Comets, Carbonaceous Meteorites, and the Origin of the Biosphere

  • Hoover R.B.

Abstract

Evidence for indigenous microfossils in carbonaceous meteorites suggests that the paradigm of the endogenous origin of life on Earth should be reconsidered. It is now widely accepted that comets and carbonaceous meteorites played an important role in the delivery of water, organics and life-critical biogenic elements to the early Earth and facilitated the origin and evolution of the Earth’s biosphere. However, the detection of embedded microfossils and mats in carbonaceous meteorites implies that comets and meteorites may have played a direct role in the delivery of intact microorganisms and that the biosphere may extend far into the cosmos. Recent space observations have found the nuclei of comets to have very low albedos (˜0.03) and these jet-black surfaces can become very hot (T ˜ 400 K) near perihelion. This chapter reviews recent observational data on comets and suggests that liquid water pools could exist in cavities and fissures between the internal ices and rocks and the exterior carbonaceous crust. The presence of light and liquid water near the surface of the nucleus enhances the possibility that comets could harbor prokaryotic extremophiles (e.g., cyanobacteria, sulfur bacteria and archaea) capable of growth over a wide range of temperatures. The hypothesis that comets are the parent bodies of the CI1 and the CM2 carbonaceous meteorites is advanced. Electron microscopy images will be presented showing forms interpreted as indigenous microfossils embedded in freshly fractured interior surfaces of the Orgueil (CI1) and Murchison (CM2) meteorites. The size range and morphological characteristics of these forms are consistent with known representatives of morphotypes of all five subsections (orders) of Phylum Cyanobacteria. Energy dispersive X-ray spectroscopy (EDS) elemental data show that the forms in the meteorites have anomalous C/N and C/S as compared with modern extremophiles and cyanobacteria. These images and spectral data indicate that the clearly biogenic and embedded remains cannot be interpreted as recent biological contaminants and therefore are indigenous microfossils in the meteorites.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abyzov, S.S. (1993) Microorganisms in the Antarctic ice. In: E.I. Friedman (Ed.), Antarctic Microbiology. Wiley-Liss, New York, pp. 265–296.Google Scholar
  2. Abyzov, S.S., Hoover, R.B., Imura, S., Mitskevich, I., Naganuma, T., Poglazova, M. and Ivanov, M.V. (2004) Use of different methods for discovery of ice-entrapped microorganisms in ancient layers of the Antarctic glacier. Adv. Space Res., Cospar 33, 1222–1230.CrossRefGoogle Scholar
  3. A’Hearn, M. F., Belton, M. J. S., Delamere, W. A., Kissel, J., Klaasen, K. P., McFadden, L. A., Meech, K. J., Melosh, H. J., Schultz, P. H., Sunshine, J. M., Thomas, P. C., Veverka, J., Yeomans, D. K., Baca, M. W., Busko, I., Crockett, C. J., Collins, S. M., Desnoyer, M., Eberhardy, C. A., Ernst, A. M., Farnham, T. L., Feaga, L., Groussin, O., Hampton, D., Ipatov, S. I., Li, J. –Y., Lindler, D., Lisse, C. M., Mastrodemos, N., Owen, Jr., N. M., Richardson, J. E., Wellnitz, D. D., and White, R. L., (2005). Deep Impact: Excavating Comet Tempel 1, Science 310 258–264.PubMedCrossRefGoogle Scholar
  4. Bartley, J.K. (1996) Actualistic taphonomy of cyanobacteria: implications for the Precambrian fossil record. Palaios 11, 571–586.CrossRefGoogle Scholar
  5. Boone, D. R., Castenholz, R. W., Garrity, G. M. Eds. (2001) Bergey's Manual of Systematic Bacteriology. Volume One. The Archaea and the Deeply Branching and Phototrophic Bacteria. Springer-Verlage, New York, N.Y., pp. 473–600.Google Scholar
  6. Castenholz, R.W. and Garcia-Pichel, F. (2000) Cyanobacterial response to EV-radiation. In: B.A. Whitton and M. Potts (Eds), The Ecology of Cyanobacteria: Their Diversity in Time and Space. Kluwer Academic Publishers, Dordrecht, pp. 591–611.Google Scholar
  7. Castenholz, R. and Waterbury, J. B. (1989) Introduction to Cyanobacteria. In: N. R. Krieg and J. G. Holt (eds.), Bergey's Manual of Systematic Bacteriology. Vol. 3 Williams and Wilkens, pp. 1710–1728.Google Scholar
  8. Chyba, C.F. and Sagan, C. (1997) Comets as a source of prebiotic molecules for the early Earth. In: P.J. Thomas, C.F. Chyba and C.P. McKay (Eds), Comets and the Origin and Evolution of Life. Springer-Verlag, New York, pp. 147–168.Google Scholar
  9. Cloëz, S. (1864) Note sur la composition chimique de la pierre météorique d Orgueil. Compt. Rend. Acad. Sci., Paris 58, 986–988.Google Scholar
  10. Delsemme A.H. (1997) The origin of the atmosphere and of the oceans. In: P.J. Thomas, C.F. Chyba and C.P. McKay (Eds), Comets and the Origin and Evolution of Life. Springer-Verlag, New York, pp. 29–67.Google Scholar
  11. Delsemme, A.H. (1998) The deuterium enrichment observed in recent comets is consistent with the cometary origin of seawater. Planet. Space Sci. 47, 25–131.CrossRefGoogle Scholar
  12. Eberhardt, P., Dolder, U., Schulte, W., Krankowsky, D., Lämmerzahl, P., Berthelier, J.J., Woweries, J., Stubbemann, U., Hodges, R.R., Hoffman, J.H. and Illiano, J.M. (1987) The D/H ratio in water from comet P/Halley. Astron. Astrophys. 187, 435–437.Google Scholar
  13. Ehrenfreund, P., Glavin, D.P., Botta, O., Cooper, G., Bada, J. (2001) Extraterrestrial amino acids in Orgueil and Ivuna: tracing the parent body of CI type carbonaceous chondrites. Proc. Natl Acad. Sci. 98, 2138–2141.PubMedCrossRefGoogle Scholar
  14. Emerich, C., Lamarre, J.M., Moroz, V.I., Combes, M., Sanko, N.F., Nikolsky, Y.V., Rocard, F., Gispert, R., Coron, N., Bibring, J.P., Encrenaz, T. and Crovisier, J. (1987) Temperature and size of the nucleus of comet P/Halley deduced from IKS infrared Vega 1 measurements. Astron. Astrophys. 187, 839–842.Google Scholar
  15. Frederickson, J.K. and Onstott, T.C. (1996) Microbes deep inside the Earth. Sci. Am. 275, 68–73.CrossRefGoogle Scholar
  16. Gerasimenko, L.M., Hoover, R.B., Rozanov, A.Yu., Zhegallo, E.A. and Zhmur, S.I. (1999) Bacterial paleontology and studies of carbonaceous chondrites. Paleontol. J. 33, 439–459.Google Scholar
  17. Gilichinsky, D.A., Vorobyova, E.A., Erokhina, L.G., Fedorov-Davydov, D.G. and Chaikovskaya, N.R. (1992) Long-term preservation of microbial ecosystems in permafrost. Adv. Space Res. 12, 255–263.Google Scholar
  18. Gold, T. (1992) The deep, hot biosphere. Proc. Natl Acad. Sci. 89, 6045–6049.CrossRefGoogle Scholar
  19. Hiroi, T., Pieters, C.M., Rutherford, M.J., Zolensky, M.E., Sasaki, S., Ueda, Y. and Miyamoto, M. (2004) What are the P-type asteroids made of? Lunar Planet Sci. XXXV, 1616.Google Scholar
  20. Hofmann, H.J. (1976) Precambrian microflora, Belcher Islands, Canada: significance and systematics. J. Palaeontol. 50, 1040–1073.Google Scholar
  21. Hoiczyk, E. and Hansel, A. (2000) Cyanobacterial cell walls: news from an unusual prokaryotic envelope. J. Bacteriol. 182, 1191–1199.PubMedCrossRefGoogle Scholar
  22. Hoover, R.B. (1997) Meteorites, microfossils and exobiology. SPIE 3111, 115–136.CrossRefGoogle Scholar
  23. Hoover, R.B., Hoyle, F., Wallis, M.K., and Wickramasinghe, N.C., (1986) “Can Diatoms Live on Cometary Ice?”” in Asteroids, Comets and Meteors II., Proceedings of Meeting at Astronomical Observatory of Uppsala University, June, 1985, (C. I. Lagerkvist, Ed.), pp. 359–352.Google Scholar
  24. Hoover, R.B. (2006a) Comets, asteroids, meteorites, and the origin of the biosphere. SPIE 6309, 63090J 1–12.Google Scholar
  25. Hoover, R.B. (2006b) Fossils of prokaryotic microorganisms in the Orgueil meteorite. In: R.B. Hoover, A.Yu. Rozanov and G.V. Levin (Eds), Instruments, Methods and Missions for Astrobiology, IX. SPIE, 6309, 02 1-17.Google Scholar
  26. Hoover, R.B. and Pikuta, E.V. (2004) Microorganisms on comets, Europa, and the polar ice caps of Mars. SPIE 5163, 191–202.CrossRefGoogle Scholar
  27. Hoover, R.B. and Rozanov, A.Yu. (2005) Microfossils, biominerals and chemical biomarkers in meteorites. In: R.B. Hoover, R. Paepe and A.Yu. Rozanov (Eds), Perspectives in Astrobiology, Vol. 366 NATO Science Series: Life and Behavioural Sciences. IOS Press, The Netherlands, pp. 1–18.Google Scholar
  28. Hoover, R.B., Hoyle, F., Wickramasinghe, N.C., Hoover, M.J. and Al-Mufti, S. (1986) Diatoms on Earth, comets, Europa and in interstellar space. Earth Moon Planets 35, 19–45.CrossRefGoogle Scholar
  29. Hoover, R.B., Pikuta, E.V., Wickramasinghe, N.C., Wallis, M.K. and Sheldon, R.B. (2004) Astrobiology of comets. SPIE 5555, 93–106.CrossRefGoogle Scholar
  30. Hoyle, F. and Wickramasinghe, N.C. (1980) Comets—a vehicle for panspermia. In:C. Ponnaperuma (Ed.), Comets and the Origin of Life. Reidel, Dordrecht, pp. 222–239.Google Scholar
  31. Knoll, A. H. and Golubic, S. (1992) Proterozoic and living cyanobacteria. In: M. Schidlowski, S. Golubic and M.M. Kimberley (Eds), Early Organic Evolution: Implications for Mineral and Energy Resources. Springer, Berlin, pp. 450–462.Google Scholar
  32. Oró, J. (1961). Comets and the formation of biochemical compounds on the primitive Earth. Nature 190, 389–390.CrossRefGoogle Scholar
  33. Oró J., Mills, T. and Lazcano, A. (1995). Comets and life in the Universe. Adv. Space Res. 15, 81–90.PubMedCrossRefGoogle Scholar
  34. Rasmussen, B. (2000) Filamentous microfossils in a 3,235-million-year-old volcanogenic massive sulphide deposit. Nature 405, 767–679.CrossRefGoogle Scholar
  35. Ruedemann, R. (1918) The paleontology of arrested evolution. N.Y. State Mus. Bull. 196, 107–134.Google Scholar
  36. Schidlowski, M. (1988) A 3,800 million-year-old record of life from carbon in sedimentary rocks. Nature 333, 313–318.CrossRefGoogle Scholar
  37. Schidlowski, M. (2001) Carbon isotopes as biogeochemical recorders of life over 3.8 Ga of Earth history: evolution of a concept. Precambr. Res. 106, 117–134.Google Scholar
  38. Schippers, A, Neretin, L.N., Kallmeyer, J., Ferdelman, T.G., Cragg, B.A., Parkes, R.J. and Jorgensen, B.B. (2005) Prokaryotic cells of the deep sub-seafloor biosphere identified as living bacteria. Nature 433, 861–864.PubMedCrossRefGoogle Scholar
  39. Schopf, J.W. (1987) “Hypobradytely””: Comparison of rates of Precambrian and Phanerozoic Evolution, J. Vertebr. Paleontol. 7, Suppl. 3, 25.Google Scholar
  40. Schopf, J.W. (1992). Tempo and Mode of Proterozoic Evolution in: The Proterozoic Biosphere, A multidisciplinary study, (Schopf, J.W. and Klein, C., eds.) Cambridge University Press, New York, p. 596.Google Scholar
  41. Schopf, J.W. (2000). The fossil record: tracing the roots of the cyanobacterial lineage. In: B.A. Whitton and M. Potts (Eds), The Ecology of Cyanobacteria: Their Diversity in Time and Space. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 13–35.Google Scholar
  42. Sheldon, R.B. and Hoover, R.B. (2006) Evidence for liquid water on comets. SPIE 5906, 5906OE 1–19.Google Scholar
  43. Simpson, G.G. (1944) Tempo and Mode in Evolution. Columbia Univ. Press, New York, pp. 1–237.Google Scholar
  44. Sunshine, J.M., A’Hearn, M.F., Groussin, O., Li, J.-Y., Belton, M.J.S., Delamere, W.A., Kissel, J., Klaasen, K.P., McFadden, L.A., Meech, K.J., Melosh, H.J., Schultz, P.H., Thomas, P.C., Veverka, J., Yeomans, D.K., Busko, I.C., Desnoyer, M., Farnham, T.L. Feaga, L.M., Hampton, D.L., Lindler, D.J., Lisse, C.M. and Wellnitz, D.D. (2006) Exposed water ice deposits on the surface of Comet 9P/Tempel 1. Science 311, 1453–1455.PubMedCrossRefGoogle Scholar
  45. Storrie-Lombardi, M.C., Hoover, R.B., Abbas, M., Jerman, G., Coston, J., and Fisk, M. (2006). Probabilistic classification of elemental abundance distributions in Nakhla and Apollo 17 lunar dust samples, SPIE 6309, 630906:1–12.Google Scholar
  46. Vernadsky, V.I. (1926) Biosfera, Leningrad, Nauka, pp. 1–24.Google Scholar
  47. Vernadsky, V.I. (1998) The Biosphere (Translation by D.B. Langmuir, Revised and Annotated by M.A.S. McMenamin). Copernicus, New York, pp. 1–192.Google Scholar
  48. Wallis, M.K. and Wickramasinghe, N.C. (1991) Structural evolution of cometary surfaces. Space Sci. Rev. 56, 93–97.CrossRefGoogle Scholar
  49. Walsh, M.M. and Lowe, D.R. (1985) Filamentous microfossils from the 3,500-Myr-old Onverwacht Group, Barberton Mountain Land, South Africa. Nature 314, 530–532.CrossRefGoogle Scholar
  50. Whipple, F.L. (1950) A comet model. I. The acceleration of comet Enke. Astrophys. J. 111, 134–141.CrossRefGoogle Scholar
  51. Whipple, F.L. (1951) A comet model. II. Physical relations for comets and meteors. Astrophys. J. 113, 464–474.CrossRefGoogle Scholar
  52. Whipple, F.L. (1963) On the structure of the cometary nucleus. In: B.M. Middlehurst and G.P. Kuiper (Eds), The Moon, Meteorites, and Comets. Univ. of Chicago Press, Chicago, pp. 639–664.Google Scholar
  53. Whitman, W.B., Coleman, D.C. and Wiebe, W.J. (1998) Prokaryotes: the unseen majority. Proc. Natl Acad. Sci. USA 95, 6578–6583.PubMedCrossRefGoogle Scholar
  54. Wickramasinghe, N.C. and Hoyle, F. (1999) Infrared radiation from comet Hale–Bopp. Astrophys. Space Sci. 268, 379–381.CrossRefGoogle Scholar
  55. Zhegallo, E.A., Rozanov, A.Yu., Ushatinskaya, G.T., Hoover, R.B., Gerasimenko, L.M. and Ragozina, A.L. (2000) Atlas of Microorganisms from Ancient Phosphorites of Khubsughul (Mongolia), NASA/TP 209901 (In English and Russian), pp. 1–167.Google Scholar
  56. Zhmur, S.I., Rozanov, A.Yu. and Gorlenko, V.M. (1997). Lithified remnants of microorganisms in carbonaceous chondrites. Geochem. Int. 35(1), 58–60.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Hoover R.B.
    • 1
  1. 1.Astrobiology LaboratoryNASA/NSSTCHuntsvilleUSA

Personalised recommendations