Skip to main content

Non-coding Regulatory RNAs of the DNA Tumor Viruses

  • Chapter
  • First Online:
DNA Tumor Viruses

Abstract

Viral non-coding RNAs (ncRNAs) exist in various forms, many of which appear unique to a particular DNA tumor virus family. In contrast, virally encoded microRNAs (miRNAs) represent a strategy used by several DNA tumor virus families to tap into the same processing and effector machinery utilized by host-derived miRNAs. Whether encoded during latent or lytic infection, ncRNAs are often among the most highly expressed viral transcripts, implying that they have important functions in the viral life cycle. Viral ncRNAs have been shown to contribute to viral gene autoregulation, modification of the host cell apoptotic response, and enhance the translation of viral proteins. While our knowledge of the various viral ncRNAs continues to grow, there remain surprising gaps in our understanding of the functions of some viral ncRNAs, especially given their abundance and the fact that they were discovered decades ago. Here, we provide an overview of the current understanding of the regulatory ncRNAs encoded by the DNA tumor viruses, including the VA RNAs, EBERs, HSURs, PAN, and the recently discovered viral miRNAs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acheson, N.H. (1978). Polyoma virus giant RNAs contain tandem repeats of the nucleotide sequence of the entire viral genome. Proc Natl Acad Sci USA 75, 4754–4758.

    Article  PubMed  CAS  Google Scholar 

  • Ahuja, D., Saenz-Robles, M.T., and Pipas, J.M. (2005). SV40 large T antigen targets multiple cellular pathways to elicit cellular transformation. Oncogene 24, 7729–7745.

    Article  PubMed  CAS  Google Scholar 

  • Albrecht, J.C., and Fleckenstein, B. (1992). Nucleotide sequence of HSUR 6 and HSUR 7, two small RNAs of herpesvirus saimiri. Nucleic Acids Res 20, 1810.

    Article  PubMed  CAS  Google Scholar 

  • An, F.Q., Compitello, N., Horwitz, E., Sramkoski, M., Knudsen, E.S., and Renne, R. (2005). The latency-associated nuclear antigen of Kaposi's sarcoma-associated herpesvirus modulates cellular gene expression and protects lymphoid cells from p16 INK4A-induced cell cycle arrest. J Biol Chem 280, 3862–3874.

    Article  PubMed  CAS  Google Scholar 

  • Andersson, M.G., Haasnoot, P.C., Xu, N., Berenjian, S., Berkhout, B., and Akusjarvi, G. (2005). Suppression of RNA interference by adenovirus virus-associated RNA. J Virol 79, 9556–9565.

    Article  PubMed  CAS  Google Scholar 

  • Aparicio, O., Razquin, N., Zaratiegui, M., Narvaiza, I., and Fortes, P. (2006). Adenovirus virus-associated RNA is processed to functional interfering RNAs involved in virus production. J Virol 80, 1376–1384.

    Article  PubMed  CAS  Google Scholar 

  • Arrand, J.R., Young, L.S., and Tugwood, J.D. (1989). Two families of sequences in the small RNA-encoding region of Epstein-Barr virus (EBV) correlate with EBV types A and B. J Virol 63, 983–986.

    PubMed  CAS  Google Scholar 

  • Bakheet, T., Frevel, M., Williams, B.R., Greer, W., and Khabar, K.S. (2001). ARED: human AU-rich element-containing mRNA database reveals an unexpectedly diverse functional repertoire of encoded proteins. Nucleic Acids Res29, 246–254.

    Article  PubMed  CAS  Google Scholar 

  • Barletta, J.M., Kingma, D.W., Ling, Y., Charache, P., Mann, R.B., and Ambinder, R.F. (1993). Rapid in situ hybridization for the diagnosis of latent Epstein-Barr virus infection. Mol Cell Probes 7, 105–109.

    Article  PubMed  CAS  Google Scholar 

  • Bartel, D.P. (2004). MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281–297.

    Article  PubMed  CAS  Google Scholar 

  • Bass, B.L. (2002). RNA editing by adenosine deaminases that act on RNA. Annu Rev Biochem 71, 817–846.

    Article  PubMed  CAS  Google Scholar 

  • Bates, M.P., Jennings, S.R., Tanaka, Y., Tevethia, M.J., and Tevethia, S.S. (1988). Recognition of simian virus 40 T antigen synthesized during viral lytic cycle in monkey kidney cells expressing mouse H-2 Kb- and H-2Db-transfected genes by SV40-specific cytotoxic T lymphocytes leads to the abrogation of virus lytic cycle. Virology 162, 197–205.

    Article  PubMed  CAS  Google Scholar 

  • Bechtel, J., Grundhoff, A., and Ganem, D. (2005). RNAs in the virion of Kaposi's sarcoma-associated herpesvirus. J Virol 79, 10138–10146.

    Article  PubMed  CAS  Google Scholar 

  • Belaguli, N.S., Pater, M.M., and Pater, A. (1997). Identification and location of human papillomavirus type 16 antisense early promoter and characterisation of antisense RNA. J Med Virol 51, 344–354.

    Article  PubMed  CAS  Google Scholar 

  • Berk, A.J. (2005). Recent lessons in gene expression, cell cycle control, and cell biology from adenovirus. Oncogene 24, 7673–7685.

    Article  PubMed  CAS  Google Scholar 

  • Bhat, R.A., and Thimmappaya, B. (1983). Two small RNAs encoded by Epstein-Barr virus can functionally substitute for the virus-associated RNAs in the lytic growth of adenovirus 5. Proc Natl Acad Sci USA 80, 4789–4793.

    Article  PubMed  CAS  Google Scholar 

  • Bloom, D.C. (2004). HSV LAT and neuronal survival. Int Rev Immunol 23, 187–198.

    Article  PubMed  CAS  Google Scholar 

  • Bohnsack, M.T., Czaplinski, K., and Gorlich, D. (2004). Exportin 5 is a RanGTP-dependent dsRNA-binding protein that mediates nuclear export of pre-miRNAs. Rna 10, 185–191.

    Article  PubMed  CAS  Google Scholar 

  • Briani, F., Ghisotti, D., and Deho, G. (2000). Antisense RNA-dependent transcription termination sites that modulate lysogenic development of satellite phage P4. Mol Microbiol 36, 1124–1134.

    Article  PubMed  CAS  Google Scholar 

  • Brown, C.J., and Chow, J.C. (2003). Beyond sense: the role of antisense RNA in controlling Xist expression. Semin Cell Dev Biol 14, 341–347.

    Article  PubMed  CAS  Google Scholar 

  • Buck, A.H., Santoyo-Lopez, J., Robertson, K.A., Kumar, D.S., Reczko, M., and Ghazal, P. (2007). Discrete clusters of virus-encoded micrornas are associated with complementary strands of the genome and the 7.2-kilobase stable intron in murine cytomegalovirus. J Virol 81, 13761–13770.

    Article  PubMed  CAS  Google Scholar 

  • Burnside, J., Bernberg, E., Anderson, A., Lu, C., Meyers, B.C., Green, P.J., Jain, N., Isaacs, G., and Morgan, R.W. (2006). Marek's disease virus encodes MicroRNAs that map to meq and the latency-associated transcript. J Virol 80, 8778–8786.

    Article  PubMed  CAS  Google Scholar 

  • Butcher, S.E., and Brow, D.A. (2005). Towards understanding the catalytic core structure of the spliceosome. Biochem Soc Trans 33, 447–449.

    Article  PubMed  CAS  Google Scholar 

  • Cai, X., and Cullen, B.R. (2006). Transcriptional origin of Kaposi's sarcoma-associated herpesvirus microRNAs. J Virol 80, 2234–2242.

    Article  PubMed  CAS  Google Scholar 

  • Cai, X., Hagedorn, C.H., and Cullen, B.R. (2004). Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs. Rna 10, 1957–1966.

    Article  PubMed  CAS  Google Scholar 

  • Cai, X., Li, G., Laimins, L.A., and Cullen, B.R. (2006a). Human papillomavirus genotype 31 does not express detectable microRNA levels during latent or productive virus replication. J Virol 80, 10890–10893.

    Google Scholar 

  • Cai, X., Lu, S., Zhang, Z., Gonzalez, C.M., Damania, B., and Cullen, B.R. (2005). Kaposi's sarcoma-associated herpesvirus expresses an array of viral microRNAs in latently infected cells. Proc Natl Acad Sci USA 102, 5570–5575. Epub 2005 Mar 5530.

    Article  PubMed  CAS  Google Scholar 

  • Cai, X., Schafer, A., Lu, S., Bilello, J.P., Desrosiers, R.C., Edwards, R., Raab-Traub, N., and Cullen, B.R. (2006b). Epstein-Barr virus microRNAs are evolutionarily conserved and differentially expressed. PLoS Pathog 2, e23.

    Google Scholar 

  • Cantalupo, P., Doering, A., Sullivan, C.S., Pal, A., Peden, K.W., Lewis, A.M., and Pipas, J.M. (2005). Complete nucleotide sequence of polyomavirus SA12. J Virol 79, 13094–13104.

    Article  PubMed  CAS  Google Scholar 

  • Carninci, P., Kasukawa, T., Katayama, S., Gough, J., Frith, M.C., Maeda, N., Oyama, R., Ravasi, T., Lenhard, B., Wells, C., et al. (2005). The transcriptional landscape of the mammalian genome. Science 309, 1559–1563.

    Article  PubMed  CAS  Google Scholar 

  • Chen, C.Y., and Shyu, A.B. (1995). AU-rich elements: characterization and importance in mRNA degradation. Trends Biochem Sci 20, 465–470.

    Article  PubMed  CAS  Google Scholar 

  • Chen, H.L., Lung, M.M., Sham, J.S., Choy, D.T., Griffin, B.E., and Ng, M.H. (1992). Transcription of BamHI-A region of the EBV genome in NPC tissues and B cells. Virology 191, 193–201.

    Article  PubMed  CAS  Google Scholar 

  • Clarke, P.A., Schwemmle, M., Schickinger, J., Hilse, K., and Clemens, M.J. (1991). Binding of Epstein-Barr virus small RNA EBER-1 to the double-stranded RNA-activated protein kinase DAI. Nucleic Acids Res 19, 243–248.

    Article  PubMed  CAS  Google Scholar 

  • Clemens, M.J. (2006). Epstein-Barr virus: inhibition of apoptosis as a mechanism of cell transformation. Int J Biochem Cell Biol 38, 164–169.

    Article  PubMed  CAS  Google Scholar 

  • Cole, C.N. (1996). Polyomaviridae: the viruses and their replication. In Fields Virology, Third Edition, B.N. Fields, D.M. Knipe, and P.M. Howley, eds. (Philadelphia, Lippincott-Raven Publishers), pp.1997–2043.

    Google Scholar 

  • Conrad, N.K., Mili, S., Marshall, E.L., Shu, M.D., and Steitz, J.A. (2006). Identification of a rapid mammalian deadenylation-dependent decay pathway and its inhibition by a viral RNA element. Mol Cell 24, 943–953.

    Article  PubMed  CAS  Google Scholar 

  • Conrad, N.K., and Steitz, J.A. (2005). A Kaposi's sarcoma virus RNA element that increases the nuclear abundance of intronless transcripts. Embo J 24, 1831–1841.

    Article  PubMed  CAS  Google Scholar 

  • Cook, H.L., Lytle, J.R., Mischo, H.E., Li, M.J., Rossi, J.J., Silva, D.P., Desrosiers, R.C., and Steitz, J.A. (2005). Small nuclear RNAs encoded by Herpesvirus saimiri upregulate the expression of genes linked to T cell activation in virally transformed T cells. Curr Biol 15, 974–979.

    Article  PubMed  CAS  Google Scholar 

  • Cook, H.L., Mischo, H.E., and Steitz, J.A. (2004). The Herpesvirus saimiri small nuclear RNAs recruit AU-rich element-binding proteins but do not alter host AU-rich element-containing mRNA levels in virally transformed T cells. Mol Cell Biol 24, 4522–4533.

    Article  PubMed  CAS  Google Scholar 

  • Cui, C., Griffiths, A., Li, G., Silva, L.M., Kramer, M.F., Gaasterland, T., Wang, X.J., and Coen, D.M. (2006). Prediction and identification of herpes simplex virus 1-encoded microRNAs. J Virol 80, 5499–5508.

    Article  PubMed  CAS  Google Scholar 

  • Cullen, B.R. (2004). Transcription and processing of human microRNA precursors. Mol Cell 16, 861–865.

    Article  PubMed  CAS  Google Scholar 

  • Cullen, B.R. (2006). Induction of stable RNA interference in mammalian cells. Gene Ther 13, 503–508.

    Article  PubMed  CAS  Google Scholar 

  • DeCerbo, J., and Carmichael, G.G. (2005). Retention and repression: fates of hyperedited RNAs in the nucleus. Curr Opin Cell Biol 17, 302–308.

    Article  PubMed  CAS  Google Scholar 

  • Desrosiers, R.C., Silva, D.P., Waldron, L.M., and Letvin, N.L. (1986). Nononcogenic deletion mutants of herpesvirus saimiri are defective for in vitro immortalization. J Virol 57, 701–705.

    PubMed  CAS  Google Scholar 

  • Dittmer, D., Lagunoff, M., Renne, R., Staskus, K., Haase, A., and Ganem, D. (1998). A cluster of latently expressed genes in Kaposi's sarcoma-associated herpesvirus. J Virol 72, 8309–8315.

    PubMed  CAS  Google Scholar 

  • Doench, J.G., Petersen, C.P., and Sharp, P.A. (2003). siRNAs can function as miRNAs. Genes Dev 17, 438–442.

    Article  PubMed  CAS  Google Scholar 

  • Dolken, L., Perot, J., Cognat, V., Alioua, A., John, M., Soutschek, J., Ruzsics, Z., Koszinowski, U., Voinnet, O., and Pfeffer, S. (2007). Mouse cytomegalovirus microRNAs dominate the cellular small RNA profile during lytic infection and show features of posttranscriptional regulation. J Virol 81, 13771–13782.

    Article  PubMed  CAS  Google Scholar 

  • Doniger, J., Muralidhar, S., and Rosenthal, L.J. (1999). Human cytomegalovirus and human herpesvirus 6 genes that transform and transactivate. Clin Microbiol Rev 12, 367–382.

    PubMed  CAS  Google Scholar 

  • Dunn, W., Trang, P., Zhong, Q., Yang, E., van Belle, C., and Liu, F. (2005). Human cytomegalovirus expresses novel microRNAs during productive viral infection. Cell Microbiol 7, 1684–1695.

    Article  PubMed  CAS  Google Scholar 

  • Ensser, A., Pfinder, A., Muller-Fleckenstein, I., and Fleckenstein, B. (1999). The URNA genes of herpesvirus saimiri (strain C488) are dispensable for transformation of human T cells in vitro. J Virol 73, 10551–10555.

    PubMed  CAS  Google Scholar 

  • Finlay, B.B., and McFadden, G. (2006). Anti-immunology: evasion of the host immune system by bacterial and viral pathogens. Cell 124, 767–782.

    Article  PubMed  CAS  Google Scholar 

  • Flemington, E.K. (2001). Herpesvirus lytic replication and the cell cycle: arresting new developments. J Virol 75, 4475–4481.

    Article  PubMed  CAS  Google Scholar 

  • Fok, V., Friend, K., and Steitz, J.A. (2006). Epstein-Barr virus noncoding RNAs are confined to the nucleus, whereas their partner, the human La protein, undergoes nucleocytoplasmic shuttling. J Cell Biol 173, 319–325.

    Article  PubMed  CAS  Google Scholar 

  • Fragnet, L., Blasco, M.A., Klapper, W., and Rasschaert, D. (2003). The RNA subunit of telomerase is encoded by Marek's disease virus. J Virol 77, 5985–5996.

    Article  PubMed  CAS  Google Scholar 

  • Furnari, F.B., Adams, M.D., and Pagano, J.S. (1993). Unconventional processing of the 3' termini of the Epstein-Barr virus DNA polymerase mRNA. Proc Natl Acad Sci USA 90, 378–382.

    Article  PubMed  CAS  Google Scholar 

  • Garcia, M.A., Gil, J., Ventoso, I., Guerra, S., Domingo, E., Rivas, C., and Esteban, M. (2006). Impact of protein kinase PKR in cell biology: from antiviral to antiproliferative action. Microbiol Mol Biol Rev 70, 1032–1060.

    Article  PubMed  CAS  Google Scholar 

  • Gerner, C.S., Dolan, A., and McGeoch, D.J. (2004). Phylogenetic relationships in the Lymphocryptovirus genus of the Gammaherpesvirinae. Virus Res 99, 187–192.

    Article  PubMed  CAS  Google Scholar 

  • Gil, J., Alcami, J., and Esteban, M. (1999). Induction of apoptosis by double-stranded-RNA-dependent protein kinase (PKR) involves the alpha subunit of eukaryotic translation initiation factor 2 and NF-kappaB. Mol Cell Biol 19, 4653–4663.

    PubMed  CAS  Google Scholar 

  • Gil, J., Garcia, M.A., Gomez-Puertas, P., Guerra, S., Rullas, J., Nakano, H., Alcami, J., and Esteban, M. (2004). TRAF family proteins link PKR with NF-kappa B activation. Mol Cell Biol 24, 4502–4512.

    Article  PubMed  CAS  Google Scholar 

  • Gilligan, K., Sato, H., Rajadurai, P., Busson, P., Young, L., Rickinson, A., Tursz, T., and Raab-Traub, N. (1990). Novel transcription from the Epstein-Barr virus terminal EcoRI fragment, DIJhet, in a nasopharyngeal carcinoma. J Virol 64, 4948–4956.

    PubMed  CAS  Google Scholar 

  • Glaunsinger, B.A., and Ganem, D.E. (2006). Messenger RNA turnover and its regulation in herpesviral infection. Adv Virus Res 66, 337–394.

    Article  PubMed  CAS  Google Scholar 

  • Glickman, J.N., Howe, J.G., and Steitz, J.A. (1988). Structural analyses of EBER1 and EBER2 ribonucleoprotein particles present in Epstein-Barr virus-infected cells. J Virol 62, 902–911.

    PubMed  CAS  Google Scholar 

  • Gottwein, E., Mukherjee, N., Sachse, C., Frenzel, C., Majoros, W.H., Chi, J.T., Braich, R., Manoharan, M., Soutschek, J., Ohler, U., et al. (2007). A viral microRNA functions as an orthologue of cellular miR-155. Nature 450, 1096–1099.

    Article  PubMed  CAS  Google Scholar 

  • Grey, F., Antoniewicz, A., Allen, E., Saugstad, J., McShea, A., Carrington, J.C., and Nelson, J. (2005). Identification and characterization of human cytomegalovirus-encoded microRNAs. J Virol 79, 12095–12099.

    Article  PubMed  CAS  Google Scholar 

  • Grey, F., Meyers, H., White, E.A., Spector, D.H., and Nelson, J. (2007). A human cytomegalovirus-encoded microRNA regulates expression of multiple viral genes involved in replication. PLoS Pathog 3, e163.

    Article  PubMed  CAS  Google Scholar 

  • Grundhoff, A., Sullivan, C.S., and Ganem, D. (2006). A combined computational and microarray-based approach identifies novel microRNAs encoded by human gamma-herpesviruses. Rna 12, 733–750. Epub 2006 Mar 2015.

    Article  PubMed  CAS  Google Scholar 

  • Gupta, A., Gartner, J.J., Sethupathy, P., Hatzigeorgiou, A.G., and Fraser, N.W. (2006). Anti-apoptotic function of a microRNA encoded by the HSV-1 latency-associated transcript. Nature 442, 82–85.

    PubMed  CAS  Google Scholar 

  • Gwack, Y., Hwang, S., Byun, H., Lim, C., Kim, J.W., Choi, E.J., and Choe, J. (2001). Kaposi's sarcoma-associated herpesvirus open reading frame 50 represses p53-induced transcriptional activity and apoptosis. J Virol 75, 6245–6248.

    Article  PubMed  CAS  Google Scholar 

  • Gwizdek, C., Bertrand, E., Dargemont, C., Lefebvre, J.C., Blanchard, J.M., Singer, R.H., and Doglio, A. (2001). Terminal minihelix, a novel RNA motif that directs polymerase III transcripts to the cell cytoplasm. Terminal minihelix and RNA export. J Biol Chem 276, 25910–25918.

    Article  PubMed  CAS  Google Scholar 

  • Heinrich, J., Velleman, M., and Schuster, H. (1995). The tripartite immunity system of phages P1 and P7. FEMS Microbiol Rev 17, 121–126.

    Article  PubMed  CAS  Google Scholar 

  • Higgins, G.D., Uzelin, D.M., Phillips, G.E., and Burrell, C.J. (1991). Presence and distribution of human papillomavirus sense and antisense RNA transcripts in genital cancers. J Gen Virol 72 ( Pt 4), 885–895.

    Article  PubMed  CAS  Google Scholar 

  • Hirose, T., Ideue, T., Nagai, M., Hagiwara, M., Shu, M.D., and Steitz, J.A. (2006). A spliceosomal intron binding protein, IBP160, links position-dependent assembly of intron-encoded box C/D snoRNP to pre-mRNA splicing. Mol Cell 23, 673–684.

    Article  PubMed  CAS  Google Scholar 

  • Howe, J.G., and Steitz, J.A. (1986). Localization of Epstein-Barr virus-encoded small RNAs by in situ hybridization. Proc Natl Acad Sci USA 83, 9006–9010.

    Article  PubMed  CAS  Google Scholar 

  • Huttenhofer, A., Schattner, P., and Polacek, N. (2005). Non-coding RNAs: hope or hype? Trends Genet 21, 289–297.

    Article  PubMed  CAS  Google Scholar 

  • Hutvagner, G., and Zamore, P.D. (2002). A microRNA in a multiple-turnover RNAi enzyme complex. Science 297, 2056–2060.

    Article  PubMed  CAS  Google Scholar 

  • Jones, C. (2003). Herpes simplex virus type 1 and bovine herpesvirus 1 latency. Clin Microbiol Rev 16, 79–95.

    Article  PubMed  CAS  Google Scholar 

  • Katze, M.G., DeCorato, D., Safer, B., Galabru, J., and Hovanessian, A.G. (1987). Adenovirus VAI RNA complexes with the 68 000 Mr protein kinase to regulate its autophosphorylation and activity. Embo J 6, 689–697.

    PubMed  CAS  Google Scholar 

  • Kent, J.R., Kang, W., Miller, C.G., and Fraser, N.W. (2003). Herpes simplex virus latency-associated transcript gene function. J Neurovirol 9, 285–290.

    PubMed  CAS  Google Scholar 

  • Khan, G., Coates, P.J., Kangro, H.O., and Slavin, G. (1992). Epstein Barr virus (EBV) encoded small RNAs: targets for detection by in situ hybridisation with oligonucleotide probes. J Clin Pathol 45, 616–620.

    Article  PubMed  CAS  Google Scholar 

  • Kieff, E., and Rickinson, A.B. (2001). Epstein-Barr Virus and its Replication (Philadelphia, Lippincott, Williams, and Wilkins).

    Google Scholar 

  • Kirchhoff, S., Koromilas, A.E., Schaper, F., Grashoff, M., Sonenberg, N., and Hauser, H. (1995). IRF-1 induced cell growth inhibition and interferon induction requires the activity of the protein kinase PKR. Oncogene 11, 439–445.

    PubMed  CAS  Google Scholar 

  • Kulesza, C.A., and Shenk, T. (2004). Human cytomegalovirus 5-kilobase immediate-early RNA is a stable intron. J Virol 78, 13182–13189.

    Article  PubMed  CAS  Google Scholar 

  • Kulesza, C.A., and Shenk, T. (2006). Murine cytomegalovirus encodes a stable intron that facilitates persistent replication in the mouse. Proc Natl Acad Sci USA 103, 18302–18307.

    Article  PubMed  CAS  Google Scholar 

  • Kumar, A., Yang, Y.L., Flati, V., Der, S., Kadereit, S., Deb, A., Haque, J., Reis, L., Weissmann, C., and Williams, B.R. (1997). Deficient cytokine signaling in mouse embryo fibroblasts with a targeted deletion in the PKR gene: role of IRF-1 and NF-kappaB. Embo J 16, 406–416.

    Article  PubMed  CAS  Google Scholar 

  • Kumar, M., and Carmichael, G.G. (1997). Nuclear antisense RNA induces extensive adenosine modifications and nuclear retention of target transcripts. Proc Natl Acad Sci USA 94, 3542–3547.

    Article  PubMed  CAS  Google Scholar 

  • Kumar, M., and Carmichael, G.G. (1998). Antisense RNA: function and fate of duplex RNA in cells of higher eukaryotes. Microbiol Mol Biol Rev 62, 1415–1434.

    PubMed  CAS  Google Scholar 

  • Kwek, K.Y., Murphy, S., Furger, A., Thomas, B., O'Gorman, W., Kimura, H., Proudfoot, N.J., and Akoulitchev, A. (2002). U1 snRNA associates with TFIIH and regulates transcriptional initiation. Nat Struct Biol 9, 800–805.

    PubMed  CAS  Google Scholar 

  • Laing, K.G., Elia, A., Jeffrey, I., Matys, V., Tilleray, V.J., Souberbielle, B., and Clemens, M.J. (2002). In vivo effects of the Epstein-Barr virus small RNA EBER-1 on protein synthesis and cell growth regulation. Virology 297, 253–269.

    Article  PubMed  CAS  Google Scholar 

  • Langland, J.O., Cameron, J.M., Heck, M.C., Jancovich, J.K., and Jacobs, B.L. (2006). Inhibition of PKR by RNA and DNA viruses. Virus Res 119, 100–110.

    Article  PubMed  CAS  Google Scholar 

  • Lee, S.I., Murthy, S.C., Trimble, J.J., Desrosiers, R.C., and Steitz, J.A. (1988). Four novel U RNAs are encoded by a herpesvirus. Cell 54, 599–607.

    Article  PubMed  CAS  Google Scholar 

  • Lee, S.I., and Steitz, J.A. (1990). Herpesvirus saimiri U RNAs are expressed and assembled into ribonucleoprotein particles in the absence of other viral genes. J Virol 64, 3905–3915.

    PubMed  CAS  Google Scholar 

  • Lee, Y., Kim, M., Han, J., Yeom, K.H., Lee, S., Baek, S.H., and Kim, V.N. (2004). MicroRNA genes are transcribed by RNA polymerase II. Embo J 23, 4051–4060.

    Article  PubMed  CAS  Google Scholar 

  • Lerner, M.R., Andrews, N.C., Miller, G., and Steitz, J.A. (1981). Two small RNAs encoded by Epstein-Barr virus and complexed with protein are precipitated by antibodies from patients with systemic lupus erythematosus. Proc Natl Acad Sci USA 78, 805–809.

    Article  PubMed  CAS  Google Scholar 

  • Lin, J., and Cullen, B.R. (2007). Manuscript submitted.

    Google Scholar 

  • Lo, A.K., To, K.F., Lo, K.W., Lung, R.W., Hui, J.W., Liao, G., and Hayward, S.D. (2007). Modulation of LMP1 protein expression by EBV-encoded microRNAs. Proc Natl Acad Sci USA 104, 16164–16169.

    Article  PubMed  CAS  Google Scholar 

  • Lodoen, M.B., and Lanier, L.L. (2006). Natural killer cells as an initial defense against pathogens. Curr Opin Immunol 18, 391–398.

    Article  PubMed  CAS  Google Scholar 

  • Lu, S., and Cullen, B.R. (2004). Adenovirus VA1 noncoding RNA can inhibit small interfering RNA and MicroRNA biogenesis. J Virol 78, 12868–12876.

    Article  PubMed  CAS  Google Scholar 

  • Lukac, D.M., Kirshner, J.R., and Ganem, D. (1999). Transcriptional activation by the product of open reading frame 50 of Kaposi's sarcoma-associated herpesvirus is required for lytic viral reactivation in B cells. J Virol 73, 9348–9361.

    PubMed  CAS  Google Scholar 

  • Lukac, D.M., Renne, R., Kirshner, J.R., and Ganem, D. (1998). Reactivation of Kaposi's sarcoma-associated herpesvirus infection from latency by expression of the ORF 50 transactivator, a homolog of the EBV R protein. Virology 252, 304–312.

    Article  PubMed  CAS  Google Scholar 

  • Lund, E., Guttinger, S., Calado, A., Dahlberg, J.E., and Kutay, U. (2004). Nuclear export of microRNA precursors. Science 303, 95–98. Epub 2003 Nov 2020.

    Article  PubMed  CAS  Google Scholar 

  • Luther, H.P. (2005). Role of endogenous antisense RNA in cardiac gene regulation. J Mol Med 83, 26–32.

    Article  PubMed  CAS  Google Scholar 

  • Luther, H.P., Morwinski, R., Wallukat, G., Haase, H., and Morano, I. (1997). Expression of sense and naturally occurring antisense mRNA of myosin heavy chain in rat heart tissue and cultivated cardiomyocytes. J Mol Cell Cardiol 29, 27–35.

    Article  PubMed  CAS  Google Scholar 

  • Ma, Y., and Mathews, M.B. (1996). Structure, function, and evolution of adenovirus-associated RNA: a phylogenetic approach. J Virol 70, 5083–5099.

    PubMed  CAS  Google Scholar 

  • Macrae, A.I., Usherwood, E.J., Husain, S.M., Flano, E., Kim, I.J., Woodland, D.L., Nash, A.A., Blackman, M.A., Sample, J.T., and Stewart, J.P. (2003). Murid herpesvirus 4 strain 68 M2 protein is a B-cell-associated antigen important for latency but not lymphocytosis. J Virol 77, 9700–9709.

    Article  PubMed  CAS  Google Scholar 

  • Maeda, N., Kasukawa, T., Oyama, R., Gough, J., Frith, M., Engstrom, P.G., Lenhard, B., Aturaliya, R.N., Batalov, S., Beisel, K.W., et al. (2006). Transcript annotation in FANTOM3: mouse gene catalog based on physical cDNAs. The transcriptional landscape of the mammalian genome. PLoS Genet 2, e62.

    Article  PubMed  CAS  Google Scholar 

  • Matera, A.G., and Shpargel, K.B. (2006). Pumping RNA: nuclear bodybuilding along the RNP pipeline. Curr Opin Cell Biol 18, 317–324.

    Article  PubMed  CAS  Google Scholar 

  • Mathews, M.B., and Shenk, T. (1991). Adenovirus virus-associated RNA and translation control. J Virol 65, 5657–5662.

    PubMed  CAS  Google Scholar 

  • Mattick, J.S., and Makunin, I.V. (2006). Non-coding RNA. Hum Mol Genet 15 Spec No 1, R17–29.

    Article  PubMed  CAS  Google Scholar 

  • McCormick, C., and Ganem, D. (2005). The kaposin B protein of KSHV activates the p38/MK2 pathway and stabilizes cytokine mRNAs. Science 307, 739–741.

    Article  PubMed  CAS  Google Scholar 

  • Mellits, K.H., Kostura, M., and Mathews, M.B. (1990). Interaction of adenovirus VA RNAl with the protein kinase DAI: nonequivalence of binding and function. Cell 61, 843–852.

    Article  PubMed  CAS  Google Scholar 

  • Moore, P.S., and Chang, Y. (2003). Kaposi's sarcoma-associated herpesvirus immunoevasion and tumorigenesis: two sides of the same coin? Annu Rev Microbiol 57, 609–639.

    Article  PubMed  CAS  Google Scholar 

  • Moser, J.M., and Lukacher, A.E. (2001). Immunity to polyoma virus infection and tumorigenesis. Viral Immunol 14, 199–216.

    Article  PubMed  CAS  Google Scholar 

  • Murthy, S., Kamine, J., and Desrosiers, R.C. (1986). Viral-encoded small RNAs in herpes virus saimiri induced tumors. Embo J 5, 1625–1632.

    PubMed  CAS  Google Scholar 

  • Murthy, S.C., Trimble, J.J., and Desrosiers, R.C. (1989). Deletion mutants of herpesvirus saimiri define an open reading frame necessary for transformation. J Virol 63, 3307–3314.

    PubMed  CAS  Google Scholar 

  • Myer, V.E., Lee, S.I., and Steitz, J.A. (1992). Viral small nuclear ribonucleoproteins bind a protein implicated in messenger RNA destabilization. Proc Natl Acad Sci USA 89, 1296–1300.

    Article  PubMed  CAS  Google Scholar 

  • Nair, V., and Zavolan, M. (2006). Virus-encoded microRNAs: novel regulators of gene expression. Trends Microbiol 14, 169–175.

    Article  PubMed  CAS  Google Scholar 

  • Nanbo, A., Yoshiyama, H., and Takada, K. (2005). Epstein-Barr virus-encoded poly(A)- RNA confers resistance to apoptosis mediated through Fas by blocking the PKR pathway in human epithelial intestine 407 cells. J Virol 79, 12280–12285.

    Article  PubMed  CAS  Google Scholar 

  • Omoto, S., and Fujii, Y.R. (2005). Regulation of human immunodeficiency virus 1 transcription by nef microRNA. J Gen Virol 86, 751–755.

    Article  PubMed  CAS  Google Scholar 

  • Omoto, S., Ito, M., Tsutsumi, Y., Ichikawa, Y., Okuyama, H., Brisibe, E.A., Saksena, N.K., and Fujii, Y.R. (2004). HIV-1 nef suppression by virally encoded microRNA. Retrovirology 1, 44.

    Article  PubMed  CAS  Google Scholar 

  • Pfeffer, S., Sewer, A., Lagos-Quintana, M., Sheridan, R., Sander, C., Grasser, F.A., van Dyk, L.F., Ho, C.K., Shuman, S., Chien, M., et al. (2005). Identification of microRNAs of the herpesvirus family. Nat Methods 2, 269–276. Epub 2005 Feb 2016.

    Article  PubMed  CAS  Google Scholar 

  • Pfeffer, S., Zavolan, M., Grasser, F.A., Chien, M., Russo, J.J., Ju, J., John, B., Enright, A.J., Marks, D., Sander, C., et al. (2004). Identification of virus-encoded microRNAs. Science 304, 734–736.

    Article  PubMed  CAS  Google Scholar 

  • Pipas, J.M. (1992). Common and unique features of T antigens encoded by the polyomavirus group. J Virol 66, 3979–3985.

    PubMed  CAS  Google Scholar 

  • Plath, K., Mlynarczyk-Evans, S., Nusinow, D.A., and Panning, B. (2002). Xist RNA and the mechanism of X chromosome inactivation. Annu Rev Genet 36, 233–278.

    Article  PubMed  CAS  Google Scholar 

  • Prang, N., Wolf, H., and Schwarzmann, F. (1999). Latency of Epstein-Barr virus is stabilized by antisense-mediated control of the viral immediate-early gene BZLF-1. J Med Virol 59, 512–519.

    Article  PubMed  CAS  Google Scholar 

  • Reeves, M.B., Davies, A.A., McSharry, B.P., Wilkinson, G.W., and Sinclair, J.H. (2007). Complex I binding by a virally encoded RNA regulates mitochondria-induced cell death. Science 316, 1345–1348.

    Article  PubMed  CAS  Google Scholar 

  • Rivailler, P., Carville, A., Kaur, A., Rao, P., Quink, C., Kutok, J.L., Westmoreland, S., Klumpp, S., Simon, M., Aster, J.C., et al. (2004). Experimental rhesus lymphocryptovirus infection in immunosuppressed macaques: an animal model for Epstein-Barr virus pathogenesis in the immunosuppressed host. Blood 104, 1482–1489.

    Article  PubMed  CAS  Google Scholar 

  • Rosa, M.D., Gottlieb, E., Lerner, M.R., and Steitz, J.A. (1981). Striking similarities are exhibited by two small Epstein-Barr virus-encoded ribonucleic acids and the adenovirus-associated ribonucleic acids VAI and VAII. Mol Cell Biol 1, 785–796.

    PubMed  CAS  Google Scholar 

  • Rossignol, F., de Laplanche, E., Mounier, R., Bonnefont, J., Cayre, A., Godinot, C., Simonnet, H., and Clottes, E. (2004). Natural antisense transcripts of HIF-1alpha are conserved in rodents. Gene 339, 121–130.

    Article  PubMed  CAS  Google Scholar 

  • Rossignol, F., Vache, C., and Clottes, E. (2002). Natural antisense transcripts of hypoxia-inducible factor 1alpha are detected in different normal and tumour human tissues. Gene 299, 135–140.

    Article  PubMed  CAS  Google Scholar 

  • Ruf, I.K., Lackey, K.A., Warudkar, S., and Sample, J.T. (2005). Protection from interferon-induced apoptosis by Epstein-Barr virus small RNAs is not mediated by inhibition of PKR. J Virol 79, 14562–14569.

    Article  PubMed  CAS  Google Scholar 

  • Sadler, R., Wu, L., Forghani, B., Renne, R., Zhong, W., Herndier, B., and Ganem, D. (1999). A complex translational program generates multiple novel proteins from the latently expressed kaposin (K12) locus of Kaposi's sarcoma-associated herpesvirus. J Virol 73, 5722–5730.

    PubMed  CAS  Google Scholar 

  • Samols, M.A., Hu, J., Skalsky, R.L., and Renne, R. (2005). Cloning and identification of a microRNA cluster within the latency-associated region of Kaposi's sarcoma-associated herpesvirus. J Virol 79, 9301–9305.

    Article  PubMed  CAS  Google Scholar 

  • Samols, M.A., Skalsky, R.L., Maldonado, A.M., Riva, A., Lopez, M.C., Baker, H.V., and Renne, R. (2007). Identification of cellular genes targeted by KSHV-encoded microRNAs. PLoS Pathog 3, e65.

    Article  PubMed  CAS  Google Scholar 

  • Sano, M., Kato, Y., and Taira, K. (2006). Sequence-specific interference by small RNAs derived from adenovirus VAI RNA. FEBS Lett 580, 1553–1564.

    Article  PubMed  CAS  Google Scholar 

  • Sarid, R., Flore, O., Bohenzky, R.A., Chang, Y., and Moore, P.S. (1998). Transcription mapping of the Kaposi's sarcoma-associated herpesvirus (human herpesvirus 8) genome in a body cavity-based lymphoma cell line (BC-1). J Virol 72, 1005–1012.

    PubMed  CAS  Google Scholar 

  • Saveliev, A., Zhu, F., and Yuan, Y. (2002). Transcription mapping and expression patterns of genes in the major immediate-early region of Kaposi's sarcoma-associated herpesvirus. Virology 299, 301–314.

    Article  PubMed  CAS  Google Scholar 

  • Schafer, A., Cai, X., Bilello, J.P., Desrosiers, R.C., and Cullen, B.R. (2007). Cloning and analysis of microRNAs encoded by the primate gamma-herpesvirus rhesus monkey rhadinovirus. Virology 364, 21–27.

    Article  PubMed  CAS  Google Scholar 

  • Schneider, R.J., Weinberger, C., and Shenk, T. (1984). Adenovirus VAI RNA facilitates the initiation of translation in virus-infected cells. Cell 37, 291–298.

    Article  PubMed  CAS  Google Scholar 

  • Sharp, T.V., Schwemmle, M., Jeffrey, I., Laing, K., Mellor, H., Proud, C.G., Hilse, K., and Clemens, M.J. (1993). Comparative analysis of the regulation of the interferon-inducible protein kinase PKR by Epstein-Barr virus RNAs EBER-1 and EBER-2 and adenovirus VAI RNA. Nucleic Acids Res 21, 4483–4490.

    Article  PubMed  CAS  Google Scholar 

  • Skalsky, R.L., Samols, M.A., Plaisance, K.B., Boss, I.W., Riva, A., Lopez, M.C., Baker, H.V., and Renne, R. (2007). Kaposi's sarcoma-associated herpesvirus encodes an ortholog of miR-155. J Virol 81, 12836–12845.

    Article  PubMed  CAS  Google Scholar 

  • Song, M.J., Brown, H.J., Wu, T.T., and Sun, R. (2001). Transcription activation of polyadenylated nuclear rna by rta in human herpesvirus 8/Kaposi's sarcoma-associated herpesvirus. J Virol 75, 3129–3140.

    Article  PubMed  CAS  Google Scholar 

  • Speck, S.H., and Virgin, H.W. (1999). Host and viral genetics of chronic infection: a mouse model of gamma-herpesvirus pathogenesis. Curr Opin Microbiol 2, 403–409.

    Article  PubMed  CAS  Google Scholar 

  • Stern-Ginossar, N., Elefant, N., Zimmermann, A., Wolf, D.G., Saleh, N., Biton, M., Horwitz, E., Prokocimer, Z., Prichard, M., Hahn, G., et al. (2007). Host immune system gene targeting by a viral miRNA. Science 317, 376–381.

    Article  PubMed  CAS  Google Scholar 

  • Sullivan, C.S., Grundhoff, A.T., Tevethia, S., Pipas, J.M., and Ganem, D. (2005). SV40-encoded microRNAs regulate viral gene expression and reduce susceptibility to cytotoxic T cells. Nature 435, 682–686.

    Article  PubMed  CAS  Google Scholar 

  • Sun, R., Lin, S.F., Gradoville, L., and Miller, G. (1996). Polyadenylylated nuclear RNA encoded by Kaposi sarcoma-associated herpesvirus. Proc Natl Acad Sci USA 93, 11883–11888.

    Article  PubMed  CAS  Google Scholar 

  • Sun, R., Lin, S.F., Gradoville, L., Yuan, Y., Zhu, F., and Miller, G. (1998). A viral gene that activates lytic cycle expression of Kaposi's sarcoma-associated herpesvirus. Proc Natl Acad Sci USA 95, 10866–10871.

    Article  PubMed  CAS  Google Scholar 

  • Szomolanyi, E., Medveczky, P., and Mulder, C. (1987). In vitro immortalization of marmoset cells with three subgroups of herpesvirus saimiri. J Virol 61, 3485–3490.

    PubMed  CAS  Google Scholar 

  • Thimmappaya, B., Weinberger, C., Schneider, R.J., and Shenk, T. (1982). Adenovirus VAI RNA is required for efficient translation of viral mRNAs at late times after infection. Cell 31, 543–551.

    Article  PubMed  CAS  Google Scholar 

  • Thrash-Bingham, C.A., and Tartof, K.D. (1999). aHIF: a natural antisense transcript overexpressed in human renal cancer and during hypoxia. J Natl Cancer Inst 91, 143–151.

    Article  PubMed  CAS  Google Scholar 

  • Toczyski, D.P., and Steitz, J.A. (1991). EAP, a highly conserved cellular protein associated with Epstein-Barr virus small RNAs (EBERs). Embo J 10, 459–466.

    PubMed  CAS  Google Scholar 

  • Trapp, S., Parcells, M.S., Kamil, J.P., Schumacher, D., Tischer, B.K., Kumar, P.M., Nair, V.K., and Osterrieder, N. (2006). A virus-encoded telomerase RNA promotes malignant T cell lymphomagenesis. J Exp Med 203, 1307–1317.

    Article  PubMed  CAS  Google Scholar 

  • Vormwald-Dogan, V., Fischer, B., Bludau, H., Freese, U.K., Gissmann, L., Glitz, D., Schwartz, E., and Durst, M. (1992). Sense and antisense transcripts of human papillomavirus type 16 in cervical cancers. J Gen Virol 73 ( Pt 7), 1833–1838.

    Article  PubMed  CAS  Google Scholar 

  • Wang, Y., Xue, S.A., Hallden, G., Francis, J., Yuan, M., Griffin, B.E., and Lemoine, N.R. (2005). Virus-associated RNA I-deleted adenovirus, a potential oncolytic agent targeting EBV-associated tumors. Cancer Res 65, 1523–1531.

    Article  PubMed  CAS  Google Scholar 

  • Wassarman, D.A., Lee, S.I., and Steitz, J.A. (1989). Nucleotide sequence of HSUR 5 RNA from herpesvirus saimiri. Nucleic Acids Res 17, 1258.

    Article  PubMed  CAS  Google Scholar 

  • Werner, A., and Berdal, A. (2005). Natural antisense transcripts: sound or silence? Physiol Genomics 23, 125–131.

    Article  PubMed  CAS  Google Scholar 

  • Whitley, R.J. (2001). Herpes Simplex Viruses (Lippincott, Williams, and Wilkins).

    Google Scholar 

  • Wolin, S.L., and Cedervall, T. (2002). The La protein. Annu Rev Biochem 71, 375–403.

    Article  PubMed  CAS  Google Scholar 

  • Wong, H.L., Wang, X., Chang, R.C., Jin, D.Y., Feng, H., Wang, Q., Lo, K.W., Huang, D.P., Yuen, P.W., Takada, K., et al. (2005). Stable expression of EBERs in immortalized nasopharyngeal epithelial cells confers resistance to apoptotic stress. Mol Carcinog 44, 92–101.

    Article  PubMed  CAS  Google Scholar 

  • Wu, T.H., Liao, S.M., McClure, W.R., and Susskind, M.M. (1987). Control of gene expression in bacteriophage P22 by a small antisense RNA. II. Characterization of mutants defective in repression. Genes Dev 1, 204–212.

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto, N., Takizawa, T., Iwanaga, Y., Shimizu, N., and Yamamoto, N. (2000). Malignant transformation of B lymphoma cell line BJAB by Epstein-Barr virus-encoded small RNAs. FEBS Lett 484, 153–158.

    Article  PubMed  CAS  Google Scholar 

  • Yang, Z., Zhu, Q., Luo, K., and Zhou, Q. (2001). The 7SK small nuclear RNA inhibits the CDK9/cyclin T1 kinase to control transcription. Nature 414, 317–322.

    Article  PubMed  CAS  Google Scholar 

  • Yao, Y., Zhao, Y., Xu, H., Smith, L.P., Lawrie, C.H., Sewer, A., Zavolan, M., and Nair, V. (2007). Marek's disease virus type 2 (MDV-2)-encoded microRNAs show no sequence conservation to those encoded by MDV-1. J Virol 25, 25.

    Google Scholar 

  • Yi, R., Qin, Y., Macara, I.G., and Cullen, B.R. (2003). Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev 17, 3011–3016. Epub 2003 Dec 3017.

    Article  PubMed  CAS  Google Scholar 

  • Zeng, Y., and Cullen, B.R. (2004). Structural requirements for pre-microRNA binding and nuclear export by Exportin 5. Nucleic Acids Res 32, 4776–4785. Print 2004.

    Article  PubMed  CAS  Google Scholar 

  • Zeng, Y., Yi, R., and Cullen, B.R. (2003). MicroRNAs and small interfering RNAs can inhibit mRNA expression by similar mechanisms. Proc Natl Acad Sci USA 100, 9779–9784.

    Article  PubMed  CAS  Google Scholar 

  • Zezza, D.J., and Heywood, S.M. (1986). Analysis of tcRNA102 associated with myosin heavy chain-mRNPs in control and dystrophic chick pectoralis muscle. J Biol Chem 261, 7461–7465.

    PubMed  CAS  Google Scholar 

  • Zhang, F., Lemieux, S., Wu, X., St-Arnaud, D., McMurray, C.T., Major, F., and Anderson, D. (1998). Function of hexameric RNA in packaging of bacteriophage phi 29 DNA in vitro. Mol Cell 2, 141–147.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, H., Kolb, F.A., Jaskiewicz, L., Westhof, E., and Filipowicz, W. (2004). Single processing center models for human Dicer and bacterial RNase III. Cell 118, 57–68.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, Z., and Carmichael, G.G. (2001). The fate of dsRNA in the nucleus: a p54(nrb)-containing complex mediates the nuclear retention of promiscuously A-to-I edited RNAs. Cell 106, 465–475.

    Article  PubMed  CAS  Google Scholar 

  • Zhong, W., and Ganem, D. (1997). Characterization of ribonucleoprotein complexes containing an abundant polyadenylated nuclear RNA encoded by Kaposi's sarcoma-associated herpesvirus (human herpesvirus 8). J Virol 71, 1207–1212.

    PubMed  CAS  Google Scholar 

  • Zhong, W., Wang, H., Herndier, B., and Ganem, D. (1996). Restricted expression of Kaposi sarcoma-associated herpesvirus (human herpesvirus 8) genes in Kaposi sarcoma. Proc Natl Acad Sci USA 93, 6641–6646.

    Article  PubMed  CAS  Google Scholar 

  • Ziegelbauer, J.M., Sullivan, C.S., and Ganem, D. Personal communication.

    Google Scholar 

Download references

Acknowledgments

Work in CSS lab is funded by UT Austin start up funds & a Fellowship from the UT Austin Institute for Cellular and Molecular Biology. Research into viral miRNA function in the Cullen laboratory is supported by NIH Grant AI067968. We thank Dr. Joan Steitz and Latham Fink for helpful comments regarding this chapter, and Jennifer Lin, Xuezhong Cai, Eva Gottwein, and Latham Fink for help with the figures. The manuscript proposing the existence of a miRNA called miR-LAT within the LAT transcripts of HSV-1 (Gupta et al., 2006) has now been retracted. A recent manuscript (Umbach, J. L., Kramer, M. F., Jurak, I., Coen, D. M., & Cullen, B. R. 2008, MicroRNAs expressed by Herpes Simplex Virus 1 during latent neuronal infection regulate viral gene expression. Nature, 454, 780–783) has now reported that HSV-1 LAT is processed to give rise to four viral miRNAs, miR-H2 to miR-H5, while an additional HSV-1 miRNA, miR-H6, was found to be encoded outside LAT. All five HSV-1 miRNA were found to be expressed in latently infected neurons in vivo. Moreover, miR-H2 and miR-H6 were found to inhibit expression of the HSV-1 immediate early transcription factors ICP-0 and ICP-4 respectively. This suggests that these viral miRNA may stabilize HSV-1 latency in infected neurons in vivo.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Christopher S. Sullivan or Bryan R. Cullen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science + Business Media, LLC

About this chapter

Cite this chapter

Sullivan, C.S., Cullen, B.R. (2009). Non-coding Regulatory RNAs of the DNA Tumor Viruses. In: Damania, B., Pipas, J.M. (eds) DNA Tumor Viruses. Springer, New York, NY. https://doi.org/10.1007/978-0-387-68945-6_25

Download citation

Publish with us

Policies and ethics