Hwang S, Felt DR, Bouwer EJ, Brooks MC, Larson SL, Davis JL (2006) Remediation of RDX-contaminated water using alkaline hydrolysis. J Environ Eng ASCE 132:256–262.Google Scholar
  89. Jarvis AS, McFarland VA, Honeycutt ME (1998) Assessment of the effectiveness of composting for the reduction of toxicity and mutagenicity of explosivecontaminated soil. Ecotoxicol Environ Saf 39:131–135.Google Scholar
  90. Jenkins TF, Walsh ME, Thorne PG, Miyares PH, Ranney TA, Grant CL, Esparaza JR (1998) Site characterisation for explosives contamination at a military firing range impact area. Special Report CRREL 98-9. U.S Army Cold Regions Research and Engineering Laboratory, Hanover, NH.Google Scholar
  91. Johnson LR, Davenport R, Balbach H, Schaeffer DJ (1994) Phototoxicology. 2. Near ultraviolet light enhancement of Microtox assays of trinitrotoluene and aminodinitrotoluenes. Ecotoxicol Environ Saf 27:23–33.Google Scholar
  92. Johnson MS, Franke LS, Lee RB, Holladay SD (1999) Bioaccumulation of 2,4,6-trinitrotoluene and polychlorinated biphenyls through two routes of exposure in a terrestrial amphibian: is the dermal route significant? Environ Toxicol Chem 18:873–878.Google Scholar
  93. Johnson MS, Holladay SD, Lippenholz KS, Jenkins LJ, McCain WC (2000) Effects of 2,4,6-trinitrotoluene in a holistic environmental exposure regime on a terrestrial salamander, Ambystoma tigrinum. Toxicol Pathol 28:334–341.Google Scholar
  94. Johnson MS, Paulus HI, Salice CJ, Checkai RT, Simini M (2004) Toxicologic and histopathologic response of the terrestrial salamander Plethodon cinereus to soil exposure of 1,3,5-trinitrohexahydro-1,3,5-triazine. Arch Environ Contam Toxicol 47:496–501.Google Scholar
  95. Johnson MS, Gogal RM, Larsen CT (2005) Food avoidance behavior to dietary octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) exposure in the northern bobwhite (Colinus virginianus). J Toxicol Environ Health Part A Curr Issues 68:1349–1357.Google Scholar
  96. Jones AM, Greer CW, Ampleman G, Thiboutot S, Lavigne J, Hawari J (1995) Biodegradability of selected highly energetic pollutants under aerobic conditions Presented at the 3rd Int Conf on In Situ and On Site Bioreclamation, San Diego CA. 24–27 April 1995.Google Scholar
  97. Kalafut T, Wales ME, Rastogi VK, Naumova RP, Zaripova SK, Wild JR (1998) Biotransformation pattern of 2,4,6-trinitrotoluene by aerobic bacteria. Curr Microbiol 36:45–54.Google Scholar
  98. Kaplan DL (1993) Biotechnology and bioremediaiton of organic energetic compounds. In: Marikas P (ed) Organic Energetic Compounds. Nova Science, New York, pp 373–416.Google Scholar
  99. Kim HY, Song HG (2000a) Comparison of 2,4,6-trinitrotoluene degradation by seven strains of white rot fungi. Curr Microbiol 41:317–320.Google Scholar
  100. Kim HY, Song HG (2000b) Transformation of 2,4,6-trinitrotoluene by white rot fungus Irpex lacteus. Biotechnol Lett 22:969–975.Google Scholar
  101. Kim HY, Song HG (2003) Transformation and mineralization of 2,4,6-trinitrotoluene by the white rot fungus Irpex lacteus. Appl Microbiol Biotechnol 61:150–156.Google Scholar
  102. Kim HY, Song HG (2005) Purification and characterization of NAD(P)H-dependent nitroreductase I from Klebsiella sp. C1 and enzymatic transformation of 2,4,6-trinitrotoluene. Appl Microbiol Biotechnol 68:766–773.Google Scholar
  103. Kim HY, Bennett GN, Song HG (2002) Degradation of 2,4,6-trinitrotoluene by Klebsiella sp. isolated from activated sludge. Biotechnol Lett 24:2023–2028.Google Scholar
  104. Kim J, Drew MC, Corapcioglu MY (2004) Uptake and phytotoxicity of TNT in onion plant. J Environ Sci Health Part A Toxic/Hazard Subst Environ Eng 39:803–819.Google Scholar
  105. Kitts CL, Cunningham DP, Unkefer PJ (1994) Isolation of three hexahydro-1,3, 5-trinitro-1,3,5-triazine degrading species of the family Enterobacteriaceae from nitramine explosive-contaminated soil. Appl Environ Microbiol 60:4608–4611.Google Scholar
  106. Kuperman RG, Checkai RT, Simini M, Phillips CT, Kolakowski JE, Kurnas CW, Sunahara GI (2003) Survival and reproduction of Enchytraeus crypticus (Oligochaeta, Enchytraeidae) in a natural sandy loam soil amended with the nitro-heterocyclic explosives RDX and HMX. Pedobiologia 47:651–656.Google Scholar
  107. Kuperman RG, Checkai RT, Simini M, Phillips CT, Kolakowski JE, Kurnas CW (2005) Weathering and aging of 2,4,6-trinitrotoluene in soil increases toxicity to potworm Enchytraeus crypticus. Environ Toxicol Chem 24:2509–2518.Google Scholar
  108. Kutty R, Bennett GN (2005) Biochemical characterization of trinitrotoluene transforming oxygen-insensitive nitroreductases from Clostridium acetobutylicum ATCC 824. Arch Microbiol 184:158–167.Google Scholar
  109. Kutty R, Bennett G (2006) Studies on inhibition of transformation of 2,4,6-trinitrotoluene catalyzed by Fe-only hydrogenase from Clostridium acetobutylicum. J Ind Microbiol Biotechnol 33:368–376.Google Scholar
  110. Labidi M, Ahmad D, Halasz A, Hawari J (2001) Biotransformation and partial mineralization of the explosive 2,4,6-trinitrotoluene (TNT) by rhizobia. Can J Microbiol 47:559–566.Google Scholar
  111. Lachance B, Renoux AY, Sarrazin M, Hawari J, Sunahara GI (2004) Toxicity and bioaccumulation of reduced TNT metabolites in the earthworm Eisenia andrei exposed to amended forest soil. Chemosphere 55:1339–1348.Google Scholar
  112. Lee SY, Brodman BW (2004) Biodegradation of 1,3,5-trinitro-1,3,5-triazine (RDX). J Environ Sci Health Part A Toxic/Hazard Subst Environ Eng 39:61–75.Google Scholar
  113. Leggett DC (1985) Sorption of military explosive contaminants on bentonite drilling muds. CRREL Report 85-18. U.S Army Cold Regions Research and Engineering Laboratory, Hanover, NH.Google Scholar
  114. Leggett DC, Jenkins TF, Murrman RP (1977) Composition of vapours evolved from military TNT as influenced by temperature, solid composition, age and source. CRREL Report 87-7. U.S Army Cold Regions Research and Engineering Laboratory, Hanover, NH.Google Scholar
  115. Levine BS, Furedi EM, Gordon DE, Burns JM, Lish PM (1981) Thirteen-week toxicity study of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) in Fischer 344 rats. Toxicol Lett 8:241–245.Google Scholar
  116. Levine BS, Rust JH, Barkley JJ, Furedi EM, Lish PM (1990) Six month oral toxicity study of trinitrotoluene in beagle dogs. Toxicology 63:233–244.Google Scholar
  117. Lewis A, Goszczynski T, Crawford RL, Korus RA, Admassu W (1996) Products of anaerobic 2,4,6-trinitrotoluene (TNT) transformation by Clostridium bifermentans. Appl Environ Microbiol 62:4669–4674.Google Scholar
  118. Li H, Sheng GY, Chiou CT, Xu OY (2005) Relation of organic contaminant equilibrium sorption and kinetic uptake in plants. Environ Sci Technol 39:4864–4870.Google Scholar
  119. Lotufo GR, Farrar JD (2005) Comparative and mixture sediment toxicity of trinitrotoluene and its major transformation products to a freshwater midge. Arch Environ Contam Toxicol 49:333–342.Google Scholar
  120. Lotufo GR, Lydy MJ (2005) Comparative toxicokinetics of explosive compounds in sheepshead minnows. Arch Environ Contam Toxicol 49:206–214.Google Scholar
  121. Lotufo GR, Farrar JD, Inouye LS, Bridges TS, Ringelberg DB (2001) Toxicity of sediment-associated nitroaromatic and cyclonitramine compounds to benthic invertebrates. Environ Toxicol Chem 20:1762–1771.Google Scholar
  122. Lynch JC (2002) Dissolution kinetics of high explosive compounds (TNT, RDX, HMX) ERDC/EL TR-02-23. U.S Army Engineering Research and Development Center, Vicksburg, MS.Google Scholar
  123. Lynch JC, Myers KF, Brannon JM, Delfino JJ (2001) Effects of pH and temperature on the aqueous solubility and dissolution rate of 2,4,6-trinitrotoluene (TNT), hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX). J Chem Eng Data 46:1549–1555.Google Scholar
  124. Lynch JC, Brannon JM, Delfino JJ (2002) Dissolution rates of three high explosive compounds: TNT, RDX, and HMX. Chemosphere 47:725–734.Google Scholar
  125. Mabey WR, Tse D, Baraze A, Mill T (1983) Photolysis of nitroaromatics in aquatic systems. Chemosphere 12:3–16.Google Scholar
  126. McCormick NG, Feeherry FE, Levinson HS (1976) Microbial transformation of 2,4,6-trinitrotoluene and other nitroaromatic compounds. Appl Environ Microbiol 31:949–958.Google Scholar
  127. McCormick NG, Cornell JH, Kaplan AM (1981) Biodegradation of hexohydro-1,3,5-trinitro-1,3,5-triazine. Appl Environ Microbiol 42:817–823.Google Scholar
  128. McCormick NG, Cornell JH, Kaplan AM (1985) The anaerobic transformation of RDX and HMX and their acetylated derivatives. Technical Report A149464 (TR85-008). U.S Army Natick Research and Development Center, Natick, MA.Google Scholar
  129. McGrath CJ (1995) Review of formulations for processes affecting the subsurface transport of explosives Technical Report IRRP-95-2. U.S. Army Corps of Engineers, Waterways Experiment Station, Vicksburg, MS.Google Scholar
  130. Meyer SA, Marchand AJ, Hight JL, Roberts GH, Escalon LB, Inouye LS, MacMillan DK (2005) Up-and-down procedure (UDP) determinations of acute oral toxicity of nitroso degradation products of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX). J Appl Toxicol 25:427–434.Google Scholar
  131. Michels J, Gottschalk G (1994) Inhibition of the lignin peroxidase of Phanerochaete chyrsosporium by hydroxyamino-dinitrotoluene, an early intermediate in the degradation of 2,4,6-trinitrotoluene. Appl Environ Microbiol 60:187–194.Google Scholar
  132. MLA (1996) Surveys of the Beaufort’s Dyke explosives disposal site. Fisheries Research Services Report No. 15/96. Marine Laboratory, Aberdeen, MD.Google Scholar
  133. Monteil-Rivera F, Groom C, Hawari J (2003) Sorption and degradation of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine in soil. Environ Sci Technol 37:3878–3884.Google Scholar
  134. Montpas S, Samson J, Langois E, Lei J, Piche Y, Chenevert R (1997) Degradation of 2,4,6-trinitrotoluene by Serratia marcescens. Biotechnol Lett 19:291–294.Google Scholar
  135. Morley MC, Shammas SN, Speitel GE (2002) Biodegradation of RDX and HMX mixtures: batch screening experiments and sequencing batch reactors. Environ Eng Sci 19:237–250.Google Scholar
  136. Mukhi S, Pan X, Cobb, GP, Patino R (2005) Toxicity of hexahydro-1,3,5-trinitro-1,3,5-triazine to larval zebrafish (Danio rerio). Chemosphere 61:178–185.Google Scholar
  137. NFESC (2000a) Toxicity of marine sediments and pore waters spiked with ordnance compounds Report CR 01-001-ENV. Naval Facilities Engineering Command, Port Hueneme, CA.Google Scholar
  138. NFESC (2000b) Development of marine sediment toxicity for ordnance compounds and toxicity identification evaluation studies at selected naval facilities. Report CR 01-002-ENV. Naval Facilities Engineering Command, Port Hueneme, CA.Google Scholar
  139. Nipper M, Carr RS, Biedenbach JM, Hooten RL, Miller K, Saepoff S (2001) Development of marine toxicity data for ordnance compounds. Arch Environ Contam Toxicol 41:308–318.Google Scholar
  140. Ownby DR, Belden JB, Lotufo GR, Lydy MJ (2005) Accumulation of trinitrotoluene (TNT) in aquatic organisms. Part 1: Bioconcentration and distribution in channel catfish (Ictalurus punctatus). Chemosphere 58:1153–1159.Google Scholar
  141. Park C, Kim TH, Kim S, Lee J, Kim SW (2002) Biokinetic parameter estimation for degradation of 2,4,6-trinitrotoluene (TNT) with Pseudomonas putida KP-T201. J Biosci Bioeng 94:57–61.Google Scholar
  142. Park CW, Kim TH, Kim SY, Lee JW, Kim SW (2003a) Bioremediation of 2,4,6-trinitrotoluene contaminated soil in slurry and column reactors. J Biosci Bioeng 96:429–433.Google Scholar
  143. Park C, Kim TH, Kim S, Kim SW, Lee J, Kim SH (2003b) Optimization for biodegradation of 2,4,6-trinitrotoluene (TNT) by Pseudomonas putida. J Biosci Bioeng 95:567–571.Google Scholar
  144. Park J, Comfort SD, Shea PJ, Machacek TA (2004) Remediating munitions-contaminated soil with zerovalent iron and cationic surfactants. J Environ Qual 33:1305–1313.Google Scholar
  145. Parris GE (1980) Covalent binding of aromatic amines to humates. 1. Reactions with carbonyls and quinones. Environ Sci Technol 14:1099–1106.Google Scholar
  146. Pasti-Grigsby MB, Paszczynski A, Goszczynski S, Crawford DL, Crawford RL (1992) Influence of aromatic substitution patterns on azo dyes by Streptomyces sp. and Phanerochaete chrysosporium. Appl Environ Microbiol 58:3605–3613.Google Scholar
  147. Pasti-Grigsby MB, Lewis TA, Crawford DL, Crawford RL (1996) Transformation of 2,4,6-trinitrotoluene (TNT) by actinomycetes isolated from TNT-contaminated and uncontaminated environments. Appl Environ Microbiol 62:1120–1123.Google Scholar
  148. Pavlostathis SG, Jackson GH (2002) Biotransformation of 2,4,6-trinitrotoluene in a continuous-flow Anabaena sp. system. Water Res 36:1699–1706.Google Scholar
  149. Pennington JC, Brannon JM (2002) Environmental fate of explosives. Thermochim Acta 384:163–172.Google Scholar
  150. Pennington JC, Patrick WH Jr (1990) Adsorption and desorption of 2,4,6-trinitrotoluene by soil. J Environ Qual 19:559–567.Google Scholar
  151. Peterson MM, Horst GL, Shea PJ, Comfort SD, Peterson RKD (1996) TNT and 4-amino-2,6-dinitrotoluene influence on germination and early seedling development of tall fescue. Environ Pollut 93:57–62.Google Scholar
  152. Peterson MM, Horst GL, Shea PJ, Comfort SD (1998) Germination and seed development of switchgrass and smooth bromegrass exposed to 2,4,6-trinitrotoluene. Environ Pollut 99:53–59.Google Scholar
  153. Phillips CT, Checkai RT, Wentsel RS (1993) Toxicity of selected munitions and munition-contaminated soil on the earthworm (Eisenia foetida). ERDEC-TR-037. Edgeworth Research Development and Engineering Center, U.S. Army Chemical and Biological Defence Agency, Aberdeen Proving Ground, MD.Google Scholar
  154. Picka K, Friedl Z (2004) Phytotoxicity of some toluene nitroderivatives and products of their reduction. Fresenius Environ Bull 13:789–794.Google Scholar
  155. Preuss AJ, Fimpel J, Diekert G (1993) Anaerobic transformation of 2,4,6-trinitrotoluene. Arch Microbiol 159:345–353.Google Scholar
  156. Price CB, Brannon JM, Yost SL (1998) Transformation of RDX and HMX under controlled Eh/pH conditions Technical Report IRRP-98-2. U.S. Army Engineering Waterways Experimental Station, Vicksburg, MS.Google Scholar
  157. Price RA, Pennington JC, Larson LS, Neumann D, Hayes CA (2002) Uptake of RDX and TNT by agronomic plants. Soil Sed Contam 11:307–326.Google Scholar
  158. Pudge IB, Daugulis AJ, Dubois C (2003) The use of Enterobacter cloacae ATCC 43560 in the development of a two-phase partitioning bioreactor for the destruction of hexahydro-1,3,5-trinitro-1,3,5-s-triazine (RDX). J Biotechnol 100:65–75.Google Scholar
  159. Reddy G, Chandra SAM, Lish JW, Qualls CW Jr (2000) Toxicity of 2,4,6-trinitrotoluene in Hispid Cotton rats (Sigmodon hispidus): haematological, biochemical and pathological effects. Int J Toxicol 19:169–177.Google Scholar
  160. Renoux AY, Sarrazin M, Hawari J, Sunahara GI (2000) Transformation of 2,4,6-trinitrotoluene in soil in the presence of the earthworm Eisenia andrei. Environ Toxicol Chem 19:1473–1480.Google Scholar
  161. Rho D, Hodgson J, Thiboutot S, Ampleman G, Hawari J (2001) Transformation of 2,4,6-trinitrotoluene (TNT) by immobilized Phanerochaete chrysosporium under fed-batch and continuous TNT feeding conditions. Biotechnol Bioeng 73:271–281.Google Scholar
  162. Robidoux PY, Hawari J, Thiboutot S, Ampleman G, Sunahara GI (1999) Acute toxicity of 2,4,6-trinitrotoluene in earthworm (Eisenia andrei). Ecotoxicol Environ Saf 44:311–321.Google Scholar
  163. Robidoux PY, Svendsen C, Caumartin J, Hawari J, Ampleman G, Thiboutot S, Weeks JM, Sunahara GI (2000) Chronic toxicity of energetic compounds in soil determined using the earthworm (Eisenia andrei) reproduction test. Environ Toxicol Chem 19:1764–1773.Google Scholar
  164. Robidoux PY, Hawari J, Thiboutot S, Ampleman G, Sunahara GI (2001) Chronic toxicity of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) in soil determined using the earthworm (Eisenia andrei) reproduction test. Environ Pollut 111:283–292.Google Scholar
  165. Robidoux PY, Hawari J, Bardai G, Paquet L, Ampleman G, Thiboutot S, Sudahara GI (2002a) TNT, RDX, and HMX decrease earthworm (Eisenia andrei) life-cycle responses in a spiked natural forest soil. Arch Environ Contam Toxicol 43:379–388.Google Scholar
  166. Robidoux PY, Svendsen C, Sarrazin M, Hawari J, Thiboutot S, Ampleman G, Weeks JM, Sunahara GI (2002b) Evaluation of tissue and cellular biomarkers to assess 2,4,6-trinitrotoluene (TNT) exposure in earthworms: effects-based assessment in laboratory studies using Eisenia andrei. Biomarkers 7:306–321.Google Scholar
  167. Robidoux PY, Bardai G, Paquet L, Ampleman G, Thiboutot S, Hawari J, Sunahara GI (2003) Phytotoxicity of 2,4,6-trinitrotoluene (TNT) and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) in spiked artificial and natural forest soils. Arch Environ Contam Toxicol 44:198–209.Google Scholar
  168. Robidoux PY, Gong P, Sarrazin M, Bardai G, Paquet L, Hawari J, Dubois C, Sunahara GI (2004a) Toxicity assessment of contaminated soils from an antitank firing range. Ecotoxicol Environ Saf 58:300–313.Google Scholar
  169. Robidoux PY, Dubois C, Hawari J, Sunahara GI (2004b) Assessment of soil toxicity from an antitank firing range using Lumbricus terrestris and Eisenia andrei in mesocosms and laboratory studies. Ecotoxicology 13:603–614.Google Scholar
  170. Robidoux PY, Svendsen C, Sarrazin M, Thiboutot S, Ampleman G, Hawari J (2005) Assessment of a 2,4,6-trinitrotoluene-contaminated site using Aporrectodea rosea and Eisenia andrei in mesocosms. Arch Environ Contam Toxicol 48:56–67.Google Scholar
  171. Rocheleau S, Kuperman RG, Martel M, Paquet L, Bardai G, Wong S (2006) Phytotoxicity of nitroaromatic energetic compounds freshly amended or weathered and aged in sandy loam soil. Chemosphere 62:545–558.Google Scholar
  172. Rosen G, Lotufo GR (2005) Toxicity and fate of two munitions constituents in spiked sediment exposures with the marine amphipod Eohaustorius estuarius. Environ Toxicol Chem 24:2887–2897.Google Scholar
  173. Saka M (2004) Developmental toxicity of p,p’-dichlorodiphenyltrichloroethane, 2,4,6-trinitrotoluene, their metabolites, and benzo[a]pyrene in Xenopus laevis embryos. Environ Toxicol Chem 23:1065–1073.Google Scholar
  174. Samson J, Langlois E, Lei J, Piche Y, Chenevert R (1998) Removal of 2,4,6-trinitrotoluene and 2,4-dinitrotoluene by fungi (Ceratocystis coerulescens, Lentinus lepideus and Trichoderma harzianum). Biotechnol Lett 20:355–358.Google Scholar
  175. Saupe A, Garvens HJ, Heinze L (1998) Alkaline hydrolysis of TNT and TNT in soil followed by thermal treatment of the hydrolysates. Chemosphere 36:1725–1744.Google Scholar
  176. Schaefer M (2004) Assessing 2,4,6-trinitrotoluene (TNT)-contaminated soil using three different earthworm test methods. Ecotoxicol Environ Saf 57: 74–80.Google Scholar
  177. Schafer R, Achazi RK (1999) The toxicity of soil samples containing TNT and other ammunition derived compounds in the enchytraeid and collembolan-biotest. Environ Sci Pollut Res 6:213–219.Google Scholar
  178. Scheibner K, Hofrichter M, Herre A, Michels J, Fritsche W (1997) Screening for fungi intensively mineralising 2,4,6-trinitrotoluene. Appl Microbiol Biotechnol 47:452–457.Google Scholar
  179. Scheidemann P, Klunk A, Sens C, Werner D (1998) Species dependent uptake and tolerance of nitroaromatic compounds by higher plants. J Plant Physiol 152: 242–247.Google Scholar
  180. Seth-Smith HMB, Rosser SJ, Basran A, Travis ER, Dabbs ER, Nicklin S, Bruce NC (2002) Cloning, sequencing, and characterization of the hexahydro-1,3,5-trinitro-1,3,5-triazine degradation gene cluster from Rhodococcus rhodochrous. Appl Environ Microbiol 68:4764–4771.Google Scholar
  181. Sherburne LA, Shrout JD, Alvarez PJJ (2005) Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) degradation by Acetobacterium paludosum. Biodegradation 16: 539–547.Google Scholar
  182. Sheremata TW, Hawari J (2000) Mineralization of RDX by the white rot fungus Phanerochaete chrysosporium to carbon dioxide and nitrous oxide. Environ Sci Technol 34:3384–3388.Google Scholar
  183. Sheremata TW, Thiboutot S, Ampleman G, Paquet L, Halasz A, Hawari J (1999) Fate of 2,4,6-trinitrotoluene and its metabolites in natural and model soil systems. Environ Sci Technol 33:4002–4008.Google Scholar
  184. Sheremata TW, Halasz A, Paquet L, Thiboutot S, Ampleman G, Hawari J (2001) The fate of the cyclic nitramine explosive RDX in natural soil. Environ Sci Technol 35:1037–1040.Google Scholar
  185. Simini M, Wentsel RS, Checkai RT, Phillips CT, Chester NA, Major MA, Amos JC (1995) Evaluation of soil toxicity at Joliet Army Ammunition Plant. Environ Toxicol Chem 14:623–630.Google Scholar
  186. Simini M, Checkai RT, Kuperman RG, Phillips CT, Kolakowski JE, Kurnas CW, Sunahara GI (2003) Reproduction and survival of Eisenia fetida in a sandy loam soil amended with the nitro-heterocyclic explosives RDX and HMX. Pedobiologia 47:657–662.Google Scholar
  187. Singh J, Comfort SD, Hundal LS, Shea PJ (1998) Long-term RDX sorption and fate in soil. J Environ Qual 27:572–577.Google Scholar
  188. Singh J, Comfort SD, Shea PJ (1999) Iron-mediated remediation of RDX-contaminated water and soil under controlled Eh/pH. Environ Sci Technol 33:1488–1494.Google Scholar
  189. Smith JN, Pan XP, Gentles A, Smith EE, Cox SB, Cobb GE (2006) Reproductive effects of hexahydro-1,3,5-trinitroso-1,3,5-triazine in deer mice (Peromyscus maniculatus) during a controlled exposure study. Environ Toxicol Chem 25:446–451.Google Scholar
  190. Spadaro JT, Gold MH, Renganathan V (1992) Degradation of azo dyes by the lignin degrading fungus Phanerochaete chrysosporium. Appl Environ Microbiol 58: 2397–2401.Google Scholar
  191. Spanggord RJ, Mill T, Chou TW, Mabey WH, Smith JH, Lee S (1980a) Environmental fate studies on certain munition waste-water constituents. SRI Report LSU-7934. SRI International, Menlo Park, CA.Google Scholar
  192. Spanggord RJ, Mill T, Chou TW, Mabey WH, Smith JH, Lee S (1980b) Environmental fate studies on certain munition waste water constituents: Part 2. SRI Report LSU-7934. SRI International, Menlo Park, CA.Google Scholar
  193. Spanggord RJ, Mabey RW, Chow TW, Hayes DL, Alfernese PL, Tse DS, Mill T (1982) Environmental fate studies of HMX. SRI Project LSU-4412. SRI International, Menlo Park, CA.Google Scholar
  194. Spiker JK, Crawford DL, Crawford RL (1992) Influence of 2,4,6-trinitrotoluene (TNT) concentration on the degradation of TNT inexplosives-contaminated soil by the white rot fungus Phanerochaete chrysosporium. Appl Environ Microbiol 58:3199–3202.Google Scholar
  195. Stahl JD, Aust SD (1993) Metabolism and detoxification of TNT by Phanerochaete chrysosporium. Biochem Biophys Res Commun 192:477–482.Google Scholar
  196. Steevens JA, Duke BM, Lotufo GR, Bridges TS (2002) Toxicity of the explosives 2,4,6-trinitrotoluene, hexahydro-1,3,5-trinitro-1,3,5-triazine and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine in sediments to Chironomus tentans and Hyalella azteca: low-dose hormesis and high-dose mortality. Environ Toxicol Chem 21:1475–1482.Google Scholar
  197. Sublette KL, Ganapathy EV, Schwartz S (1992) Degradation of munitions waste by Phanerochaete chrysosporium. Appl Biochem Biotechnol 34/35:709–723.Google Scholar
  198. Sunahara GI, Dodard S, Sarrazin M, Paquet L, Ampleman G, Thiboutot S, Hawari J, Renoux AY (1998) Development of a soil extraction procedure for ecotoxicity characterization of energetic compounds. Ecotoxicol Environ Saf 39: 185–194.Google Scholar
  199. Sunahara GI, Dodard S, Sarrazin M, Paquet L, Hawari J, Greer CW (1999) Ecotoxicological characterization of energetic substances using a soil extraction procedure. Ecotoxicol Environ Saf 43:138–148.Google Scholar
  200. Tekoah Y, Abeliovich NA (1999) Participation of cytochrome p-450 in the biodegradation of RDX by a Rhodococcus strain 8–9 September 1999. Presented at the 2nd International Symposium on the Biodegradation of Nitroaromatic Compounds and Explosives, Leesburg, VA.Google Scholar
  201. Thompson KT, Crocker FH, Fredrickson HL (2005) Mineralization of the cyclic nitramine explosive hexahydro-1,3,5-trinitro-1,3,5-triazine by Gordonia and Williamsia spp. Appl Environ Microbiol 71:8265–8272.Google Scholar
  202. Thompson PL, Ramer LA, Schnoor JL (1998) Accumulation of TNT and its transformation products in the roots of poplar trees. Environ Sci Technol 32:975–980.Google Scholar
  203. Thompson PL, Ramer LA, Schnoor JL (1999) Hexahydro-1,3,5-trinitro-1,3,5-triazine translocation in poplar trees. Environ Toxicol Chem 18:279–284.Google Scholar
  204. Thorn KA, Thorne PG, Cox LG (2004) Alkaline hydrolysis/polymerization of 2,4,6-trinitrotoluene: characterization of products by C-13 and N-15 NMR. Environ Sci Technol 38:2224–2231.Google Scholar
  205. U.S. Department of Defense (1983) Airblast attenuation in entranceways and other typical components of Structures Small-Scale tests data report 1. Report ADA157 002. Cameron Station, Alexanderia, VA.Google Scholar
  206. Van Aken B, Agathos SN (2001) Biodegradation of nitro-substituted explosives by white-rot fungi: a mechanistic approach. Adv Appl Microbiol 48:1–77.Google Scholar
  207. Van Aken B, Skubisz K, Naveau H, Agathos SN (1997) Biodegradation of 2,4,6-trinitrotoluene by the white-rot basidiomycete Phlebia radiata. Biotechnol Lett 19:813–817.Google Scholar
  208. Van Aken B, Hofrichter M, Scheibner K, Hatakka AI, Naveau H, Agathos SN (1999) Transformation and mineralization of 2,4,6-trinitrotoluene (TNT) by manganese peroxidase from the white-rot basidiomycete Phlebia radiata. Biodegradation 10:83–91.Google Scholar
  209. Van Aken B, Yoon JM, Just CL, Schnoor JL (2004a) Metabolism and mineralization of hexahydro-1,3,5-trinitro-1,3,5-triazine inside poplar tissues (Populus deltoids × nigra DN-34). Environ Sci Technol 38:4572–4579.Google Scholar
  210. Van Aken B, Yoon JM, Schnoor JL (2004b) Biodegradation of nitro-substituted explosives 2,4,6-trinitrotoluene, hexahydro-1,3,5-trinitro-1,3,5-triazine, an octahydro-1,3,5,7-tetranitro-1,3,5-tetrazocine by a phytosymbiotic Methylobacterium sp. associated with poplar tissues (Populus deltoides × nigra DN334). Appl Environ Microbiol 70:508–517.Google Scholar
  211. Vanderberg LA, Perry JJ, Unkefer PJ (1995) Catabolism of 2,4,6-trinitrotoluene by Mycobacterium vaccae. Appl Microbiol Biotechnol 43:937–945.Google Scholar
  212. Vila M, Pascal-Lorber S, Rathahao E, Debrauwer L, Canlet C, Laurent F (2005) Metabolism of [C-14]-2,4,6-trinitrotoluene in tobacco cell suspension cultures. Environ Sci Technol 39:663–672.Google Scholar
  213. Vorbeck CV, Lenje H, Fischer P, Knackmuss H-J (1994) Identification of a hydride-Meisenheimer complex as a metabolite of 2,4,6-trinitrotoluene by Mycobacterium sp. J Bacteriol 176:932–934.Google Scholar
  214. Walsh ME, Jenkins TF, Schnitker PS, Elwell JW, Stutz MH (1993) Evaluation of analytical requirements associated with sites potentially contaminated with residues of high explosives. CRREL Report 93-5. U.S. Army Cold Regions Research and Engineering Laboratory, Hanover, NH.Google Scholar
  215. Walsh ME, Racine CH, Jenkins TF, Gelvin A, Ranney TA (2001) Sampling for explosives residues at Fort Greely, Alaska. ERDC/CRREL TR-01-15. U.S. Army Cold Regions Research and Engineering Laboratory, Hanover, NH.Google Scholar
  216. Walsh ME, Hewitt AD, Walsh MR, Jenkins TF, Stark J, Gelvin A, Douglas TA, Perron N, Lambert D, Bailey R, Myers K (2004) Range characterisation studies at Donnelly Training Area, Alaska: 2001 and 2002. Report ERDC/CRREL TR-04-3. U.S. Army Cold Regions Research and Engineering Laboratory, Hanover NH.Google Scholar
  217. Weber RWS, Ridderbusch DC, Anke H (2002) 2,4,6-Trinitrotoluene (TNT) tolerance and biotransformation potential of microfungi isolated from TNT-contaminated soil. Mycol Res 106:336–344.Google Scholar
  218. Weiss M, Geyer R, Gunther T, Kastner M (2004a) Fate and stability of C-14-labeled 2,4,6-trinitrotoluene in contaminated soil following microbial bioremediation processes. Environ Toxicol Chem 23:2049–2060.Google Scholar
  219. Weiss M, Geyer R, Russow R, Richnow HH, Kastner M (2004b) Fate and metabolism of N-15 2,4,6-trinitrotoluene in soil. Environ Toxicol Chem 23:1852–1860.Google Scholar
  220. Weston (1993) Composting demonstration for explosives-contaminated soils at the Umatilla Depot Activity, Hermiston, Oregon. U.S. Army Environmental Center, Aberdeen, MD.Google Scholar
  221. Xue SK, Iskandar IK, Selim HM (1995) Adsorption-desorption of 2,4,6-trinitrotoluene and hexahydro-1,3,5-trinitro-1,3,5-triazine in soils. Soil Sci 160:317–327.Google Scholar
  222. Yamamoto H, Morley MC, Speitel GE, Clausen J (2004) Fate and transport of high explosives in a sandy soil: Adsorption and desorption. Soil Sed Contam 13:459–477.Google Scholar
  223. Yin H, Wood TK, Smets BF (2005a) Reductive transformation of TNT by Escherichia coli resting cells: kinetic analysis. Appl Microbiol Biotechnol 69: 326–334.Google Scholar
  224. Yin H, Wood TK, Smets BF (2005b) Reductive transformation of TNT by Escherichia coli: pathway description. Appl Microbiol Biotechnol 67:397–404.Google Scholar
  225. Yinon J (1990) Toxicity and metabolism of explosives. CRC Press, Boca Raton, FL.Google Scholar
  226. Yoon JM, Oh BT, Just CL, Schnoor JL (2002) Uptake and leaching of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine by hybrid poplar trees. Environ Sci Technol 36:4649–4655.Google Scholar
  227. Young DM, Unkefer PJ, Ogden KL (1997a) Biotransformation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) by a prospective consortium and its most effective isolate Serratia marcescens. Biotechnol Bioeng 53:515–522.Google Scholar
  228. Young DM, Kitts CL, Unkefer PJ, Ogden KL (1997b) Biological breakdown of RDX in slurry phase reactors proceeds with multiple kinetically distinguishable paths. Biotechnol Bioeng 56:258–267.Google Scholar
  229. Zeng K, Hwang HM, Zhang Y, Cook S (2004) Assessing cytotoxicity of photosensitized transformation products of 2,4,6-trinitrotoluene (TNT) and atrazine with freshwater microbial assemblages. Environ Toxicol 19:490–496.Google Scholar
  230. Zhang CL, Hughes JB (2003) Biodegradation pathways of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) by Clostridium acetobutylicum cell-free extract. Chemosphere 50:665–671.Google Scholar
  231. Zhao HS, Paquet L, Halasz A, Manno D, Hawari M (2004) Metabolism of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine by Clostridium bifermentans strain HAW-1 and several other H-2-producing fermentative anaerobic bacteria. FEMS Microbiol Lett 237:65–72.Google Scholar
  232. Zhao JS, Halasz A, Paquet L, Beaulieu C, Hawari J (2002) Biodegradation of hexahydro-1,3,5-trinitro-1,3,5-triazine and its mononitroso derivative hexahydro-1-nitroso-3,5-dinitro-1,3,5-triazine by Klebsiella pneumoniae strain SCZ-1 isolated from an anaerobic sludge. Appl Environ Microbiol 68:5336–5341.Google Scholar
  233. Zhao JS, Paquet L, Halasz A, Hawari J (2003a) Metabolism of hexahydro-1,3,5-trinitro-1,3,5-triazine through initial reduction to hexahydro-1-nitroso-3,5-dinitro-1,3,5-triazine followed by denitration in Clostridium bifermentans HAW-1. Appl Microbiol Biotechnol 63:187–193.Google Scholar
  234. Zhao JS, Spain J, Hawari J (2003b) Phylogenetic and metabolic diversity of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX)-transforming bacteria in strictly anaerobic mixed cultures enriched on RDX as nitrogen source. FEMS Microbiol Ecol 46:189–196.Google Scholar
  235. Zhao JS, Greer CW, Thiboutot S, Ampleman G, Hawari J (2004a) Biodegradation of the nitramine explosives hexahydro-1,3,5-trinitro-1,3,5-triazine and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine in cold marine sediment under anaerobic and oligotrophic conditions. Can J Microbiol 50:91–96.Google Scholar
  236. Zhao JS, Spain J, Thiboutot S, Ampleman G, Greer C, Hawari J (2004b) Phylogeny of cyclic nitramine-degrading psychrophilic bacteria in marine sediment and their potential role in the natural attenuation of explosives. FEMS Microbiol Ecol 49:349–357.Google Scholar
  237. Zhao JS, Manno D, Beaulieu C, Paquet L, Hawari J (2005) Shewanella sediminis sp. nov., a novel Na+-requiring and hexahydro-1,3,5-trinitro-1,3,5-trinitro-degrading bacterium from marine sediment. Int J Syst Evol Microbiol 55:1511–1520.Google Scholar
  238. Zhao JS, Manno D, Leggiadro C, O’Neill D, Hawari J (2006) Shewanella halifaxensis sp. nov., a novel obligately respiratory and denitrifying psychrophile. Int J Syst Evol Microbiol 56:205–212.Google Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Albert L. Juhasz
    • 1
    • 2
  • Ravendra Naidu
    • 1
    • 2
  1. 1.Centre for Environmental Risk Assessment and RemediationUniversity of South AustraliaAustralia
  2. 2.The Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE)AdelaideAustralia

Personalised recommendations