Pneumoconioses, Mineral and Vegetable

  • Thomas A. Sporn
  • Victor L. Roggli


The term pneumoconiosis, originally coined by Zenker,1 literally means dust in the lung. Because various types of dust can be found in the lungs of virtually all adults, this term has come to mean the accumulation of abnormal amounts of dust in the lungs and the local pathologic response to this dust. A great variety of dust particles have been identified, which, when inhaled in sufficient amounts, are capable of producing disease in humans. The sources of these particles are diverse, ranging from occupational to environmental exposures. Factors important in determining the pathologic response to a given dust exposure include the number, size, and physicochemical properties of the inhaled particles; the route and efficiency of the clearance of particles from the respiratory tract; the nature and intensity of the host’s inflammatory response to the particles deposited in the lung; the duration of the exposure and interval since initial exposure; and the interaction between the inhaled particles from multiple sources and other environmental pollutants such as cigarette smoke.


Coal Dust Asbestos Fiber Cotton Dust Coal Worker Arch Environ Health 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Zenker FA. Ueber Staubinhalationskrankhelten der lungen, Leipzig, 1866.Google Scholar
  2. 2.
    Brody AR, Roe MW. Deposition pattern of inorganic particles at the alveolar level of the lungs of rats and mice. Am Rev Respir Dis 1983;128:724–729.PubMedGoogle Scholar
  3. 3.
    Raabe OG. Deposition and clearance of inhaled particles. In: Gee JBL, Morgan WKC, Brooks SM, eds. Occupational lung disease. Churchill Livingstone; New York: 1984:1–37.Google Scholar
  4. 4.
    Langer AM. Crystal faces and cleavage planes in quartz as templates in biological processes. Q Rev Biophys 1978;2:543–575.CrossRefGoogle Scholar
  5. 5.
    Spencer H. The pneumoconioses and other occupational lung diseases. In: Spencer H, ed. Pathology of the lung. 4th ed., vol. 1. Oxford: Pergamon Press, 1985:413–510.Google Scholar
  6. 6.
    Abraham JL. Recent advances in pneumoconiosis: The pathologists’ role in etiologic diagnosis. In: Thurlbeck M, ed. The lung: structure, function, and disease. IAP Monograph 19. Baltimore: Williams & Wilkins, 1978:96–137.Google Scholar
  7. 7.
    Roggli VL, Mastin JP, Shelburne JD, Roe M, Brody AR. Inorganic particulates in human lung: relationship to the inflammatory response. In: Lynn WS, ed. Inflammatory cells and lung disease. Boca Raton, FL: CRC Press, 1983:29–62.Google Scholar
  8. 8.
    Pratt PC. Lung dust content and response in guinea pigs inhaling three forms of silica. Arch Environ Health 1983;38:197–204.PubMedCrossRefGoogle Scholar
  9. 9.
    Vallyathan V, Shi X, Dalai NS, Irr W, Castronova V. Generation of free radicals from freshly fractured silica dust: Potential role in silica-induced lung injury. Am Rev Respir Dis 1988;138:1213–1219.PubMedCrossRefGoogle Scholar
  10. 10.
    Mossman BT, Churg A. Mechanisms and pathogenesis of asbestosis and silicosis. Am J Respir Crit Care Med 1998;157:1666–1680.PubMedCrossRefGoogle Scholar
  11. 11.
    Gibbs AR, Wagner JC. Diseases due to silica. In: Churg A, Green FHY, eds. Pathology of occupational lung disease. 2nd ed. Baltimore: Williams & Wilkins, 1998.Google Scholar
  12. 12.
    Heppleston AG. Pulmonary repair and fibrosis. In: Glynn LE, ed. Tissue repair and regeneration. Amsterdam: Elsevier/North Holland, 1981:393–456.Google Scholar
  13. 13.
    Asher M, Mortara M. Effect of silica on the proliferative behavior of human lung fibroblasts. In Vitro 1980;16:371–376.CrossRefGoogle Scholar
  14. 14.
    Travis WD, Colby TV, Koss MN, Rosado-de-Christenson ML, Muller NL, King TE, eds. Occupational lung diseases and pneumoconioses. In: Non-neoplastic disorders of the lower respiratory tract. Atlas of Nontumor Pathology, First Series, Fascicle 2. Washington, DC: American Registry of Pathology, 2002.Google Scholar
  15. 15.
    Kleinerman J. The pathology of some familiar pneumoconioses. Semin Roentgenol 1967;2:244–264.CrossRefGoogle Scholar
  16. 16.
    Slavin RE, Swedo JL, Brandes D, Gonzalez-Vitale JC, Osornio-Vargas A. Extrapulmonary silicosis: A clinical, morphologic, and ultrastructural study. Hum Pathol 1985;16:393–412.PubMedCrossRefGoogle Scholar
  17. 17.
    Miranda RN, McMillan PN, Pricolo VE, Finkelstein SD. Peritoneal silicosis. Arch Pathol Lab Med 1996;120:300–302.PubMedGoogle Scholar
  18. 18.
    McDonald JW, Roggli VL. Detection of silica particles in lung tissue by polarized light microscopy. Arch Pathol Lab Med 1995;119:242–246.PubMedGoogle Scholar
  19. 19.
    Kleinerman J, Green F, Laquer WM, et al. Pathology standards for coal workers pneumoconiosis. Arch Pathol Lab Med 1979;103:375–432.Google Scholar
  20. 20.
    Buechner HA, Ansari A. Acute silico-proteinosis. Dis Chest 1969;55:274–284.PubMedCrossRefGoogle Scholar
  21. 21.
    Heppleston AG, Wright NA, Steward JA. Experimental alveolar lipoproteinosis following the inhalation of silica. J Pathol 1970;101:293–307.PubMedCrossRefGoogle Scholar
  22. 22.
    Miller RR, Churg AM, Hutcheon M, Lam S. Pulmonary alveolar proteinosis and aluminum dust exposure. Am Rev Respir Dis 1984;130:312–315.PubMedGoogle Scholar
  23. 23.
    Craighead JE, Vallyathan NV. Cryptic pulmonary lesions in workers occupationally exposed to dust containing silica. JAMA 1980;244:1939–1941.PubMedCrossRefGoogle Scholar
  24. 24.
    Craighead JE, Kleinerman J, Abraham JL, et al. Diseases associated with exposure to silica and nonfibrous silicate minerals. Arch Pathol Lab Med 1988;112:673–720.Google Scholar
  25. 25.
    Watanabe S, Shirakami A, Takeichi T, et al. Alterations in lymphocyte subsets and serum immunoglobulins in patients with silicosis. J Clin Lab Immunol 1987;23:45–51.PubMedGoogle Scholar
  26. 26.
    Goldsmith DF, Winn DM, Shy CM, eds. Silica, silicosis, and cancer: controversy in occupational medicine. Cancer Research Monographs. New York: Praeger, 1986.Google Scholar
  27. 27.
    International Agency for Research on Cancer. Silica, some silicates, coal dust and para-aramid fibrils. Lyon, France: I ARC, 1996.Google Scholar
  28. 28.
    Ding M, Chen F, Shi X, Yucesoy B, Mossman B, Vallyathan V. Diseases caused by silica: mechanisms of injury and disease development. Int Immunopharmacol 2002;2:173–182.PubMedCrossRefGoogle Scholar
  29. 29.
    Safiotti U, Williams LN, Daniel E, et al. Carcinogenesis by crystalline silica: animal, cellular and molecular studies. In: Castranova V, Vallyathan V, Wallace WE, eds. Silica and silica-induced disease. Boca Raton, FL: CRC Press, 1995:345–382.Google Scholar
  30. 30.
    Hessel PA, Gamble JF, Gee JB, et al. Silica, silicosis and lung cancer: a response to a recent working group report. J Occup Environ Med 2001;43:198–201.Google Scholar
  31. 31.
    Craighead JE. Do silica and asbestos cause lung cancer? Arch Pathol Lab Med 1992;116:16–20.PubMedGoogle Scholar
  32. 32.
    Adamson 1YR, Bowden DH. Role of monocytes and interstitial cells in the generation of alveolar macrophages. II. Kinetic studies after carbon loading. Lab Invest 1980;42:518–524.PubMedGoogle Scholar
  33. 33.
    Heppleston AG. The pathological anatomy of simple pneumoconiosis in coal workers. J Pathol Bacteriol 1953;66:235–246.PubMedCrossRefGoogle Scholar
  34. 34.
    Li K, Keeling B, Churg A. Mineral dusts cause elastin and collagen breakdown in the rat lung: a potential mechanism of dust-induced emphysema. Am J Respir Crit Care Med 1996;153:644–649.PubMedCrossRefGoogle Scholar
  35. 35.
    Pratt PC. Role of silica in progressive massive fibrosis. Arch Environ Health 1968;16:734–737.PubMedCrossRefGoogle Scholar
  36. 36.
    Caplan A. Certain unusual radiological appearances in the chest of coal miners suffering from rheumatoid arthritis. Thorax 1953;8:29–37.PubMedCrossRefGoogle Scholar
  37. 37.
    Green FHY, Vallyathan V. Coal workers pneumoconiosis and pneumoconiosis due to other carbonaceous dusts. In: Churg A, Green FHY, eds. Pathology of occupational lung disease. 2nd ed. Baltimore: Williams & Wilkins, 1998.Google Scholar
  38. 38.
    McConnochie K, Green FHY, Vallyathan V, et al. Interstitial fibrosis in coal workers: experience in Wales and West Virginia. Ann Occup Hyg 1988;32:553–560.CrossRefGoogle Scholar
  39. 39.
    Brichet A, Wallert B, Gosselin B, et al. Idiopathic-like pulmonary fibrosis in coal workers. Am J Respir Crit Care Med 1997;155:A331.B.Google Scholar
  40. 40.
    Coultas DB, Zumwalt RE, Black WC, Sobonya RE. The epidemiology of interstitial lung diseases. Am J Respir Crit Care Med 1994;150:967–972.PubMedCrossRefGoogle Scholar
  41. 41.
    Marine WM, Gurr D, Jacobsen M. Clinically important respiratory effects of dust exposure and smoking in British coal miners. Am Rev Respir Dis 1988;137:106–112.PubMedCrossRefGoogle Scholar
  42. 42.
    Rom WN, Kanner RE, Renzetti AD, et al. Respiratory disease in Utah coal miners. Am Rev Respir Dis 1981;123:372–377.PubMedGoogle Scholar
  43. 43.
    Ames RG, Amandus H, Attfield M, Green FY, Vallyathan V. Does coal mine dust present a risk for lung cancer? A case-control study of U.S. coal miners. Arch Environ Health 1983;38:331–333.PubMedCrossRefGoogle Scholar
  44. 44.
    Vallyathan NV, Green FHY, Rodman NF, Boyd CB, Althouse R. Lung carcinoma by histologic type in coal miners. Arch Pathol Lab Med 1985;109:419–423.PubMedGoogle Scholar
  45. 45.
    Pratt PC, Kilburn KH. Extent of pulmonary pigmentation as an indicator of particulate environmental air pollution. Inhaled Part Vap 1971;2:661–670.Google Scholar
  46. 46.
    Roggli VL. Asbestos bodies and non-asbestos ferruginous bodies. In: Roggli VL, Oury TD, Sporn TA, eds. Pathology of asbestos-associated diseases. 2nd ed. New York: Springer-Verlag, 2004:34–70.CrossRefGoogle Scholar
  47. 47.
    Watson AJ, Black J, Doig AT, Nagelschmidt G. Pneumoconiosis in carbon electrode makers. Br J Ind Med 1959;16:274–285.PubMedGoogle Scholar
  48. 48.
    Schepers GWH, Durkan TM. Experimental study of the effects of talc dust on animal tissue. Arch Ind Health 1955;12:317–328.Google Scholar
  49. 49.
    Vallyathan NV, Craighead JE. Pulmonary pathology in workers exposed to nonasbestiform talc. Hum Pathol 1981;12:28–35.PubMedCrossRefGoogle Scholar
  50. 50.
    Vallyathan NV. Pneumoconiosis. Respir Ther 1980;10:34–39.Google Scholar
  51. 51.
    Miller A, Teirstein AS, Bader MD, Bader RA, Selikoff IJ. Talc pneumoconiosis: significance of sublight-microscopic mineral particles. Am J Med 1971;50:395–402.PubMedCrossRefGoogle Scholar
  52. 52.
    Tomashefski JF, Hirsch CS. The pulmonary vascular lesions of intravenous drug abuse. Hum Pathol 1980;11:133–145.PubMedCrossRefGoogle Scholar
  53. 53.
    Berner A, Glyseth B, Levy F. Talc dust pneumoconiosis. Acta Pathol Microbiol Scand 1981;89A:17–21.Google Scholar
  54. 54.
    Crouch E, Churg A. Progressive massive fibrosis of the lung secondary to intravenous injection of talc. A pathologic and mineralogic analysis. Am J Clin Pathol 1983;80:520–526.PubMedGoogle Scholar
  55. 55.
    Williams WJ. The pathology of pulmonary sarcoidosis. Proc R Soc Med 1967;60:986–988.PubMedGoogle Scholar
  56. 56.
    Abraham JL, Brambilla C. Particle size for differentiation between inhalation and injection pulmonary talcosis. Environ Res 1980;21:94–96.PubMedCrossRefGoogle Scholar
  57. 57.
    Pare JP, Cote G, Fraser RS. Long-term follow-up of drug abusers with intravenous talcosis. Am Rev Respir Dis 1989;139:233–241.PubMedCrossRefGoogle Scholar
  58. 58.
    Kleinfeld M, Messite J, Zaki MH. Mortality experiences among talc workers: A follow-up study. J Occup Med 1974;16:345–349.PubMedGoogle Scholar
  59. 59.
    Sepulveda M-J, Vallyathan V, Attfield MD, Placitelli L, Tucker JH. Pneumoconiosis and lung function in a group of kaolin workers. Am Rev Respir Dis 1983;127:231–235.PubMedGoogle Scholar
  60. 60.
    Lapenas D, Gale P, Kennedy T, Rawlings W, Dietrich P. Kaolin pneumoconiosis: radiologic, pathologic, and mineralogic findings. Am Rev Respir Dis 1984;130:282–288.PubMedGoogle Scholar
  61. 61.
    Brody AR, Craighead JE. Cytoplasmic inclusions in pulmonary macrophages of cigarette smokers. Lab Invest 1975;32:125–132.PubMedGoogle Scholar
  62. 62.
    White R, Kuhn C. Effects of phagocytosis of mineral dusts on elastase secretion by alveolar and peritoneal exudative macrophages. Arch Environ Health 1980;35:106–109.PubMedGoogle Scholar
  63. 63.
    Hufer W, Saifer MG. Orgotein, the drug version of bovine Cu-Zn superoxide dismutase. I. A summary account of safety and pharmacology in laboratory animals. In: Michelson AM, McCord JM, Fridovich I, eds. Superoxide and superoxide dismutases. New York: Academic Press, 1977:517–536.Google Scholar
  64. 64.
    King EJ, Harrison CV. The effects of kaolin on the lungs of rats. J Pathol Bacteriol 1948;60:435–440.CrossRefGoogle Scholar
  65. 65.
    Sabu AP, Shaker R, Zaidi SH. Pulmonary response to kaolin, mica and talc in mice. Exp Pathol 1978;16:276–282.Google Scholar
  66. 66.
    Morgan WKC, Donner A, Higgins ITT, Pearson MG, Rawlings W Jr. The effects of kaolin on the lung. Am Rev Respir Dis 1988;138:813–820.PubMedCrossRefGoogle Scholar
  67. 67.
    Green FHY, Churg A. Diseases due to nonasbestos silicates. In: Churg A, Green FHY, eds. Pathology of occupational lung disease. 2nd ed. Baltimore: Williams & Wilkins, 1998.Google Scholar
  68. 68.
    Skulberg KR, Gylseth B, Skaug V, Hanoa R. Mica pneumoconiosis: a literature review. Scand J Work Environ Health 1986;11:65–74.CrossRefGoogle Scholar
  69. 69.
    Zinman C, Richards GA, Murray J, Phillips JI, Rees DJ, Glyn-Thomas D. Mica dust as a cause of severe pneumoconiosis. Am J Ind Med 2002;41:139–144.PubMedCrossRefGoogle Scholar
  70. 70.
    Lockey JE. Nonasbestos fibrous minerals. Clin Chest Med 1981;203–218.Google Scholar
  71. 71.
    Pooley FD. Evaluation of fiber samples taken from the vicinity of two villages in Turkey. In: Lemen R, Dement JM, eds. Dusts and disease: occupational and environmental exposures to selected fibrous and particulate dusts. Park Forest South, IL: Pathotox, 1979:44.Google Scholar
  72. 72.
    Suzuki Y. Carcinogenic and fibrogenic effects of zeolites: Preliminary observations. Environ Res 1982;27:433–445.PubMedCrossRefGoogle Scholar
  73. 73.
    Sporn TA, Roggli VL. Mesothelioma. In: Roggli VL, Oury TD, Sporn TA, eds. Pathology of asbestos-associated diseases. 2nd ed. New York: Springer-Verlag, 2004:104–168.CrossRefGoogle Scholar
  74. 74.
    Baris YI, Artvinli M, Sahin AA. Environmental mesothelioma in Turkey. Ann NY Acad Sci 1979;330:423–432.PubMedCrossRefGoogle Scholar
  75. 75.
    Sebastien P, Gaudichet A, Bignon J, Baris YI. Zeolite bodies in human lungs from Turkey. Lab Invest 1981;44:420–425.PubMedGoogle Scholar
  76. 76.
    Warheit DB, Hill LH, Brody AR. In vitro effects of cro-cidolite asbestos and wollastonite on pulmonary macrophages and serum complement. In: Johari O, ed. Scanning electron microscopy. Chicago: Scanning Electron Microscopy, Inc., 1984:919–926.Google Scholar
  77. 77.
    Stanton MF, Layard M, Tegeris A, et al. Relations of particle dimensions to carcinogenicity in an amphibole asbestos and other fibrous minerals. J Natl Cancer Inst 1981;67:965–975.PubMedGoogle Scholar
  78. 78.
    Shasby DM, Peterson M, Hodous T, Boehlecke B, Merchant J. Respiratory morbidity of workers exposed to wollastonite through mining and milling. In: Lemen R, Dement JM, eds. Dusts and disease: occupational and environmental exposures to selected fibrous and particulate dusts. Park Forest South, IL: Pathotox, 1979:251–256.Google Scholar
  79. 79.
    Huuskonen MS, Tossavaninen A, Koskinen H, et al. Wollastonite exposure and lung fibrosis. Environ Res 1983;30:291–304.PubMedCrossRefGoogle Scholar
  80. 80.
    Moatamed F, Lockey JE, Parry WT. Fiber contamination of vermiculites: a potential occupational and environmental health hazard. Environ Res 1986;41:207–218.PubMedCrossRefGoogle Scholar
  81. 81.
    McDonald JC, Armstrong B, Case B, et al. Mesothelioma and asbestos fiber type: evidence from lung tissue analyses. Cancer 1989;63:1544–1547.PubMedCrossRefGoogle Scholar
  82. 82.
    McDonald AD, McDonald JC. Malignant mesothelioma in North America. Cancer 1980;46:1650–1656.PubMedCrossRefGoogle Scholar
  83. 83.
    Eisenbud M. Origins of the standards for control of beryllium disease (1947—1949). Environ Res 1982;27:79–88.PubMedCrossRefGoogle Scholar
  84. 84.
    Lang L. Beryllium. A chronic problem. Environ Health Perspect 1994;102:526–531.PubMedCrossRefGoogle Scholar
  85. 85.
    Butnor KJ, Sporn TA, Ingram P, Gunasegaram S, Pinto JF, Roggli VL. Beryllium detection in human lung tissue using electron probe X-ray microanalysis. Mod Pathol 2003;16:1171–1177.PubMedCrossRefGoogle Scholar
  86. 86.
    Kreiss K, Mroz MM, Zhen B, et al. Epidemiology of beryllium sensitization and disease in nuclear workers. Am Rev Respir Dis 1993;148:985–991.PubMedCrossRefGoogle Scholar
  87. 87.
    Sanderson WT. The US population at risk to occupational respiratory disease. In: Merchant JA, ed. Occupational respiratory disease. Publication no. 86-102. Washington, DC: Department of Health and Human Services (NIOSH), 1986:739–759.Google Scholar
  88. 88.
    Katzenstein A-LA, Askin FB. Pneumoconiosis. In: Katzen-stein A-LA, Askin FB, eds. Surgical pathology of non-neo-plastic lung disease. 3rd ed. Philadelphia: WB Saunders, 1997:112–137.Google Scholar
  89. 89.
    Newman LS. Immunology, genetics and epidemiology of beryllium disease. Chest 1996;109:40s.PubMedCrossRefGoogle Scholar
  90. 90.
    Kriebel D, Brain JD, Sprince NL, Kazemi H. The pulmonary toxicity of beryllium. Am Rev Respir Dis 1988;137:464–473.PubMedCrossRefGoogle Scholar
  91. 91.
    Mancuso TF. Occupational lung cancer among beryllium workers. In: Lemen R, Dement DM, eds. Dusts and disease: occupational and environmental exposures to selected fibrous and particulate dusts. Park Forest South, IL: Pathotox, 1979:463–471.Google Scholar
  92. 92.
    Infante PF, Wagoner JK, Sprince NL. Bronchogenic cancer and nonneoplastic respiratory disease associated with beryllium exposure. In: Lemen R, Dement JM, eds. Dusts and disease: occupational and environmental exposures to selected fibrous and particulate dusts. Park Forest South, IL: Pathotox, 1979:473–482.Google Scholar
  93. 93.
    Morgan WKC, Seaton A. Occupational lung diseases. 2nd ed. Philadelphia: WB Saunders, 1984:449–497.Google Scholar
  94. 94.
    Jones-Williams W. A histological study of the lungs in 52 cases of chronic beryllium disease. Br J Ind Med 1958;15:84–91.Google Scholar
  95. 95.
    Newman LS, Kreiss K, King TE Jr, Seay S, Campbell. Stages of beryllium disease: re-examination of disease definition and natural history. Am Rev Respir Dis 1989;139:1479–1486.PubMedCrossRefGoogle Scholar
  96. 96.
    Newman LS. Beryllium disease and sarcoidosis: clinical and laboratory links. Sarcoidosis 1995;12:7–19.PubMedGoogle Scholar
  97. 97.
    Newman LS, Kreiss K. Non-occupational beryllium disease masquerading as sarcoidosis: identification of blood lymphocyte proliferative response to beryllium. Am Rev Respir Dis 1992;145:1212–1214.PubMedCrossRefGoogle Scholar
  98. 98.
    Newman LS. Metals that cause sarcoidosis. Semin Respir Infect 1998;13:212–20.PubMedGoogle Scholar
  99. 99.
    McDonald JW, Roggli VL, Churg A, Shelburne JD. Microprobe analysis in pulmonary pathology. In: Ingram P, Shelburne J, Roggli V, LeFurgey A, eds. Biomedical applications of microprobe analysis. San Diego: Academic Press, 1999:201–56.CrossRefGoogle Scholar
  100. 100.
    Sferlazza SJ, Beckett WS. The respiratory health of welders. Am Rev Respir Dis 1991;143:1134–1148.PubMedCrossRefGoogle Scholar
  101. 101.
    Vallyathan V, Bergeron WN, Robichaux PA, Craighead JE. Pulmonary fibrosis in an aluminum arc welder. Chest 1982;81:372–374.PubMedCrossRefGoogle Scholar
  102. 102.
    Chen W-J, Monnat RJ, Chen M, Moffett NK. Aluminum induced pulmonary granulomatosis. Hum Pathol 1978;9:705–11.PubMedCrossRefGoogle Scholar
  103. 103.
    Herbert A, Sterling G, Abraham J, Corrin B. Desquamative interstitial pneumonia in an aluminum welder. Hum Pathol 1982;13:694–699.PubMedCrossRefGoogle Scholar
  104. 104.
    Stern RM. The assessment of risk: application to the welding industry lung cancer. The International Institute of Welding Commission, VIII: Safety and Health Doc. IIW, VIIL2034–2083. Copenhagen: Danish Welding Institute, 1983:1–26.Google Scholar
  105. 105.
    Vallyathan NV, Green FHY, Craighead JE. Recent advances in the study of mineral pneumoconiosis. Pathol Annu 1980;15:77–104.PubMedGoogle Scholar
  106. 106.
    Gardner LU. Studies on the relationship of mineral dusts to tuberculosis. Am Rev Tuberc 1923;71:344–357.Google Scholar
  107. 107.
    Funahashi A, Schlueter DP, Pintar K, Siegesmund KA, Mandel GS, Mandel NS. Pneumoconiosis in workers exposed to silicon carbide. Am Rev Respir Dis 1984;129:635–640.PubMedGoogle Scholar
  108. 108.
    Gross P, de Treville RTP, Cralley LJ, Davis JMG. Pulmonary ferruginous bodies: development in response to filamentous dusts and a method of isolation and concentration. Arch Pathol 1968;85:539–546.PubMedGoogle Scholar
  109. 109.
    Schepers GWH. The biological action of tungsten carbide and cobalt: studies on experimental pulmonary histopa-thology. Arch Ind Health 1955;12:140–146.Google Scholar
  110. 110.
    Sprince NL, Oliver LC, Eisen EA, Greene RE, Chamberlin RI. Cobalt exposure and lung disease in tungsten carbide production: A cross-sectional study of current workers. Am Rev Respir Dis 1988;138:1220–1226.PubMedCrossRefGoogle Scholar
  111. 111.
    Sprince NL, Chamberlin RI, Hales CA, Weber AL, Kazemi H. Respiratory disease in tungsten carbide production workers. Chest 1984;549–557.Google Scholar
  112. 112.
    Ohori NP, Sciurba FC, Owens GR, Hodgson MJ, Yousem SA. Giant-cell interstitial pneumonia and hard metal pneumoconiosis: a clinicopathologic study of four cases and review of the literature. Am J Surg Pathol 1989;13:581–587.PubMedCrossRefGoogle Scholar
  113. 113.
    Tabatowski K, Roggli VL, Fulkerson WJ, Langley RL, Benning T, Johnston WW. Giant cell interstitial pneumonia in a hard-metal worker: cytologic, histologic, and analytical electron microscopic investigation. Acta Cytol 1988;32:240–246.PubMedGoogle Scholar
  114. 114.
    Coates EO, Watson JHL. Diffuse interstitial lung disease in tungsten carbide workers. Ann Intern Med 1971;75:709–716.PubMedCrossRefGoogle Scholar
  115. 115.
    McDonald JW, Ghio AJ, Sheehan CE, Bernhardt P, Roggli VL. Rare earth (cerium oxide) pneumoconiosis: analytical scanning electron microscopy and literature review. Mod Pathol 1995;8:859–865.PubMedGoogle Scholar
  116. 116.
    Palmer RJ, Butenhoff JL, Stevens JB. Cytotoxicity of the rare earth metals cerium, lanthanum and neodymium in vitro: comparison with cadmium in a pulmonary macrophage culture system. Environ Res 1987;43:142.PubMedCrossRefGoogle Scholar
  117. 117.
    Ophus EM, Rode L, Gylseth B, Nicholson DG; Saeed K. Analysis of titanium pigments in human lung tissue. Scand J Work Environ Health 1979;5:290–296.PubMedCrossRefGoogle Scholar
  118. 118.
    Crouch E, Churg A. Ferruginous bodies and the histologic evaluation of dust exposure. Am J Surg Pathol 1984;8:109–116.PubMedCrossRefGoogle Scholar
  119. 119.
    Morgan WKC, Seaton A. Occupational lung diseases. 2nd ed. Philadelphia: WB Saunders, 1984:449–497.Google Scholar
  120. 120.
    Doig AT. Baritosis: a benign pneumoconiosis. Thorax 1976;31:30–39.PubMedCrossRefGoogle Scholar
  121. 121.
    Rom WN, Lockey JE, Lee, et al. Pneumoconiosis and exposure of dental laboratory technicians. Am J Publ Health 1984;74:1252–1257.CrossRefGoogle Scholar
  122. 122.
    De Vuyst P, Vande Weyer R, De Coster A, et al. Dental technicians pneumoconiosis: A report of two cases. Am Rev Respir Dis 1986;133:316–320.PubMedGoogle Scholar
  123. 123.
    Barrett TE, Pietra GG, Maycock RL, Rossman MD, Minda JM, Johns LW. Acrylic resin pneumoconiosis: report of a case in a dental student. Am Rev Respir Dis 1989;139:841–843.PubMedCrossRefGoogle Scholar
  124. 124.
    Loewen GM, Weiner D, McMahan J. Pneumoconiosis in an elderly dentist. Chest 1988;93:1312–1313.PubMedCrossRefGoogle Scholar
  125. 125.
    Golden EB, Warnock ML, Hulett LD, Churg AM. Fly ash lung: a new pneumoconiosis? Am Rev Respir Dis 1982;125:108–112.PubMedGoogle Scholar
  126. 126.
    Fisher GL, Chrisp CE, Raabe OG. Physical factors affecting the mutagenicity of fly ash from a coal-fired power plant. Science 1979;204:879–881.PubMedCrossRefGoogle Scholar
  127. 127.
    Hill JO, Rothenberg SJ, Kanapilly GM, Hanson RL, Scott BR. Activation of immune complement by fly ash particles from coal combustion. Environ Res 1982;28:113–122.PubMedCrossRefGoogle Scholar
  128. 128.
    Roggli VI, Pratt PC, Brody AR. Asbestos content of lung tissue in asbestos-associated diseases: a study of 110 cases. Br J Ind Med 1986;43:18–28.PubMedGoogle Scholar
  129. 129.
    Rom WN. Silicates and benign pneumoconiosis. In: Rom WN, ed. Environmental and occupational medicine. Philadelphia: Lippincott-Raven, 1998:587–600.Google Scholar
  130. 130.
    Martin TR, Chi EY, Covert DS, et al. Compared effects of inhaled volcanic ash and quartz in rats. Am Rev Respir Dis 1983;128:144–152.PubMedGoogle Scholar
  131. 131.
    Vallyathan V, Robinson V, Reasor M, Stettler L, Bernstein R. Comparative in vitro cytotoxicity of volcanic ashes from Mount St. Helens, El Chichon, and Galunggung. J Toxicol Environ Health 1984;14:641–654.PubMedCrossRefGoogle Scholar
  132. 132.
    Raub JA, Hatch GE, Mercer RR, Grady M, Hu P-C. Inhalation studies of Mt. St. Helens volcanic ash in animals: II. Lung function, biochemistry, and histology. Environ Res 1985;37:72–83.PubMedCrossRefGoogle Scholar
  133. 133.
    Craighead JE, Adler KB, Emerson RJ, Mossman BT, Woodworth CD. Health effects of Mount St. Helens volcanic dust. Lab Invest 1983;48:5–12.PubMedGoogle Scholar
  134. 134.
    Buist AS, Vollmer WM, Johnson LR, Bernstein RS, McCamant LE. A four-year prospective study of the respiratory effects of volcanic ash from Mt. St. Helens. Am Rev Respir Dis 1986;133:526–534.PubMedGoogle Scholar
  135. 135.
    Churg A. Nonasbestos pulmonary mineral fibers in the general population. Environ Res 1986;31:189–200.CrossRefGoogle Scholar
  136. 136.
    Baker D, Kupke KG, Ingram P, Roggli VL, Shelburne JD. Microprobe analysis in human pathology. In: Johari O, ed. Scanning electron microscopy. Vol. 2. Chicago: Scanning Electron Microscopy, Inc., 1985:659–680.Google Scholar
  137. 137.
    Roggli VI. Nonasbestos mineral fibers in human lungs. In: Russell PE, ed. Microbeam analysis-1989. San Francisco: San Francisco Press, 1989:57–59.Google Scholar
  138. 138.
    Wright GW, Kuschner M. The influence of varying lengths of glass and asbestos fibres on tissue response in guinea pigs. In: Walton WH, ed. Inhaled particles IV. Oxford: Pergamon, 1977:455–474.Google Scholar
  139. 139.
    Morgan A, Holmes A, Davison W. Clearance of sized glass fibres from the rat lung and their solubility in vivo. Ann Occup Hyg 1982;25:317–331.PubMedCrossRefGoogle Scholar
  140. 140.
    Enterline PE, Marsh GM. Environment and mortality of workers from a fibrous glass plant. In: Lemen R, Dement JM, eds. Dusts and disease: occupational and environmental exposures to selected fibrous and particulate dusts. Park Forest South, IL: Pathotox, 1979:221–231.Google Scholar
  141. 141.
    Wright GW. Proceedings of the Second Symposium on Occupational Exposure to Fibrous Glass. Washington, DC: U.S. Government Printing Office, 1976:126.Google Scholar
  142. 142.
    Bayliss D, Dement J, Wagoner JK, Blejer HP. Mortality patterns among fibrous glass production workers. Ann NY Acad Sci 1976;271:324–335.PubMedCrossRefGoogle Scholar
  143. 143.
    Gross P, Tuma J, de Treville TP. Lungs of workers exposed to fiber glass: a study of their pathologic changes and their dust content. Arch Environ Health 1971;3:67–76.CrossRefGoogle Scholar
  144. 144.
    Eschenbacher WL, Kreiss K, Lougheed MD, et al. Nylon flock-associated interstitial lung disease. Am J Respir Crit Care Med 1999;1959:2003–2008.CrossRefGoogle Scholar
  145. 145.
    Kern DG, Crausman RS, Durand KT, et al. Flock workers lung: chronic interstitial lung disease in the nylon flocking industry. Ann Intern Med 1998;129:261–272.PubMedCrossRefGoogle Scholar
  146. 146.
    Kern DG, Kuhn C, Ely EW, et al. Flock workers lung: Broadening the spectrum of clinicopathology, narrowing the spectrum of suspected etiologies. Chest 2000;117:251–259.PubMedCrossRefGoogle Scholar
  147. 147.
    Boag AH, Colby TV, Fraire AE, et al. The pathology of interstitial lung disease in nylon flock workers. Am J Surg Pathol 1999;23:1539–1545.PubMedCrossRefGoogle Scholar
  148. 148.
    Ramage JE Jr., Roggli VL, Bell DY, Piantadosi CA. Interstitial lung disease and domestic wood burning. Am Rev Respir Dis 1988;137:1229–1232.PubMedCrossRefGoogle Scholar
  149. 149.
    McCrone WC, ed. The particle atlas. Vols. V and VI. 2nd ed. Ann Arbor: Ann Arbor Science, 1980:1336–1634.Google Scholar
  150. 150.
    Martin TR, Meyer SW, Luchtel DR. An evaluation of the toxicity of carbon fiber composites for lung cells in vitro and in vivo. Environ Res 1989;49:246–261.PubMedCrossRefGoogle Scholar
  151. 151.
    Abe S, Osaki Y, Kimura K, et al. Chrornate lung cancer with special reference to its cell type and relation to the manufacturing process. Cancer 1982;49:783–787.PubMedCrossRefGoogle Scholar
  152. 152.
    Dodson RF, O’Sullivan MF, Corn CJ, Williams MJ, Hurst GA. Ferruginous body formation on a nonasbestos mineral. Arch Pathol Lab Med 1985;109:849–852.PubMedGoogle Scholar
  153. 153.
    Dumortier P, Broucke I, De Vuyst P. Pseudoasbestos bodies and fibers in bronchoalveolar lavage of refractory ceramic fiber users. Am J Respir Crit Care Med 2001;164:499–503.PubMedCrossRefGoogle Scholar
  154. 154.
    Shaver CG, Riddell AR. Lung changes associated with the manufacture of aluminum abrasives. J Ind Hyg Toxicol 1947;29:145–157.PubMedGoogle Scholar
  155. 155.
    Jephcott CM. Chemical aspects of Shaver’s disease. In: Vorwald AJ, ed. Pneumoconiosis: beryllium, bauxite fumes, compensation. New York: Hoeber, 1950:489–497.Google Scholar
  156. 156.
    Abramson MJ, Wlodarcyk JH, Saunders NA, Hensley MJ. Does aluminum smelting cause lung disease? Am Rev Respir Dis 1989;139:1042–1057.PubMedCrossRefGoogle Scholar
  157. 157.
    Gilks B, Churg A. Aluminum-induced pulmonary fibrosis: Do fibers play a role? Am Rev Respir Dis 1987;136:176–179.PubMedCrossRefGoogle Scholar
  158. 158.
    Newman-Taylor AJ. Cadmium. In: Rom WN, ed. Environmental and occupational medicine. 3rd ed. Philadelphia: Lippincott-Raven, 1998:1011–1021.Google Scholar
  159. 159.
    Mark GH, Monroe CB, Kazemi H. Mixed pneumoconiosis: silicosis, asbestosis, talcosis, and berylliosis. Chest 1979;75:726–728.PubMedCrossRefGoogle Scholar
  160. 160.
    Harding HE, Gloyne RS, McLaughlin AIG. Industrial lung diseases in iron and steel foundry workers. London: HM Stationery Office, 1950.Google Scholar
  161. 161.
    Harding HE, Gloyne RS, McLaughlin AIG. Pulmonary fibrosis in non-ferrous foundry workers. Br J Ind Med 1955;12:92–99.PubMedGoogle Scholar
  162. 162.
    Mason GR, Abraham JL, Hoffman L, Cole S, Lippman M, Wasserman K. Treatment of mixed-dust pneumoconiosis with whole lung lavage. Am Rev Respir Dis 1982;126:1102–1107.PubMedGoogle Scholar
  163. 163.
    Honma K, Abraham JL, Chiyotani K, De Vuyst P, et al. Proposed criteria for mixed dust pneumoconiosis: definition, descriptions and guidelines for pathologic diagnosis and clinical correlation. Hum Pathol 2004;35:1515–1523.PubMedCrossRefGoogle Scholar
  164. 164.
    Sherwin RP, Barman ML, Abraham JL. Silicate pneumoconiosis of farm workers. Lab Invest 1979;40:576–582.PubMedGoogle Scholar
  165. 165.
    Taylor G. Acute systemic effects of inhaled occupational agents. In: Merchant JA, ed. Occupational respiratory diseases. DMHS (NIOSH) Publ. No. 86102, Washington, DC: U.S. Government Printing Office, 1986:618.Google Scholar
  166. 166.
    May JJ, Stallones L, Darrow D, Pratt DS. Organic dust toxicity (pulmonary mycotoxicosis) associated with silo unloading. Thorax 1986;41:919–923.PubMedCrossRefGoogle Scholar
  167. 167.
    Perry LP, Iwata M, Tazelaar HD, Colby TV, Youssem SA. Pulmonary myxotoxicosis: a clinicopathologic study of 3 cases. Mod Pathol 1998;11:432–436.PubMedGoogle Scholar
  168. 168.
    Emanuel DA, Wenzel FJ, Lawton BR. Pulmonary mycotoxicosis. Chest 1975;67:293–297.PubMedCrossRefGoogle Scholar
  169. 169.
    Brinton WT, Vastbinder EE, Greene JW, Marx JJ Jr, Hutcheson RH, Schaffner W. An outbreak of organic dust toxic syndrome in a college fraternity. JAMA 1987;258:1210–1212.PubMedCrossRefGoogle Scholar
  170. 170.
    Lecours R, Laviolette M, Cormier Y. Bronchoalveolar lavage in pulmonary mycotoxicosis (organic dust toxic syndrome). Thorax 1986;41:924–926.PubMedCrossRefGoogle Scholar
  171. 171.
    Greene FHY, Churg A. Occupational asthma, byssinosis, and extrinsic alveolitis. In: Churg A, Greene FHY, eds. Pathology of occupational lung disease. 2nd ed. Baltimore: Williams & Wilkins, 1998:403–450.Google Scholar
  172. 172.
    Pratt PC. Comparative prevalence and severity of emphysema and bronchitis at autopsy in cotton mill workers vs. controls. Chest 1981;79:495–535.Google Scholar
  173. 173.
    Kennedy SM, Christiani DC, Eisen EA, et al. Cotton dust and endotoxins: exposure-response relationships in cotton textile workers. Am Rev Respir Dis 1987;135:194–200.PubMedGoogle Scholar
  174. 174.
    Pratt PC, Vollmer RT, Miller JA. Epidemiology of pulmonary lesions in nontextile and cotton textile workers: a retrospective autopsy analysis. Arch Environ Health 1980;35:133–138.PubMedCrossRefGoogle Scholar
  175. 175.
    Moran TJ. Emphysema and other chronic lung disease in textile workers: an 18-year autopsy study. Arch Environ Health 1983;38:267–276.PubMedCrossRefGoogle Scholar
  176. 176.
    Rooke GB. The pathology of byssinosis. Chest 1981;79:675–715.Google Scholar
  177. 177.
    Edwards C, McCartney J, Rooke G, Ward F. The pathology of the lung in byssinotics. Thorax 1975;30:612.PubMedCrossRefGoogle Scholar
  178. 178.
    Cloutier MM, Rohrach MS. Effects of endotoxins and tannin isolated from cotton bracts on the airway epithelium. Am Rev Respir Dis 1986;134:1158–1162.PubMedGoogle Scholar
  179. 179.
    Airsworth SK, Neuman RE. Chemotaxins in cotton mill dust: Possible etiologic agent(s) in byssinosis. Am Rev Respir Dis 1981;124:280–284.Google Scholar
  180. 180.
    Tomashefski JF Jr, Felo JA. The pulmonary pathology of illicit drug and substance abuse. Curr Diagn Pathol 2004;10:423–426.CrossRefGoogle Scholar
  181. 181.
    Tomashefski JF Jr, Hirsch CS, Jolly PN. Microcrystalline cellulose pulmonary embolism and granulomatosis. A complication of illicit intravenous injection of pentazocine tablets. Arch Pathol Lab Med 1981;105:89–93.PubMedGoogle Scholar
  182. 182.
    Ganesan S, Felo J, Saldana M, et al. Embolized crospovidone (poly [N-vinyl-2-pyrrolidone]) in the lungs of intravenous drug users. Mod Pathol 2003;16:286–292PubMedCrossRefGoogle Scholar
  183. 183.
    Lamb D, Roberts G. Starch and talc emboli in drug addicts’ lungs. J Clin Pathol 1972;25:876–81.PubMedCrossRefGoogle Scholar
  184. 184.
    Farber HW, Fairman RP, Millan JE, et al. Pulmonary response to foreign body microemboli in dogs: release of neutrophil chemoattractant activity by vascular endothelial cells. Am J Respir Cell Mol Biol 1989;1:27–35.PubMedCrossRefGoogle Scholar
  185. 185.
    Abraham JL, Tomashefski JF Jr, Anderson M. Diagnosis of Munchausen syndrome using microanalytical techniques. Lab Invest 1982;46:82.Google Scholar
  186. 186.
    McCrone WT. Light microscopical analytical techniques. In: Ingram P, Shelburne J, Roggli V, LeFurgey A, eds. Biomedical applications of microprobe analysis. San Diego: Academic Press, 1999:149–201CrossRefGoogle Scholar
  187. 187.
    Brody AR, Vallyathan NV, Craighead JE. Distribution and elemental analysis of inorganic particulates in pulmonary tissue. In: Johari O, ed. Scanning electron microscopy. Vol. 3. Chicago: IIT Research Institute, 1976:477–484.Google Scholar
  188. 188.
    Abraham JL, Burnett BR. Quantitative analysis of inorganic particulate burden in situ in tissue sections. In: Johari O, ed. Scanning electron microscopy. Vol. 2. Chicago: Scanning Electron Microscopy, Inc., 1983:681–696.Google Scholar
  189. 189.
    Pickett JP, Ingram P, Shelburne JD. Identification of inorganic particulates in a single histologic section using both light microscopy and x-ray microprobe analysis. J Histo-technol 1980;3:155–158.Google Scholar
  190. 190.
    Gylseth B. Ophus EM, Mowe G. Determination of inorganic fiber density in human lung tissue by scanning electron microscopy after low temperature ashing. Scand J Work Environ Health 1979;5:151–157.PubMedCrossRefGoogle Scholar
  191. 191.
    Ingram P. Shelburne JD, Roggli VL, eds. Microprobe analysis in medicine. New York: Hemisphere, 1989.Google Scholar
  192. 192.
    Marshall A J. Electron probe x-ray microanalysis. In: Hayat MA, ed. Principles and techniques of scanning electron microscopy. Vol. 4. New York: Van Nostrand-Reinhold, 1975:103–173.Google Scholar
  193. 193.
    Berry JP, Henoc P, Galle P, Pariente R. Pulmonary mineral dust: a study of ninety patients by electron microscopy, electron microanalysis and electron micro-diffraction. Am J Pathol 1976;83:427–456.PubMedGoogle Scholar
  194. 194.
    Shelburne JD, Wisseman CL, Broda KR, Roggli VL, Ingram P. Lung—nonneoplastic conditions. In: Trump BF, Jones RJ, eds. Diagnostic electron microscopy. Vol. 4. New York: Wiley, 1983:475–538.Google Scholar
  195. 195.
    Johnson GG, White EW, Strickler D, Hoover R. Image analysis techniques. In: Asher IM, McGrath PP, eds. Symposium on electron microscopy of microfibers: proceedings of the First FDA Office of Science Summer Symposium. Washington, DC: U.S. Government Printing Office, 1976:76–82.Google Scholar
  196. 196.
    Roggli VL, Ingram P, Linton RW, Gutknecht WF, Mastin P, Shelburne JD. New techniques for imaging and analyzing lung tissue. Environ Health Perspect 1984;56:163–183.PubMedCrossRefGoogle Scholar
  197. 197.
    ASTM. Index: index to the powder diffraction file. Philadelphia: American Society for Testing Materials, various years.Google Scholar
  198. 198.
    Barrow RE. X-ray diffraction analysis of quartz in lung tissue. Tex Rep Biol Med 1974;32:441–448.PubMedGoogle Scholar
  199. 199.
    Lange BA, Haartz JC. Determination of microgram quantities of asbestos by x-ray diffraction: chrysotile in thin dust layers of matrix material. Anal Chem 1979;51:520–525.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Thomas A. Sporn
    • 1
  • Victor L. Roggli
    • 2
  1. 1.Department of PathologyDuke University and Durham VA Medical CentersDurhamUSA
  2. 2.Department of PathologyDuke University and Durham VA Medical CentersDurhamUSA

Personalised recommendations