Fluorescein Angiography: General Principles and Interpretation

  • Bernard R. Hurley
  • Carl D. Regillo

Since its first use as a diagnostic tool in the 1960s, fluorescein angiography has become an invaluable and increasingly sophisticated tool for studying, understanding, documenting, and treating ocular disease. The unique optical properties of the eye make the ocular fundus the only location in the human body where direct noninvasive monitoring of vascular flow is possible.1 During fluorescein angiography, a rapid sequence of serial photographs is taken after the administration of intravenous fluorescein to visualize and document choroidal and retinal blood flow. Beyond blood flow, fluorescein angiography provides information about the integrity of the blood—retinal barrier, the fine details of the retinal pigment epithelium (RPE), and a glimpse of associated systemic pathology.2 These properties have made fluorescein angiography one of the most useful office-based diagnostic tools in ophthalmology for the last 30 years.3 In fact, the advent of angiography can be considered to have ushered in a new era in the subspecialty of ophthalmology: vitreoretinal surgery.4

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Rechtman E, Harris A, Kumar R, et al. An update on retinal circulation assessment technologies. Curr Eye Res 2003;27(6): 329–343.PubMedCrossRefGoogle Scholar
  2. 2.
    Cavallerano AA. Ophthalmic fluorescein angiography. Optom Clin 1996;5(1):1–23.PubMedGoogle Scholar
  3. 3.
    Sinchai P. Office fluorescein angioscopy. Ann Ophthalmol 1977;9(2):177.PubMedGoogle Scholar
  4. 4.
    Yannuzzi LA, Ober MD, Slakter JS, et al. Ophthalmic fundus imaging: today and beyond. Am J Ophthalmol 2004;137(3): 511–524.PubMedCrossRefGoogle Scholar
  5. 5.
    Von Baeryer A. Uber ein neue Klasse van farbstoffen. Der Deutschen Chem Ges 1871;4:555.CrossRefGoogle Scholar
  6. 6.
    Anand R. Fluorescein angiography. Part 1. Technique and normal study. J Ophthalmic Nurs Technol 1989;8(2):48–52.PubMedGoogle Scholar
  7. 7.
    Ehrlich P. Uber provilirte fluoresceinzerscheinungen. Am Aug Dtsch Med Wochenschr 1882;8–21.CrossRefGoogle Scholar
  8. 8.
    Burke A. Die klinische physiologische und pathologie bedeuting der fluorescein im auge nach darrerching von-uranin. Klin Monatsbl Augenheilkd 1910;48:445–454.Google Scholar
  9. 9.
    MacLean AL, Maumenee AE. Hemangioma of the choroid. Am J Ophthalmol 1959;57:171–176.Google Scholar
  10. 10.
    Novotny HR, Alvis DL. A method of photographing fluorescein in the human retina. Circulation 1961;24:72–77.Google Scholar
  11. 11.
    Brancato R, Trabucchi G. Fluorescein and indocyanine green angiography in vascular chorioretinal diseases. Semin Ophthalmol 1998;13(4):189–198.PubMedCrossRefGoogle Scholar
  12. 12.
    Bloome MA. Fluorescein angiography: risks. Vision Res 1980;20(12):1083–1097.PubMedCrossRefGoogle Scholar
  13. 13.
    Ciardella AP, Prall FR, Borodoker N, Cunningham ET Jr. Imaging techniques for posterior uveitis. Curr Opin Ophthalmol 2004;15(6):519–530.PubMedCrossRefGoogle Scholar
  14. 14.
    Kelley JS. Fluorescein angiography: techniques and toxicity. Int Ophthalmol Clin 1977;17(2):25–33.PubMedCrossRefGoogle Scholar
  15. 15.
    Jennings BJ, Mathews DE. Adverse reactions during retinal fluorescein angiography. J Am Optom Assoc 1994;65(7): 465–471.PubMedGoogle Scholar
  16. 16.
    Yannuzzi LA, Rohrer KT, Tindel LJ, et al. Fluorescein angiography complication survey. Ophthalmology 1986;93(5): 611–617.PubMedGoogle Scholar
  17. 17.
    Halperin LS, Olk J, Soubrane G, Coscas G. Safety of fluorescein angiography during pregnancy. Am J Ophthalmol 1990;109:563–566.PubMedGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2009

Authors and Affiliations

  • Bernard R. Hurley
    • 1
  • Carl D. Regillo
    • 1
  1. 1.Retina Service, Wills Eye HospitalThomas Jefferson UniversityPhiladelphia

Personalised recommendations