Phylum XIV. Bacteroidetes phyl. nov.

  • Noel R. Krieg
  • Wolfgang Ludwig
  • Jean Euzéby
  • William B. Whitman

Abstract

The phylum Bacteroidetes is a phenotypically diverse group of Gram-stain-negative rods that do not form endospores. They are circumscribed for this volume on the basis of phylogenetic analysis of 16S rRNA gene sequences.

Reference

  1. Castellani, A. and A.J. Chalmers. 1919. Manual of Tropical Medicine, 3rd edn. Williams Wood and Co., New York, pp. 959–960.Google Scholar
  2. Avgustin, G., R.J. Wallace and H.J. Flint. 1997. Phenotypic diversity among ruminal isolates of Prevotella ruminicola: proposal of Prevotella brevis sp. nov., Prevotella bryantii sp. nov., and Prevotella albensis sp. nov. and redefinition of Prevotella ruminicola. Int. J. Syst. Bacteriol. 47: 284–288.PubMedGoogle Scholar
  3. Bakir, M.A., M. Kitahara, M. Sakamoto, M. Matsumoto and Y. Benno. 2006a. Bacteroides intestinalis sp. nov., isolated from human faeces. Int. J. Syst. Evol. Microbiol. 56: 151–154.PubMedGoogle Scholar
  4. Bakir, M.A., M. Kitahara, M. Sakamoto, M. Matsumoto and Y. Benno. 2006b. Bacteroides finegoldii sp. nov., isolated from human faeces. Int. J. Syst. Evol. Microbiol. 56: 931–935.PubMedGoogle Scholar
  5. Bakir, M.A., M. Sakamoto, M. Kitahara, M. Matsumoto and Y. Benno. 2006c. Bacteroides dorei sp. nov., isolated from human faeces. Int. J. Syst. Evol. Microbiol. 56: 1639–1643.PubMedGoogle Scholar
  6. Benno, Y., J. Watabe and T. Mitsuoka. 1983a. In Validation of the publication of new names and new combinations previously effectively published outside the IJSB. List no. 12. Int. J. Syst. Bacteriol. 33: 896–897.Google Scholar
  7. Benno, Y., J. Watabe and T. Mitsuoka. 1983b. Bacteroides pyogenes sp. nov., Bacteroides suis sp. nov., and Bacteroides helcogenes sp. nov., new species from abscesses and feces of pigs. Syst. Appl. Microbiol. 4: 396–407.PubMedGoogle Scholar
  8. Beveridge, W.I.B. 1941. Foot-rot in sheep: a transmissible disease due to infection with Fusiformis nodosus (n. sp.). Studies on its causes, epidemiology and control. Counc. Sci. Ind. Res. Aust. Bull. 140: 1–56.Google Scholar
  9. Bryant, M.P., N. Small, C. Bouma and H. Chu. 1958. Bacteroides ruminicola n. sp. and Succinimonas amylolytica; the new genus and species; species of succinic acid-producing anaerobic bacteria of the bovine rumen. J. Bacteriol. 76: 15–23.PubMedGoogle Scholar
  10. Caldwell, D.R., M. Keeney and P.J. Van Soest. 1969. Effects of carbon dioxide on growth and maltose fermentation by Bacteroides amylophilus. J. Bacteriol. 98: 668–676.PubMedGoogle Scholar
  11. Castellani, A. and A.J. Chalmers. 1919. Manual of Tropical Medicine, 3rd edn. Williams Wood, New York, pp. 959–960.Google Scholar
  12. Cato, E.P., R.W. Kelley, W.E.C. Moore and L.V. Holdeman. 1982. Bacteroides zoogleoformans (Weinberg, Nativelle, and Prevot 1937) corrig., comb. nov.: emended description. Int. J. Syst. Bacteriol. 32: 271–274.Google Scholar
  13. Cerdeno-Tarraga, A.M., S. Patrick, L.C. Crossman, G. Blakely, V. Abratt, N. Lennard, I. Poxton, B. Duerden, B. Harris, M.A. Quail, A. Barron, L. Clark, C. Corton, J. Doggett, M.T. Holden, N. Larke, A. Line, A. Lord, H. Norbertczak, D. Ormond, C. Price, E. Rabbinowitsch, J. Woodward, B. Barrell and J. Parkhill. 2005. Extensive DNA inversions in the B. fragilis genome control variable gene expression. Science 307: 1463–1465.PubMedGoogle Scholar
  14. Collins, M.D., H.N. Shah and T. Mitsuoka. 1985. Reclassification of Bacteroides microfusus (Kaneuchi and Mitsuoka) in a new genus Rikenella, as Rikenella microfusus comb. nov. Syst. Appl. Microbiol. 6: 79–81.Google Scholar
  15. Collins, M.D. and H.N. Shah. 1986a. Reclassification of Bacteroides termitidis Sebald (Holdeman and Moore) in a new genus Sebaldella termitidis, as Sebaldella termitidis comb. nov. Int. J. Syst. Bacteriol. 36: 349–350.Google Scholar
  16. Collins, M.D. and H.N. Shah. 1986b. Reclassification of Bacteroides praeacutus Tissier (Holdeman and Moore) in a new genus, Tissierella, as Tissierella praeacuta comb. nov. Int. J. Syst. Bacteriol. 36: 461–463.Google Scholar
  17. Coykendall, A.L., F.S. Kaczmarek and J. Slots. 1980. Genetic heterogeneity in Bacteroides asaccharolyticus (Holdeman and Moore 1970) Finegold and Barnes 1977 (Approved Lists, 1980) and proposal of Bacteroides gingivalis sp. nov. and Bacteroides macacae (Slots and Genco) comb. nov. Int. J. Syst. Bacteriol. 30: 559–564.Google Scholar
  18. Dewhirst, F.E., B.J. Paster, S. Lafontaine and J.I. Rood. 1990. Transfer of Kingella indologenes (Snell and Lapage 1976) to the genus Suttonella gen. nov. as Suttonella indologenes comb. nov., transfer of Bacteroides nodosus (Beveridge 1941) to the genus Dichelobacter gen. nov. as Dichelobacter nodosus comb. nov., and assignment of the genera Cardiobacterium, Dichelobacter, and Suttonella to Cardiobacteriaceae fam. nov. in the gamma division of Proteobacteria on the basis of 16S ribosomal RNA sequence comparisons. Int. J. Syst. Bacteriol. 40: 426–433.PubMedGoogle Scholar
  19. Dietrich, G., N. Weiss and J. Winter. 1988a. Validation of the publication of new names and new combinations previously effectively published outside the IJSB. List no 26. Int. J. Syst. Bacteriol. 38: 328–329.Google Scholar
  20. Dietrich, G., N. Weiss, F. Fiedler and J. Winter. 1988b. Acetofilamentum rigidum gen. nov., sp. nov., a strictly anaerobic bacterium from sewage sludge. Syst. Appl. Microbiol. 10: 273–278.Google Scholar
  21. Dietrich, G., N. Weiss and J. Winter. 1988c. Acetothermus paucivorans, gen. nov., sp. nov., a strictly anaerobic, thermophilic bacterium from sewage sludge, fermenting hexoses to acetate, CO2 and H2. Syst. Appl. Microbiol. 10: 174–179.Google Scholar
  22. Dietrich, G., N. Weiss, F. Fiedler and J. Winter. 1989. Validation of the publication of new names and new combinations previously effectively published outside the IJSB. List no28. Int. J. Syst. Bacteriol. 39: 93–94.Google Scholar
  23. Distaso, A. 1912. Contribution à l’étude sur l’intoxication intestinale. Zentralbl. Bakteriol. Parasitenkd. Infektionskr. Hyg. Abt. I Orig. 62: 433–468.Google Scholar
  24. Eggerth, A.H. and B.H. Gagnon. 1933. The Bacteroides of Human Feces. J. Bacteriol. 25: 389–413.PubMedGoogle Scholar
  25. Euzéby, J.P. 1998. Taxonomic note: necessary correction of specific and subspecific epithets according to Rules 12c and 13b of the International Code of Nomenclature of Bacteria (1990 Revision). Int. J. Syst. Bacteriol. 48: 1073–1075.Google Scholar
  26. Euzéby, J.P. and N.E. Boemare. 2000. The modern Latin word rhabdus belongs to the feminine gender, inducing necessary corrections according to Rules 65(2), 12c(1) and 13b of the Bacteriological Code (1990 Revision). Int. J. Syst. Evol. Microbiol. 50: 1691–1692.PubMedGoogle Scholar
  27. Fang, H., C. Edlund, M. Hedberg and C.E. Nord. 2002. New findings in beta-lactam and metronidazole resistant Bacteroides fragilis group. Int. J. Antimicrob. Agents 19: 361–370.PubMedGoogle Scholar
  28. Fenner, L., V. Roux, M.N. Mallet and D. Raoult. 2005. Bacteroides massiliensis sp. nov., isolated from blood culture of a newborn. Int. J. Syst. Evol. Microbiol. 55: 1335–1337.PubMedGoogle Scholar
  29. Fildes, P., G.M. Richardson, B.C.G.E. Knight and G.P. Gladstone. 1936. A nutrient mixture suitable for the growth of Staphylococcus aureus. Br. J. Exp. Pathol. 17: 481–484.Google Scholar
  30. Franco, A.A., R.K. Cheng, G.T. Chung, S. Wu, H.B. Oh and C.L. Sears. 1999. Molecular evolution of the pathogenicity island of enterotoxigenic Bacteroides fragilis strains. J. Bacteriol. 181: 6623–6633.PubMedGoogle Scholar
  31. Gutacker, M., C. Valsangiacomo and J.-C. Piffaretti. 2000. Identification of two genetic groups in Bacteroides fragilis by multilocus enzyme electrophoresis: distribution of antibiotic resistance (cfiA, cepA) and enterotoxin (bft) encoding genes. Microbiology 146: 1241–1254.PubMedGoogle Scholar
  32. Gutacker, M., C. Valsangiacomo, M.V. Bernasconi and J.C. Piffaretti. 2002. recA and glnA sequences separate the Bacteroides fragilis population into two genetic divisions associated with the antibiotic resistance genotypes cepA and cfiA. J. Med. Microbiol. 51: 123–130.PubMedGoogle Scholar
  33. Hamlin, L.J. and R.E. Hungate. 1956. Culture and physiology of a starch-digesting bacterium (Bacteroides amylophilus n. sp.) from the bovine rumen. J. Bacteriol. 72: 548–554.PubMedGoogle Scholar
  34. Harrison, A.P., Jr. and P.A. Hansen. 1963. Bacteroides hypermegas nov. spec. Antonie van Leeuwenhoek 29: 22–28.PubMedGoogle Scholar
  35. Hauduroy, P., G. Ehringer, A. Urbain, G. Guillot and J. Magrou. 1937. Dictionnaire des bactéries pathogènes. Masson et Cie, Paris.Google Scholar
  36. Holdeman, L.V. and W.E.C. Moore. 1970. Bacteroides. Outline of Clinical Methods in Anaerobic Bacteriology, 2nd revn (edited by Cato, Cummins, Holdeman, Johnson, Moore, Smibert and Smith). Virginia Polytechnic Institute Anaerobe Laboratory, Blacksburg, VA, pp. 57–66.Google Scholar
  37. Holdeman, L.V. and W.E.C. Moore. 1974. New genus, Coprococcus, twelve new species, and emended descriptions of four previously described species of bacteria from human feces. Int. J. Syst. Bacteriol. 24: 260–277.Google Scholar
  38. Holdeman, L.V. and J.L. Johnson. 1977. Bacteroides disiens sp. nov. and Bacteroides bivius sp. nov. from human clinical infections. Int. J. Syst. Bacteriol. 27: 337–345.Google Scholar
  39. Holdeman, L.V. and J.L. Johnson. 1982. Description of Bacteroides loescheii sp. nov. and emendation of the descriptions of Bacteroides melaninogenicus (Oliver and Wherry) Roy and Kelly 1939 and Bacteroides denticola Shah and Collins 1981. Int. J. Syst. Bacteriol. 32: 399–409.Google Scholar
  40. Holdeman, L.V., R.W. Kelly and W.E.C. Moore. 1984. Genus I. Bacteroides. In Bergey’s Manual of Systematic Bacteriology, vol. 1 (edited by Krieg and Holt). Williams & Wilkins, Baltimore, pp. 604–631.Google Scholar
  41. Hungate, R.E. 1950. The anaerobic mesophilic cellulolytic bacteria. Bacteriol. Rev. 14: 1–49.PubMedGoogle Scholar
  42. Jensen, N.S. and E. Canale-Parola. 1986. Bacteroides pectinophilus sp. nov. and Bacteroides galacturonicus sp. nov., two pectinolytic bacteria from the human intestinal tract. Appl. Environ. Microbiol. 52: 880–887.PubMedGoogle Scholar
  43. Jensen, N.S. and E. Canale-Parola. 1987. In Validation of the publication of new names and new combinations previously effectively published outside the IJSB. List no. 23. Int. J. Syst. Bacteriol. 37: 179–180.Google Scholar
  44. Johnson, J.L. 1978. Taxonomy of the bacteroides. I. Deoxyribonucleic acid homologies among Bacteroides fragilis and other saccharolytic Bacteroides species. Int. J. Syst. Bacteriol. 28: 245–256.Google Scholar
  45. Johnson, J.L. and D.A. Ault. 1978. Taxonomy of the bacteroides. II. Correlation of phenotypic characteristics with deoxyribonucleic acid homology groupings for Bacteroides fragilis and other saccharolytic Bacteroides species. Int. J. Syst. Bacteriol. 28: 257–268.Google Scholar
  46. Johnson, J.L. and L.V. Holdeman. 1983. Bacteroides intermedius comb. nov. and descriptions of Bacteroides corporis sp. nov. and Bacteroides levii sp. nov. Int. J. Syst. Bacteriol. 33: 15–25.Google Scholar
  47. Johnson, J.L., W.E.C. Moore and L.V.H. Moore. 1986. Bacteroides caccae sp. nov., Bacteroides-merdae sp. nov., and Bacteroides stercoris sp. nov. isolated from human feces. Int. J. Syst. Bacteriol. 36: 499–501.Google Scholar
  48. Jousimies-Somer, H.R., P. Summanen, D.M. Citron, E.J. Baron, H.M. Wexler and S.M. Finegold. 2002. Wadsworth-KTL anaerobic bacteriology manual. Star Publishing Company, Belmont, CA.Google Scholar
  49. Kaneuchi, C. and T. Mitsuoka. 1978. Bacteroides microfusus, a new species from intestines of calves, chickens, and Japanese quails. Int. J. Syst. Bacteriol. 28: 478–481.Google Scholar
  50. Kelly, C.D. 1957. Genus I. Bacteroides Castellani and Chalmers 1919. In Bergey’s Manual of Determinative Bacteriology, 7th edn (edited by Breed, Murray and Smith). Williams & Wilkins, Baltimore, pp. 424–436.Google Scholar
  51. Kitahara, M., M. Sakamoto, M. Ike, S. Sakata and Y. Benno. 2005. Bacteroides plebeius sp. nov. and Bacteroides coprocola sp. nov., isolated from human faeces. Int. J. Syst. Evol. Microbiol. 55: 2143–2147.PubMedGoogle Scholar
  52. Kornman, K.S. and S.C. Holt. 1981. Physiological and ultrastructural characterization of a new Bacteroides species (Bacteroides capillus) isolated from severe localized periodontitis. J. Periodont. Res. 16: 542–555.PubMedGoogle Scholar
  53. Leadbetter, E.R., S.C. Holt and S.S. Socransky. 1979. Capnocytophaga: new genus of Gram-negative gliding bacteria. 1. General characteristics, taxonomic considerations and significance. Arch. Microbiol. 122: 9–16.PubMedGoogle Scholar
  54. Lin, C., J.W. Urbance and D.A. Stahl. 1994. Acetivibrio cellulolyticus and Bacteroides cellulosolvens are members of the greater clostridial assemblage. FEMS Microbiol. Lett. 124: 151–155.PubMedGoogle Scholar
  55. Loesche, W.J., S.S. Socransky and R.J. Gibbons. 1964. Bacteroides oralis, proposed new species isolated from the oral cavity of man. J. Bacteriol. 88: 1329–1337.PubMedGoogle Scholar
  56. Love, D.N., J.L. Johnson, R.F. Jones, M. Bailey and A. Calverley. 1986. Bacteroides tectum sp. nov. and characteristics of other nonpigmented Bacteroides isolates from soft-tissue infections from cats and dogs. Int. J. Syst. Bacteriol. 36: 123–128.Google Scholar
  57. Love, D.N., J.L. Johnson, R.F. Jones and A. Calverley. 1987. Bacteroides salivosus sp. nov., an asaccharolytic, black-pigmented species from cats. Int. J. Syst. Bacteriol. 37: 307–309.Google Scholar
  58. Love, D.N. 1995. Porphyromonas macacae comb. nov., a consequence of Bacteroides macacae being a senior synonym of Porphyromonas salivosa. Int. J. Syst. Bacteriol. 45: 90–92.Google Scholar
  59. Mitsuoka, T., T. Sega and S. Yamamoto. 1965. [Improved methodology of qualitative and quantitative analysis of the intestinal flora of man and animals]. Zentralbl. Bakteriol. [Orig.] 195: 455–469.Google Scholar
  60. Mitsuoka, T., A. Terada, K. Watanabe and K. Uchida. 1974. Bacteroides multiacidus, a new species from feces of humans and pigs. Int. J. Syst. Bacteriol. 24: 35–41.Google Scholar
  61. Miyamoto, Y. and K. Itoh. 2000. Bacteroides acidifaciens sp. nov., isolated from the caecum of mice. Int. J. Syst. Evol. Microbiol. 50: 145–148.PubMedGoogle Scholar
  62. Moncrief, J.S., R. Obiso, Jr., L.A. Barroso, J.J. Kling, R.L. Wright, R.L. Van Tassell, D.M. Lyerly and T.D. Wilkins. 1995. The enterotoxin of Bacteroides fragilis is a metalloprotease. Infect. Immun. 63: 175–181.PubMedGoogle Scholar
  63. Montgomery, L., B. Flesher and D. Stahl. 1988. Transfer of Bacteroides succinogenes (Hungate) to Fibrobacter gen. nov. as Fibrobacter succinogenes comb. nov. and description of Fibrobacter intestinalis sp. nov. Int. J. Syst. Bacteriol. 38: 430–435.Google Scholar
  64. Moore, L.V.H., J.L. Johnson and W.E.C. Moore. 1994. Descriptions of Prevotella tannerae sp. nov. and Prevotella enoeca sp. nov. from the human gingival crevice and emendation of the description of Prevotella zoogleoformans. Int. J. Syst. Bacteriol. 44: 599–602.PubMedGoogle Scholar
  65. Moore, L.V.H. and W.E.C. Moore. 1994. Oribaculum catoniae gen. nov., sp. nov., Catonella morbi gen. nov., sp. nov., Hallella seregens gen. nov., sp. nov., Johnsonella ignava gen. nov., sp. nov., and Dialister pneumosintes gen. nov., comb. nov., nom. rev., anaerobic Gram-negative bacilli from the human gingival crevice. Int. J. Syst. Bacteriol. 44: 187–192.PubMedGoogle Scholar
  66. Morotomi, M., F. Nagai and H. Sakon. 2007. Genus Megamonas should be placed in the lineage of Firmicutes; Clostridia; Clostridiales; ‘Acidaminococcaceae’; Megamonas. Int. J. Syst. Evol. Microbiol. 57: 1673–1674.PubMedGoogle Scholar
  67. Murray, W.D., L.C. Sowden and J.R. Colvin. 1984. Bacteroides cellulosolvens sp. nov., a cellulolytic species from sewage sludge. Int. J. Syst. Bacteriol. 34: 185–187.Google Scholar
  68. Oh, H. and C. Edlund. 2003. Mechanism of quinolone resistance in anaerobic bacteria. Clin. Microbiol. Infect. 9: 512–517.PubMedGoogle Scholar
  69. Okuda, K., T. Kato, J. Shiozu, I. Takazoe and T. Nakamura. 1985. Bacteroides heparinolyticus sp. nov. isolated from humans with periodontitis. Int. J. Syst. Bacteriol. 35: 438–442.Google Scholar
  70. Olitsky, P.K. and F.L. Gates. 1921. Experimental studies of the naso-pharyngeal secretions from influenza patients. J. Exp. Med. 33: 713–729.PubMedGoogle Scholar
  71. Oliver, W.W. and W.B. Wherry. 1921. Notes on some bacterial parasites of the human mucous membranesq. J. Infect. Dis. 28: 341–344.Google Scholar
  72. Paster, B.J., F.E. Dewhirst, I. Olsen and G.J. Fraser. 1994. Phylogeny of Bacteroides, Prevotella, and Porphyromonas spp. and related bacteria. J. Bacteriol. 176: 725–732.PubMedGoogle Scholar
  73. Patel, G.B. and C. Breuil. 1981. Isolation and characterization of Bacteroides polypragmatus sp. nov., an isolate which produces carbon dioxide, hydrogen and acetic acid during growth on various organic substrates. In Advances in Biotechnology (edited by Moo-Young and Robinson). Pergamon Press, Toronto, pp. 291–296.Google Scholar
  74. Patel, G.B. and C. Breuil. 1982. In Validation of the publication of new names and new combinations previously effectively published outside the IJSB. List no. 8. Int. J. Syst. Bacteriol. 32: 266–268.Google Scholar
  75. Patrick, S. 2002. Bacteroides. In Molecular Medical Microbiology (edited by Sussman). Academic Press, London, pp. 1921–1948.Google Scholar
  76. Podglajen, I., J. Breuil, I. Casin and E. Collatz. 1995. Genotypic identification of two groups within the species Bacteroides fragilis by ribotyping and by analysis of PCR-generated fragment patterns and insertion sequence content. J. Bacteriol. 177: 5270–5275.PubMedGoogle Scholar
  77. Prévot, A.R. 1938. Etudes de systematique bacterienne. III. Invalidite du genre Bacteroides Castellani et Chalmers demembrement et reclassification. Ann. Inst. Pasteur 20: 285–307.Google Scholar
  78. Prévot, A.R., P. Ardieux, L. Joubert and F. De Cadore. 1956. Recherches sur Fusiformis nucleatus (Knorr) et son pouvoir pathogène pour l’homme et les animaux. Ann. Inst. Pasteur (Paris) 91: 787–798.Google Scholar
  79. Pribram, E. 1933. Klassification der Schizomyceten. F. Deuticke, Leipzig, pp. 1–143.Google Scholar
  80. Rautio, M., E. Eerola, M.L. Vaisanen-Tunkelrott, D. Molitoris, P. Lawson, M.D. Collins and H. Jousimies-Somer. 2003. Reclassification of Bacteroides putredinis (Weinberg et al. 1937) in a new genus Alistipes gen. nov., as Alistipes putredinis comb. nov., and description of Alistipes finegoldii sp. nov., from human sources. Syst. Appl. Microbiol. 26: 182–188.PubMedGoogle Scholar
  81. Roy, T.E. and C.D. Kelly. 1939. Genus VIII. Bacteroides Castellani and Charmers. In Bergey’s Manual of Determinative Bacteriology, 5th edn (edited by Bergey, Breed, Murray and Hitchens). Williams & Wilkins, Baltimore, pp. 569–570.Google Scholar
  82. Ruimy, R., I. Podglajen, J. Breuil, R. Christen and E. Collatz. 1996. A recent fixation of cfiA genes in a monophyletic cluster of Bacteroides fragilis is correlated with the presence of multiple insertion elements. J. Bacteriol. 178: 1914–1918.PubMedGoogle Scholar
  83. Sakamoto, M., M. Suzuki, M. Umeda, I. Ishikawa and Y. Benno. 2002. Reclassification of Bacteroides forsythus (Tanner et al. 1986) as Tannerella forsythensis corrig., gen. nov., comb. nov. Int. J. Syst. Evol. Microbiol. 52: 841–849.PubMedGoogle Scholar
  84. Sakamoto, M. and Y. Benno. 2006. Reclassification of Bacteroides distasonis, Bacteroides goldsteinii and Bacteroides merdae as Parabacteroides distasonis gen. nov., comb. nov., Parabacteroides goldsteinii comb. nov. and Parabacteroides merdae comb. nov. Int. J. Syst. Evol. Microbiol. 56: 1599–1605.PubMedGoogle Scholar
  85. Sakamoto, M., M. Kitahara and Y. Benno. 2007. Parabacteroides johnsonii sp. nov., isolated from human faeces. Int. J. Syst. Evol. Microbiol. 57: 293–296.PubMedGoogle Scholar
  86. Schleifer, K.H. and O. Kandler. 1972. Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol. Rev. 36: 407–477.PubMedGoogle Scholar
  87. Scholten-Koerselman, I., F. Houwaard, P. Janssen and A.J.B. Zehnder. 1986. Bacteroides xylanolyticus sp. nov., a xylanolytic bacterium from methane producing cattle manure. Antonie van Leeuwenhoek 52: 543–554.PubMedGoogle Scholar
  88. Scholten-Koerselman, I., F. Houwaard, P. Janssen and A.J.B. Zehnder. 1988. In Validation of the publication of new names and new combinations previously effectively published outside the IJSB. List no. 24. Int. J. Syst. Bacteriol. 38: 136–137.Google Scholar
  89. Sears, C.L., L.L. Myers, A. Lazenby and R.L. Van Tassell. 1995. Enterotoxigenic Bacteroides fragilis. Clin. Infect. Dis. 20 Suppl 2: S142–S148.PubMedGoogle Scholar
  90. Sebald, M. 1962. Étude sur les bactéries anaérobies gram-négatives asporulées. Thèses de l’Université Paris, Imprimerie Barnéoud S.A., Laval, France.Google Scholar
  91. Shah, H.N. and M. Collins. 1981. Bacteroides buccalis, sp. nov., Bacteroides denticola, sp. nov., and Bacteroides pentosaceus, sp. nov., new species of the genus Bacteroides from the oral cavity. Zentralbl. Bakteriol. Parasitenkd. Infektionskr. Hyg. I Abt. Orig. C. 2: 235–241.Google Scholar
  92. Shah, H.N. and M.D. Collins. 1982a. Reclassification of Bacteroides multiacidus (Mitsuoka, Terada, Watanabe and Uchida) in a new genus Mitsuokella, as Mitsuokella multiacidus comb. nov. Zentralbl. Bakteriol. Parasitenkd. Infektionskr. Hyg. I Abt. Orig. C. 3: 491–494.Google Scholar
  93. Shah, H.N. and M.D. Collins. 1982b. Reclassification of Bacteroides hypermegas (Harrison and Hansen) in a new genus Megamonas, as Megamonas hypermegas comb. nov. Zentralbl. Bakteriol. Parasitenkd. Infektionskr. Hyg. Abt. 1 Orig. C3: 394–398.Google Scholar
  94. Shah, H.N. and M.D. Collins. 1983. Genus Bacteroides. A chemotaxonomical perspective. J. Appl. Bacteriol. 55: 403–416.PubMedGoogle Scholar
  95. Shah, H.N., M.D. Collins, J. Watabe and T. Mitsuoka. 1985. Bacteroides oulorum sp. nov., a nonpigmented saccharolytic species from the oral cavity. Int. J. Syst. Bacteriol. 35: 193–197.Google Scholar
  96. Shah, H.N. and M.D. Collins. 1986. Reclassification of Bacteroides furcosus Veillon and Zuber (Hauduroy, Ehringer, Urbain, Guillot and Magrou) in a new genus Anaerorhabdus, as Anaerorhabdus furcosus comb. nov. Syst. Appl. Microbiol. 8: 86–88.Google Scholar
  97. Shah, H.N. and M.D. Collins. 1986. In Validation of the publication of new names and new combinations previously effectively published outside the IJSB. List no. 22. Int. J. Syst. Bacteriol. 36: 573–576.Google Scholar
  98. Shah, H.N. and M.D. Collins. 1988. Proposal for reclassification of Bacteroides asaccharolyticus, Bacteroides gingivalis, and Bacteroides endodontalis in a new genus, Porphyromonas. Int. J. Syst. Bacteriol. 38: 128–131.Google Scholar
  99. Shah, H.N. and M.D. Collins. 1989. Proposal to restrict the genus Bacteroides (Castellani and Chalmers) to Bacteroides fragilis and closely related species. Int. J. Syst. Bacteriol. 39: 85–87.Google Scholar
  100. Shah, H.N. and D.M. Collins. 1990. Prevotella, a new genus to include Bacteroides melaninogenicus and related species formerly classified in the genus Bacteroides. Int. J. Syst. Bacteriol. 40: 205–208.PubMedGoogle Scholar
  101. Shah, H.N., M.D. Collins, I. Olsen, B.J. Paster and F.E. Dewhirst. 1995. Reclassification of Bacteroides levii (Holdeman, Cato, and Moore) in the genus Porphyromonas, as Porphyromonas levii comb. nov. Int. J. Syst. Bacteriol. 45: 586–588.Google Scholar
  102. Slots, J. and R.J. Genco. 1980. Bacteroides melaninogenicus subsp. macacae: new subspecies from monkey periodontopathic indigenous microflora. Int. J. Syst. Bacteriol. 30: 82–85.Google Scholar
  103. Snydman, D.R., N.V. Jacobus, L.A. McDermott, R. Ruthazer, E.J. Goldstein, S.M. Finegold, L.J. Harrell, D.W. Hecht, S.G. Jenkins, C. Pierson, R. Venezia, J. Rihs and S.L. Gorbach. 2002. National survey on the susceptibility of Bacteroides fragilis Group: report and analysis of trends for 1997–2000. Clin. Infect. Dis. 35: S126–134.PubMedGoogle Scholar
  104. Song, Y., C. Liu, J. Lee, M. Bolanos, M.L. Vaisanen and S.M. Finegold. 2005a. “Bacteroides goldsteinii sp. nov.” isolated from clinical specimens of human intestinal origin. J. Clin. Microbiol. 43: 4522–4527.PubMedGoogle Scholar
  105. Song, Y., C. Liu, J. Lee, M. Bolaños, M.-L. Vaisanen and S.M. Finegold. 2006. In List of new names and new combinations previously effectively, but not validly, published. List no. 108. Int. J. Syst. Evol. Microbiol. 56: 499–500.Google Scholar
  106. Song, Y.L., C.X. Liu, M. McTeague and S.M. Finegold. 2004. “Bacteroides nordii” sp. nov. and “Bacteroides salyersae” sp. nov. isolated from clinical specimens of human intestinal origin. J. Clin. Microbiol. 42: 5565–5570.PubMedGoogle Scholar
  107. Song, Y.L., C.X. Liu, M. McTeague and S.M. Finegold. 2005b. In Validation of publication of new names and new combinations previously effectively published outside the IJSEM. List no. 103. Int. J. Syst. Evol. Microbiol. 55: 983–985.Google Scholar
  108. Soutschek, E., J. Winter, F. Schindler and O. Kandler. 1984. Acetomicrobium flavidum, gen. nov., sp. nov., a thermophilic, anaerobic bacterium from sewage-sludge, forming acetate, CO2 and H2 from glucose. Syst. Appl. Microbiol. 5: 377–390.Google Scholar
  109. Soutschek, E., J. Winter, F. Schindler and O. Kandler. 1985. In Validation of the publication of new names and new combinations previously effectively published outside the IJSB. List no.17. Int. J. Syst. Bacteriol. 35: 223–225.Google Scholar
  110. Stackebrandt, E. and H. Hippe. 1986. Transfer of Bacteroides amylophilus to a new genus Ruminobacter gen. nov., nom. rev. as Ruminobacter amylophilus comb. nov. Syst. Appl. Microbiol. 8: 204–207.Google Scholar
  111. Tanner, A.C.R., S. Badger, C.H. Lai, M.A. Listgarten, R.A. Visconti and S.S. Socransky. 1981. Wolinella gen-nov, Wolinella succinogenes (Vibrio succinogenes Wolin et al.) comb. nov., and description of Bacteroides gracilis sp. nov., Wolinella recta sp. nov., Campylobacter concisus sp. nov., and Eikenella corrodens from humans with periodontal disease. Int. J. Syst. Bacteriol. 31: 432–445.Google Scholar
  112. Tanner, A.C.R., M.A. Listgarten, J.L. Ebersole and M.N. Strezempko. 1986. Bacteroides forsythus sp. nov., a slow-growing, fusiform Bacteroides sp. from the human oral cavity. Int. J. Syst. Bacteriol. 36: 213–221.Google Scholar
  113. Tissier, H. 1908. Recherches sur la flore intestinale normale des enfants agés d’un an à cinq ans. Ann. Inst. Pasteur (Paris) 22: 189–208.Google Scholar
  114. Topley, W.W.C. and G.S. Wilson. 1929. The Principles of Bacteriology and Immunity, vol. 1. Edward Arnold, London.Google Scholar
  115. Van Steenbergen, T.J.M., A.J. Van Winkelhoff, D. Mayrand, D. Grenier and J. De Graaff. 1984. Bacteroides endodontalis sp. nov., an asaccharolytic black-pigmented bacteriodes species from infected dental root canals. Int. J. Syst. Bacteriol. 34: 118–120.Google Scholar
  116. Vandamme, P., M.I. Daneshvar, F.E. Dewhirst, B.J. Paster, K. Kersters, H. Goossens and C.W. Moss. 1995. Chemotaxonomic analyses of Bacteroides gracilis and Bacteroides ureolyticus and reclassification of B. gracilis as Campylobacter gracilis comb. nov. Int. J. Syst. Bacteriol. 45: 145–152.PubMedGoogle Scholar
  117. Veillon, A. and A. Zuber. 1898. Recherches sur quelques microbes strictement anaérobies et leur rôle en pathologie. Arch. Med. Exp. 10: 517–545.Google Scholar
  118. Watabe, J., Y. Benno and T. Mitsuoka. 1983. Taxonomic study of Bacteroides oralis and related organisms and proposal of Bacteroides veroralis sp. nov. Int. J. Syst. Bacteriol. 33: 57–64.Google Scholar
  119. Weinberg, M., R. Nativelle and A.R. Prévot. 1937. Les microbes anaérobies. Masson et Cie, Paris.Google Scholar
  120. Werner, H., G. Rintelen and H. Kunstek-Santos. 1975. A new butyric acid-producing Bacteroides species: B. splanchnicus n. sp. Zentralbl. Bakteriol. Parasitenkd. Infektionskr. Hyg. Abt. I 231: 133–144.Google Scholar
  121. Wexler, H.M. and S.M. Finegold. 1998. Current susceptibility patterns of anaerobic bacteria. Yonsei Med. J. 39: 495–501.PubMedGoogle Scholar
  122. Whitehead, T.R., M.A. Cotta, M.D. Collins, E. Falsen and P.A. Lawson. 2005. Bacteroides coprosuis sp. nov., isolated from swine-manure storage pits. Int. J. Syst. Evol. Microbiol. 55: 2515–2518.PubMedGoogle Scholar
  123. Winter, J., E. Braun and H.P. Zabel. 1987. Acetomicrobium faecalis spec. nov., a strictly anaerobic bacterium from sewage sludge, producing ethanol from pentoses. Syst. Appl. Microbiol. 9: 71–76.Google Scholar
  124. Winter, J., E. Braun and H.P. Zabel. 1988. In Validation of the publication of new names and new combinations previously effectively published outside the IJSB. List no. 24. Int. J. Syst. Bacteriol. 38: 136–137.Google Scholar
  125. Woese, C.R. 1987. Bacterial evolution. Microbiol. Rev. 51: 221–271.PubMedGoogle Scholar
  126. Wolin, E.A., M.G. Wolin and R.S. Wolfe. 1963. Formation of methane by bacterial extracts. J. Biol. Chem. 238: 2882–2886.PubMedGoogle Scholar
  127. Wu, C.C., J.L. Johnson, W.E.C. Moore and L.V.H. Moore. 1992. Emended descriptions of Prevotella denticola, Prevotella loescheii, Prevotella veroralis, and Prevotella melaninogenica. Int. J. Syst. Bacteriol. 42: 536–541.PubMedGoogle Scholar
  128. Xu, J., M.K. Bjursell, J. Himrod, S. Deng, L.K. Carmichael, H.C. Chiang, L.V. Hooper and J.I. Gordon. 2003. A genomic view of the human–Bacteroides thetaiotaomicron symbiosis. Science 299: 2074–2076.PubMedGoogle Scholar
  129. Achenbach, H., W. Kohl and H. Reichenbach. 1978. The flexirubin-type pigments – a novel class of natural pigments from gliding bacteria. Rev. Latinoam. Quim. 9: 111–124.Google Scholar
  130. Bachmann, B.J. 1955. Studies on Cytophaga fermentans, n.sp., a facultatively anaerobic lower myxobacterium. J. Gen. Microbiol. 13: 541–551.PubMedGoogle Scholar
  131. Denger, K. and B. Schink. 1995. New halo- and thermotolerant fermenting bacteria producing surface-active compounds. Appl. Microbiol. Biotechnol. 44: 161–166.Google Scholar
  132. Denger, K., R. Warthmann, W. Ludwig and B. Schink. 2002. Anaerophaga thermohalophila gen. nov., sp. nov., a moderately thermohalophilic, strictly anaerobic fermentative bacterium. Int. J. Syst. Evol. Microbiol. 52: 173–178.PubMedGoogle Scholar
  133. Haack, S.K. and J.A. Breznak. 1993. Cytophaga xylanolytica sp. nov., a xylan-degrading, anaerobic gliding bacterium. Arch. Microbiol. 159: 6–15.Google Scholar
  134. Hosoya, R. and K. Hamana. 2004. Distribution of two triamines, spermidine and homospermidine, and an aromatic amine, 2-phenylethylamine, within the phylum Bacteroidetes. J. Gen. Appl. Microbiol. 50: 255–260.PubMedGoogle Scholar
  135. Kevbrin, V.V., T.N. Zhilina and G.A. Zavarzin. 1999. Decomposition of cellulose by the anaerobic alkaliphilic microbial community. Microbiology (En. transl. from Mikrobiologiya) 68: 601–609.Google Scholar
  136. Leadbetter, E.R., S.C. Holt and S.S. Socransky. 1979. Capnocytophaga: new genus of Gram-negative gliding bacteria. 1. General characteristics, taxonomic considerations and significance. Arch. Microbiol. 122: 9–16.PubMedGoogle Scholar
  137. Nakagawa, Y. and K. Yamasato. 1996. Emendation of the genus Cytophaga and transfer of Cytophaga agarovorans and Cytophaga salmonicolor to Marinilabilia gen. nov: phylogenetic analysis of the Flavobacterium cytophaga complex. Int. J. Syst. Bacteriol. 46: 599–603.Google Scholar
  138. Nakagawa, Y., K. Hamana, T. Sakane and K. Yamasato. 1997. Reclassification of Cytophaga aprica (Lewin 1969) Reichenbach 1989 in Flammeovirga gen. nov. as Flammeovirga aprica comb. nov. and of Cytophaga diffluens (ex Stanier 1940; emend. Lewin 1969) Reichenbach 1989 in Persicobacter gen. nov. as Persicobacter diffluens comb. nov. Int. J. Syst. Bacteriol. 47: 220–223.Google Scholar
  139. Nedashkovskaya, O.I., S.B. Kim, M. Vancanneyt, C. Snauwaert, A.M. Lysenko, M. Rohde, G.M. Frolova, N.V. Zhukova, V.V. Mikhailov, K.S. Bae, H.W. Oh and J. Swings. 2006. Formosa agariphila sp. nov., a budding bacterium of the family Flavobacteriaceae isolated from marine environments, and emended description of the genus Formosa. Int. J. Syst. Evol. Microbiol. 56: 161–167.PubMedGoogle Scholar
  140. Reichenbach, H., H. Kleinig and H. Achenbach. 1974. The pigments of Flexibacter elegans: novel and chemosystematically useful compounds. Arch. Microbiol. 101: 131–144.Google Scholar
  141. Reichenbach, H. and M. Dworkin. 1981. The order Cytophagales. In The Prokaryotes: a Handbook on Habitats, Isolation, and Identification of Bacteria (edited by Starr, Stolp, Trüper, Balows and Schlegel). Springer, Berlin, pp. 356–379.Google Scholar
  142. Reichenbach, H. 1989. Genus I. Cytophaga. In Bergey’s Manual of Systematic Bacteriology, vol. 1 (edited by Staley, Bryant, Pfennig and Holt). Williams & Wilkins, Baltimore, pp. 2015–2050.Google Scholar
  143. Reichenbach, H. 1992. The order Cytophagales. In The Prokaryotes: a Handbook on the Biology of Bacteria: Ecophysiology, Isolation, Identification, Applications, 2nd edn, vol. 4 (edited by Balows, Trüper, Dworkin, Harder and Schleifer). Springer, New York, pp. 3631–3675.Google Scholar
  144. Staley, J.T., M.P. Bryant, N. Pfennig and J.G. Holt. 1989. Bergey’s Manual of Systematic Bacteriology, vol. 3. Williams & Wilkins, Baltimore.Google Scholar
  145. Suzuki, M., Y. Nakagawa, S. Harayama and S. Yamamoto. 1999. Phylogenetic analysis of genus Marinilabilia and related bacteria based on the amino acid sequences of GyrB and emended description of Marinilabilia salmonicolor with Marinilabilia agarovorans as its subjective synonym. Int. J. Syst. Bacteriol. 49: 1551–1557.PubMedGoogle Scholar
  146. Veldkamp, H. 1961. A study of two marine agar-decomposing, facultatively anaerobic myxobacteria. J. Gen. Microbiol. 26: 331–342.PubMedGoogle Scholar
  147. Widdel, F. and F. Bak. 1992. Gram-negative mesophilic sulfate-reducing bacteria. In The Prokaryotes: a Handbook on the Biology of Bacteria: Ecophysiology, Isolation, Identification, Applications, 2nd edn, vol. 4 (edited by Balows, Trüper, Dworkin, Harder and Schleifer). Springer, New York, pp. 3352–3378.Google Scholar
  148. Zhilina, T.N., R. Appel, C. Probian, E.L. Brossa, J. Harder, F. Widdel and G.A. Zavarzin. 2004. Alkaliflexus imshenetskii gen. nov. sp. nov., a new alkaliphilic gliding carbohydrate-fermenting bacterium with propionate formation from a soda lake. Arch. Microbiol. 182: 244–253.PubMedGoogle Scholar
  149. Zhilina, T.N., R. Appel, C. Probian, E. Llobet Brossa, J. Harder, F. Widdel and G.A. Zavarzin. 2005. In Validation of publication of new names and new combinations previously effectively published outside the IJSEM. List no. 104. Int. J. Syst. Evol. Microbiol. 55: 1395–1397.Google Scholar
  150. Cato, E.P., L.V. Holdeman and W.E.C. Moore. 1979. Proposal of neotype strains for seven non-saccharolytic Bacteroides species. Int. J. Syst. Bacteriol. 29: 427–434.Google Scholar
  151. Collins, M.D., H.N. Shah and T. Mitsuoka. 1985a. In Validation of the publication of new names and new combinations previously effectively published outside the IJSB. List no. 18. Int. J. Syst. Bacteriol. 35: 375–376.Google Scholar
  152. Collins, M.D., H.N. Shah and T. Mitsuoka. 1985b. Reclassification of Bacteroides microfusus (Kaneuchi and Mitsuoka) in a new genus Rikenella, as Rikenella microfusus comb. nov. Syst. Appl. Microbiol. 6: 79–81.Google Scholar
  153. Eggerth, A.H. and B.H. Gagnon. 1933. The Bacteroides of human feces. J. Bacteriol. 25: 389–413.PubMedGoogle Scholar
  154. Holdeman, L.V., R.W. Kelly and W.E.C. Moore. 1984. Genus I. Bacteroides. In Bergey’s Manual of Systematic Bacteriology, vol. 1 (edited by Krieg and Holt). Williams & Wilkins, Baltimore, pp. 604–631.Google Scholar
  155. Jousimies-Somer, H.R., P. Summanen, D.M. Citron, E.J. Baron, H.M. Wexler and S.M. Finegold. 2002. Wadsworth-KTL Anaerobic Bacteriology Manual. Star Publishing Company, Belmont, CA.Google Scholar
  156. Kaneuchi, C. and T. Mitsuoka. 1978. Bacteroides microfusus, a new species from intestines of calves, chickens, and Japanese quails. Int. J. Syst. Bacteriol. 28: 478–481.Google Scholar
  157. Kelly, C.D. 1957. Genus I. Bacteroides Castellani and Chalmers 1919. In Bergey’s Manual of Determinative Bacteriology, 7th edn (edited by Breed, Murray and Smith). Williams & Wilkins, Baltimore, pp. 424–436.Google Scholar
  158. Mitsuoka, T., T. Sega and S. Yamamoto. 1965. Improved methodology of qualitative and quantitative analysis of the intestinal flora of man and animals. Zentralbl. Bakteriol. [Orig.] 195: 455–469.Google Scholar
  159. Ohkuma, M., S. Noda, Y. Hongoh and T. Kudo. 2002. Diverse bacteria related to the bacteroides subgroup of the CFB phylum within the gut symbiotic communities of various termites. Biosci. Biotechnol. Biochem. 66: 78–84.PubMedGoogle Scholar
  160. Paster, B.J., F.E. Dewhirst, I. Olsen and G.J. Fraser. 1994. Phylogeny of Bacteroides, Prevotella, and Porphyromonas spp. and related bacteria.J. Bacteriol. 176: 725–732.PubMedGoogle Scholar
  161. Prévot, A.R. 1938. Etudes de systematique bacterienne. III. Invalidite du genre Bacteroides Castellani et Chalmers demembrement et reclassification. Ann. Inst. Pasteur 20: 285–307.Google Scholar
  162. Rautio, M., M. Lonnroth, H. Saxen, R. Nikku, M.L. Vaisanen, S.M. Finegold and H. Jousimies-Somer. 1997. Characteristics of an unusual anaerobic pigmented gram-negative rod isolated from normal and inflamed appendices. Clin. Infect. Dis. 25 Suppl 2: S107–S110.PubMedGoogle Scholar
  163. Rautio, M., H. Saxen, A. Siitonen, R. Nikku and H. Jousimies-Somer. 2000. Bacteriology of histopathologically defined appendicitis in children. Pediatr. Infect. Dis. J. 19: 1078–1083.PubMedGoogle Scholar
  164. Rautio, M., E. Eerola, M.L. Vaisanen-Tunkelrott, D. Molitoris, P. Lawson, M.D. Collins and H. Jousimies-Somer. 2003a. Reclassification of Bacteroides putredinis (Weinberg et al., 1937) in a new genus Alistipes gen. nov., as Alistipes putredinis comb. nov., and description of Alistipes finegoldii sp. nov., from human sources. Syst. Appl. Microbiol. 26: 182–188.PubMedGoogle Scholar
  165. Rautio, M., E. Eerola, M.L. Väisänen-Tunkelrott, D. Molitoris, P. ­Lawson, M.D. Collins and H.R. Jousimies-Somer. 2003b. In Validation of the publication of new names and new combinations previously effectively published outside the IJSEM. List no. 94. Int. J. Syst. Evol. Microbiol. 53: 1701–1702.Google Scholar
  166. Song, Y., C. Liu, M. Bolanos, J. Lee, M. McTeague and S.M. Finegold. 2005. Evaluation of 16S rRNA sequencing and reevaluation of a short biochemical scheme for identification of clinically significant Bacteroides species. J. Clin. Microbiol. 43: 1531–1537.PubMedGoogle Scholar
  167. Song, Y., E. Kononen, M. Rautio, C. Liu, A. Bryk, E. Eerola and S.M. Finegold. 2006. Alistipes onderdonkii sp. nov. and Alistipes shahii sp. nov., of human origin. Int. J. Syst. Evol. Microbiol. 56: 1985–1990.PubMedGoogle Scholar
  168. Weinberg, M., R. Nativelle and A.R. Prévot. 1937. Les microbes anaérobies. Masson et Cie, Paris.Google Scholar
  169. Willis, A.T. 1960. Anaerobic Bacteriology in Clinical Medicine. Butterworths, London.Google Scholar
  170. Holt, S.C. and J.L. Ebersole. 2005. Porphyromonas gingivalis, Treponema denticola, and Tannerella forsythia: the “red complex”, a prototype polybacterial pathogenic consortium in periodontitis. Periodontol. 2000 38: 72–122.Google Scholar
  171. Socransky, S.S. and A.D. Haffajee. 2005. Periodontal microbial ecology. Periodontol. 2000 38: 135–187.Google Scholar
  172. Tanner, A.C. and J. Izard. 2006. Tannerella forsythia, a periodontal pathogen entering the genomic era. Periodontol. 2000 42: 88–113.Google Scholar
  173. Aldridge, K.E., D. Ashcraft, K. Cambre, C.L. Pierson, S.G. Jenkins and J.E. Rosenblatt. 2001. Multicenter survey of the changing in vitroantimicrobial susceptibilities of clinical isolates of Bacteroides fragilis group, Prevotella, Fusobacterium, Porphyromonas, and Peptostreptococcus species. Antimicrob. Agents Chemother. 45: 1238–1243.PubMedGoogle Scholar
  174. Aronson, N.E. and C.J. Zbick. 1988. Dysgonic fermenter 3 bacteremia in a neutropenic patient with acute lymphocytic leukemia. J. Clin. Microbiol. 26: 2213–2215.PubMedGoogle Scholar
  175. Bangsborg, J.M., W. Frederiksen and B. Bruun. 1990. Dysgonic fermenter 3-associated abscess in a diabetic patient. J. Infect. 20: 237–240.PubMedGoogle Scholar
  176. Bernard, K., C. Cooper, S. Tessier and E.P. Ewan. 1991. Use of chemotaxonomy as an aid to differentiate among Capnocytophaga species, CDC group DF-3, and aerotolerant strains of Leptotrichia buccalis. J. Clin. Microbiol. 29: 2263–2265.PubMedGoogle Scholar
  177. Blum, R.N., C.D. Berry, M.G. Phillips, D.L. Hamilos and E.W. Koneman. 1992. Clinical illnesses associated with isolation of dysgonic fermenter 3 from stool samples. J. Clin. Microbiol. 30: 396–400.PubMedGoogle Scholar
  178. Braham, P.H. and B.J. Moncla. 1992. Rapid presumptive identification and further characterization of Bacteroides forsythus. J. Clin. Microbiol. 30: 649–654.PubMedGoogle Scholar
  179. Brondz, I. and I. Olsen. 1991. Multivariate analyses of cellular fatty acids in Bacteroides, Prevotella, Porphyromonas, Wolinella, and Campylobacter spp. J. Clin. Microbiol. 29: 183–189.PubMedGoogle Scholar
  180. Chen, S. and X. Dong. 2005. Proteiniphilum acetatigenes gen. nov., sp. nov., from a UASB reactor treating brewery wastewater. Int. J. Syst. Evol. Microbiol. 55: 2257–2261.PubMedGoogle Scholar
  181. Chen, T., K. Abbey, W.J. Deng and M.C. Cheng. 2005. The bioinformatics resource for oral pathogens. Nucleic Acids Res. 33: W734–740.PubMedGoogle Scholar
  182. Collins, M.D., D.N. Love, J. Karjalainen, A. Kanervo, B. Forsblom, A. Willems, S. Stubbs, E. Sarkiala, G.D. Bailey, D.I. Wigney and H. Jousimies-Somer. 1994. Phylogenetic analysis of members of the genus Porphyromonas and description of Porphyromonas cangingivalis sp. nov. and Porphyromonas cansulci sp. nov. Int. J. Syst. Bacteriol. 44: 674–679.PubMedGoogle Scholar
  183. Conrads, G., S.E. Gharbia, K. Gulabivala, F. Lampert and H.N. Shah. 1997. The use of a 16S rDNA directed PCR for the detection of endodontopathogenic bacteria. J. Endod. 23: 433–438.PubMedGoogle Scholar
  184. Coykendall, A.L., F.S. Kaczmarek and J. Slots. 1980. Genetic heterogeneity in Bacteroides asaccharolyticus (Holdeman and Moore 1970) Finegold and Barnes 1977 (Approved Lists, 1980) and proposal of Bacteroides gingivalis sp. nov. and Bacteroides macacae (Slots and Genco) comb. nov. Int. J. Syst. Bacteriol. 30: 559–564.Google Scholar
  185. Daneshvar, M.I., D.G. Hollis and C.W. Moss. 1991. Chemical characterization of clinical isolates which are similar to CDC group DF-3 bacteria. J. Clin. Microbiol. 29: 2351–2353.PubMedGoogle Scholar
  186. de Lillo, A., V. Booth, L. Kyriacou, A.J. Weightman and W.G. Wade. 2004. Culture-independent identification of periodontitis-associated Porphyromonas and Tannerella populations by targeted molecular analysis. J. Clin. Microbiol. 42: 5523–5527.PubMedGoogle Scholar
  187. Dewhirst, F.E., C.C. Chien, B.J. Paster, R.L. Ericson, R.P. Orcutt, D.B. Schauer and J.G. Fox. 1999. Phylogeny of the defined murine microbiota: altered Schaedler flora. Appl. Environ. Microbiol. 65: 3287–3292.PubMedGoogle Scholar
  188. Enersen, M., I. Olsen, A.J. van Winkelhoff and D.A. Caugant. 2006. Multilocus sequence typing of Porphyromonas gingivalis strains from different geographic origins. J. Clin. Microbiol. 44: 35–41.PubMedGoogle Scholar
  189. Finegold, S.M. and E.M. Barnes. 1977. Report of the ICSB Taxonomic subcommittee on Gram-negative anaerobic rods. Proposal that the saccharolytic and asaccharolytic strains at present classified in the species Bacteroides melaninogenicus (Oliver and Wherry) be reclassified into two species as Bacteroides melaninogenicus and Bacteroides asaccharolyticus. Int. J. Syst. Bacteriol. 27: 388–391.Google Scholar
  190. Finegold, S.M., M.L. Vaisanen, M. Rautio, E. Eerola, P. Summanen, D. Molitoris, Y.L. Song, C.X. Liu and H. Jousimies-Somer. 2004. Porphyromonas uenonis sp. nov., a pathogen for humans distinct from P. asaccharolytica and P. endodontalis. J. Clin. Microbiol. 42: 5298–5301.PubMedGoogle Scholar
  191. Finegold, S.M., M.L. Vaisanen, M. Rautio, E. Eerola, P. Summanen, D. Molitoris, Y.L. Song, C. Liu and H. Jousimies-Somer. 2005. In Validation of publication of new names and new combinations previously effectively published outside the IJSEM. List no. 102. Int. J. Syst. Bacteriol. 55: 547–549.Google Scholar
  192. Fouad, A.F., J. Barry, M. Caimano, M. Clawson, Q. Zhu, R. Carver, K. Hazlett and J.D. Radolf. 2002. PCR-based identification of bacteria associated with endodontic infections. J. Clin. Microbiol. 40: 3223–3231.PubMedGoogle Scholar
  193. Fournier, D., C. Mouton, P. Lapierre, T. Kato, K. Okuda and C. Menard. 2001. Porphyromonas gulae sp. nov., an anaerobic, Gram-negative coccobacillus from the gingival sulcus of various animal hosts. Int. J. Syst. Evol. Microbiol. 51: 1179–1189.PubMedGoogle Scholar
  194. Gill, V.J., L.B. Travis and D.Y. Williams. 1991. Clinical and microbiological observations on CDC group DF-3, a gram-negative coccobacillus. J. Clin. Microbiol. 29: 1589–1592.PubMedGoogle Scholar
  195. Gomes, B.P., R.C. Jacinto, E.T. Pinheiro, E.L. Sousa, A.A. Zaia, C.C. Ferraz and F.J. Souza-Filho. 2005. Porphyromonas gingivalis, Porphyromonas endodontalis, Prevotella intermedia and Prevotella nigrescens in endodontic lesions detected by culture and by PCR. Oral Microbiol. Immunol. 20: 211–215.PubMedGoogle Scholar
  196. Grabowski, A., B.J. Tindall, V. Bardin, D. Blanchet and C. Jeanthon. 2005. Petrimonas sulfuriphila gen. nov., sp. nov., a mesophilic fermentative bacterium isolated from a biodegraded oil reservoir. Int. J. Syst. Evol. Microbiol. 55: 1113–1121.PubMedGoogle Scholar
  197. Grob, R., R. Zbinden, C. Ruef, M. Hackenthal, I. Diesterweg, M. Altwegg and A. van Graevenitz. 1999. Septicemia caused by Dysgonomonas fermenter 3 in a severely immunocompromised patient and isolation of the same micro-organism from a stool specimen. J. Clin. Microbiol. 37: 1617–1618.PubMedGoogle Scholar
  198. Hansen, P.S., T.G. Jensen and B. Gahrn-Hansen. 2005. Dysgonomonas capnocytophagoides bacteraemia in a neutropenic patient treated for acute myeloid leukaemia. APMIS 113: 229–231.PubMedGoogle Scholar
  199. Haraszthy, V.I., J.J. Zambon, M. Trevisan, M. Zeid and R.J. Genco. 2000. Identification of periodontal pathogens in atheromatous plaques. J. Periodontol. 71: 1554–1560.PubMedGoogle Scholar
  200. Hardham, J., K. Dreier, J. Wong, C. Sfintescu and R.T. Evans. 2005. Pigmented-anaerobic bacteria associated with canine periodontitis. Vet. Microbiol. 106: 119–128.PubMedGoogle Scholar
  201. Heiner, A.M., J.A. DiSario, K. Carroll, S. Cohen, T.G. Evans and A.O. Shigeoka. 1992. Dysgonic fermenter-3: a bacterium associated with diarrhea in immunocompromised hosts. Am. J. Gastroenterol. 87: 1629–1630.PubMedGoogle Scholar
  202. Hirasawa, M. and K. Takada. 1994. Porphyromonas gingivicanis sp. nov. and Porphyromonas crevioricanis sp. nov., isolated from beagles. Int. J. Syst. Bacteriol. 44: 637–640.PubMedGoogle Scholar
  203. Hofstad, T., I. Olsen, E.R. Eribe, E. Falsen, M.D. Collins and P.A. Lawson. 2000. Dysgonomonas gen. nov. to accommodate Dysgonomonas gadei sp. nov., an organism isolated from a human gall bladder, and Dysgonomonas capnocytophagoides (formerly CDC group DF-3). Int. J. Syst. Evol. Microbiol. 50: 2189–2195.PubMedGoogle Scholar
  204. Holdeman, L.V. and W.E.C. Moore. 1970. Bacteroides. Outline of Clinical Methods in Anaerobic Bacteriology, 2nd revn (edited by Cato, Cummins, Holdeman, Johnson, Moore, Smibert and Smith). Virginia Polytechnic Institute Anaerobe Laboratory, Blacksburg, VA, pp. 57–66.Google Scholar
  205. Holdeman, L.V., R.W. Kelley and W.E.C. Moore. 1984. Family I. Bacteroidaceae Pribram 1933, 10AL. In Bergey’s Manual of Systematic Bacteriology, vol. 1 (edited by Krieg and Holt). Williams & Wilkins, Baltimore, pp. 602–603.Google Scholar
  206. Hongoh, Y., M. Ohkuma and T. Kudo. 2003. Molecular analysis of bacterial microbiota in the gut of the termite Reticulitermes speratus (Isoptera; Rhinotermitidae). FEMS Microbiol. Ecol. 44: 231–242.PubMedGoogle Scholar
  207. Hongoh, Y., P. Deevong, T. Inoue, S. Moriya, S. Trakulnaleamsai, M. Ohkuma, C. Vongkaluang, N. Noparatnaraporn and T. Kudo. 2005. Intra- and interspecific comparisons of bacterial diversity and community structure support coevolution of gut microbiota and termite host. Appl. Environ. Microbiol. 71: 6590–6599.PubMedGoogle Scholar
  208. Honma, K., H.K. Kuramitsu, R.J. Genco and A. Sharma. 2001. Development of a gene inactivation system for Bacteroides forsythus: construction and characterization of a BspA mutant. Infect. Immun. 69: 4686–4690.PubMedGoogle Scholar
  209. Huang, Y., M. Umeda, Y. Takeuchi, M. Ishizuka, K. Yano-Higuchi and I. Ishikawa. 2003. Distribution of Bacteroides forsythus genotypes in a Japanese periodontitis population. Oral Microbiol. Immunol. 18: 208–214.PubMedGoogle Scholar
  210. Hudspeth, M.K., S. Hunt Gerardo, M.F. Maiden, D.M. Citron and E.J. Goldstein. 1999. Characterization of Bacteroides forsythus strains from cat and dog bite wounds in humans and comparison with monkey and human oral strains. J. Clin. Microbiol. 37: 2003–2006.PubMedGoogle Scholar
  211. Hughes, C.V., G. Malki, C.Y. Loo, A.C. Tanner and N. Ganeshkumar. 2003. Cloning and expression of α-d-glucosidase and N-acetyl-β-glucosaminidase from the periodontal pathogen, Tannerella forsythensis (Bacteroides forsythus). Oral Microbiol. Immunol. 18: 309–312.PubMedGoogle Scholar
  212. Hungate, R.E. 1969. A roll tube method for cultivation of strict anaerobes. In Methods in Microbiology, vol. 3B (edited by Norris and Ribbons). Academic Press, London, pp. 117–132.Google Scholar
  213. Ishikura, H., S. Arakawa, T. Nakajima, N. Tsuchida and I. Ishikawa. 2003. Cloning of the Tannerella forsythensis (Bacteroides forsythus) siaHI gene and purification of the sialidase enzyme. J. Med. Microbiol. 52: 1101–1107.PubMedGoogle Scholar
  214. Jervoe-Storm, P.M., M. Koltzscher, W. Falk, A. Dorfler and S. Jepsen. 2005. Comparison of culture and real-time PCR for detection and quantification of five putative periodontopathogenic bacteria in subgingival plaque samples. J. Clin. Periodontol. 32: 778–783.PubMedGoogle Scholar
  215. Johnson, J.L. and L.V. Holdeman. 1983. Bacteroides intermedius comb. nov. and descriptions of Bacteroides corporis sp. nov. and Bacteroides levii sp. nov. Int. J. Syst. Bacteriol. 33: 15–25.Google Scholar
  216. Jousimies-Somer, H.R., P. Summanen, D.M. Citron, E.J. Baron, H.M. Wexler and S.M. Finegold. 2002. Wadsworth-KTL anaerobic bacteriology manual. Star Publishing Company, Belmont, CA.Google Scholar
  217. Judicial Commission of the International Committee on Systematics of Prokaryotes. 2008. The adjectival form of the epithet in Tannerella forsythensis Sakamoto et al. 2002 is to be retained and the name is to be corrected to Tannerella forsythia Sakamoto et al. 2002. Opinion 85. Int. J. Syst. Evol. Microbiol. 58: 1974.Google Scholar
  218. Koneman, E.W., S.D. Allen, W.M. Janda, P.C. Shreckenberger and W.C. Winn Jr. 1997. CDC group DF-3. In Color Atlas and Textbook of Diagnostic Microbiology. Lippincott, Philadelphia, pp. 413–414.Google Scholar
  219. Kononen, E., M.-L. Vaisanen, S.M. Finegold, R. Heine and H. Jousimies-Somer. 1996. Cellular fatty acid analysis and enzyme profiles of Porphyromonas catoniae – a frequent colonizer of the oral cavity in children. Anaerobe 2: 329–335.Google Scholar
  220. Kuboniwa, M., A. Amano, K.R. Kimura, S. Sekine, S. Kato, Y. Yamamoto, N. Okahashi, I.T. and S. Shizukuishi. 2004. Quantitative detection of periodontal pathogens using real-time polymerase chain reaction with TaqMan probes. Oral Microbiol. Immunol. 19: 168–176.PubMedGoogle Scholar
  221. Kumar, P.S., A.L. Griffen, J.A. Barton, B.J. Paster, M.L. Moeschberger and E.J. Leys. 2003. New bacterial species associated with chronic periodontitis. J. Dent. Res. 82: 338–344.PubMedGoogle Scholar
  222. Lakhssassi, N., N. Elhajoui, J.P. Lodter, J.L. Pineill and M. Sixou. 2005. Antimicrobial susceptibility variation of 50 anaerobic periopathogens in aggressive periodontitis: an interindividual variability study. Oral Microbiol. Immunol. 20: 244–252.PubMedGoogle Scholar
  223. Lan, P.T., H. Hayashi, M. Sakamoto and Y. Benno. 2002. Phylogenetic analysis of cecal microbiota in chicken by the use of 16S rDNA clone libraries. Microbiol. Immunol. 46: 371–382.PubMedGoogle Scholar
  224. Lawson, P.A., E. Falsen, E. Inganas, R.S. Weyant and M.D. Collins. 2002a. Dysgonomonas mossii sp. nov., from human sources. Syst. Appl. Microbiol. 25: 194–197.PubMedGoogle Scholar
  225. Lawson, P.A., E. Falsen, E. Inganas, R.S. Weyant and M.D. Collins. 2002b. In Validation of the publication of new names and new combinations previously effectively published in the IJSEM. List no. 88. Int. J. Syst. Evol. Microbiol. 52: 1915–1916.Google Scholar
  226. Leys, E.J., S.R. Lyons, M.L. Moeschberger, R.W. Rumpf and A.L. Griffen. 2002. Association of Bacteroides forsythus and a novel Bacteroides phylotype with periodontitis. J. Clin. Microbiol. 40: 821–825.PubMedGoogle Scholar
  227. Loesche, W.J., W.A. Bretz, D. Kerschensteiner, J. Stoll, S.S. Socransky, P. Hujoel and D.E. Lopatin. 1990. Development of a diagnostic test for anaerobic periodontal infections based on plaque hydrolysis of benzoyl-dl-arginine-naphthylamide. J. Clin. Microbiol. 28: 1551–1559.PubMedGoogle Scholar
  228. Love, D.N., J.L. Johnson, R.F. Jones and A. Calverley. 1987. Bacteroides salivosus sp. nov., an asaccharolytic, black-pigmented species from cats. Int. J. Syst. Bacteriol. 37: 307–309.Google Scholar
  229. Love, D.N., G.D. Bailey, S. Collings and D.A. Briscoe. 1992. Description of Porphyromonas circumdentaria sp. nov. and reassignment of Bacteroides salivosus (Love, Johnson, Jones and Calverley 1987) as Porphyromonas (Shah and Collins 1988) salivosa comb. nov. Int. J. Syst. Bacteriol. 42: 434–438.PubMedGoogle Scholar
  230. Love, D.N., J. Karjalainen, A. Kanervo, B. Forsblom, E. Sarkiala, G.D. Bailey, D.I. Wigney and H. Jousimies-Somer. 1994. Porphyromonas canoris sp. nov., an asaccharolytic, black-pigmented species from the gingival sulcus of dogs. Int. J. Syst. Bacteriol. 44: 204–208.PubMedGoogle Scholar
  231. Love, D.N. 1995. Porphyromonas macacae comb. nov., a consequence of Bacteroides macacae being a senior synonym of Porphyromonas salivosa. Int. J. Syst. Bacteriol. 45: 90–92.Google Scholar
  232. Maiden, M.F., C. Pham and S. Kashket. 2004. Glucose toxicity effect and accumulation of methylglyoxal by the periodontal anaerobe Bacteroides forsythus. Anaerobe 10: 27–32.PubMedGoogle Scholar
  233. Maiden, M.F.J., A. Tanner and P.J. Macuch. 1996. Rapid characterization of periodontal bacterial isolates by using fluorogenic substrate tests. J. Clin. Microbiol. 34: 376–384.PubMedGoogle Scholar
  234. Maiden, M.F.J., P. Cohee and A.C.R. Tanner. 2003. Proposal to conserve the adjectival form of the specific epithet in the reclassification of Bacteroides forsythus Tanner et al. 1986 to the genus Tannerella Sakamoto et al. 2002 as Tannerella forsythia corrig., gen. nov., comb. nov. Request for an Opinion. Int. J. Syst. Evol. Microbiol. 53: 2111–2112.PubMedGoogle Scholar
  235. Martínez-Sánchez, L., F.J. Vasallo, F. García-Garrote, L. Alcalá, M. Rodríguez-Créíxems and E. Bouza. 1998. Clinical isolation of a DF-3 micro-organism and review of the literature. Clin. Microbiol. Infect. 4: 344–346.Google Scholar
  236. Melhus, A. 1997. Isolation of dysgonic fermenter 3, a rare isolate associated with diarrhoea in immunocompromised patients. Scand. J. Infect. Dis. 29: 195–196.PubMedGoogle Scholar
  237. Moncla, B.J., P. Braham and S.L. Hillier. 1990. Sialidase (neuraminidase) activity among gram-negative anaerobic and capnophilic bacteria. J. Clin. Microbiol. 28: 422–425.PubMedGoogle Scholar
  238. Moore, L.V.H., D.M. Bourne and W.E.C. Moore. 1994. Comparative distribution and taxonomic value of cellular fatty acids in 33 genera of anaerobic gram-negative bacilli. Int. J. Syst. Bacteriol. 44: 338–347.PubMedGoogle Scholar
  239. Moore, L.V.H. and W.E.C. Moore. 1994. Oribaculum catoniae gen. nov., sp. nov., Catonella morbi gen. nov., sp. nov., Hallella seregens gen. nov., sp. nov., Johnsonella ignava gen. nov., sp. nov., and Dialister pneumosintes gen. nov., comb. nov., nom. rev., anaerobic Gram-negative bacilli from the human gingival crevice. Int. J. Syst. Bacteriol. 44: 187–192.PubMedGoogle Scholar
  240. Nelson, K.E., R.D. Fleischmann, R.T. DeBoy, I.T. Paulsen, D.E. Fouts, J.A. Eisen, S.C. Daugherty, R.J. Dodson, A.S. Durkin, M. Gwinn, D.H. Haft, J.F. Kolonay, W.C. Nelson, T. Mason, L. Tallon, J. Gray, D. Granger, H. Tettelin, H. Dong, J.L. Galvin, M.J. Duncan, F.E. Dewhirst and C.M. Fraser. 2003. Complete genome sequence of the oral pathogenic bacterium Porphyromonas gingivalis strain W83. J. Bacteriol. 185: 5591–5601.PubMedGoogle Scholar
  241. Noguchi, N., Y. Noiri, M. Narimatsu and S. Ebisu. 2005. Identification and localization of extraradicular biofilm-forming bacteria associated with refractory endodontic pathogens. Appl. Environ. Microbiol. 71: 8738–8743.PubMedGoogle Scholar
  242. Paster, B.J., F.E. Dewhirst, I. Olsen and G.J. Fraser. 1994. Phylogeny of Bacteroides, Prevotella, and Porphyromonas spp. and related bacteria. J. Bacteriol. 176: 725–732.PubMedGoogle Scholar
  243. Rudney, J.D., R. Chen and G.J. Sedgewick. 2005. Actinobacillus actinomycetemcomitans, Porphyromonas gingivalis, and Tannerella forsythensis are components of a polymicrobial intracellular flora within human buccal cells. J. Dent. Res. 84: 59–63.PubMedGoogle Scholar
  244. Sabet, M., S.W. Lee, R.K. Nauman, T. Sims and H.S. Um. 2003. The surface (S-) layer is a virulence factor of Bacteroides forsythus. Microbiology 149: 3617–3627.PubMedGoogle Scholar
  245. Saito, T., K. Ishihara, T. Kato and K. Okuda. 1997. Cloning, expression, and sequencing of a protease gene from Bacteroides forsythus ATCC 43037 in Escherichia coli. Infect. Immun. 65: 4888–4891.PubMedGoogle Scholar
  246. Sakamoto, M., M. Suzuki, M. Umeda, I. Ishikawa and Y. Benno. 2002. Reclassification of Bacteroides forsythus (Tanner et al. 1986) as Tannerella forsythensis corrig., gen. nov., comb. nov. Int. J. Syst. Evol. Microbiol. 52: 841–849.PubMedGoogle Scholar
  247. Sakamoto, M. and Y. Benno. 2006. Reclassification of Bacteroides distasonis, Bacteroides goldsteinii and Bacteroides merdae as Parabacteroides distasonis gen. nov., comb. nov., Parabacteroides goldsteinii comb. nov. and Parabacteroides merdae comb. nov. Int. J. Syst. Evol. Microbiol. 56: 1599–1605.PubMedGoogle Scholar
  248. Sakamoto, M., M. Kitahara and Y. Benno. 2007a. Parabacteroides johnsonii sp. nov., isolated from human faeces. Int. J. Syst. Evol. Microbiol. 57: 293–296.PubMedGoogle Scholar
  249. Sakamoto, M., P.T. Lan and Y. Benno. 2007b. Barnesiella viscericola gen. nov., sp. nov., a novel member of the family Porphyromonadaceae isolated from chicken caecum. Int. J. Syst. Evol. Microbiol. 57: 342–346.PubMedGoogle Scholar
  250. Schonheyder, H., T. Ejlertsen and W. Frederiksen. 1991. Isolation of a dysgonic fermenter (DF-3) from urine of a patient. Eur. J. Clin. Microbiol. Infect. Dis. 10: 530–531.PubMedGoogle Scholar
  251. Seol, J.H., B.H. Cho, C.P. Chung and K.S. Bae. 2006. Multiplex polymerase chain reaction detection of black-pigmented bacteria in infections of endodontic origin. J. Endod. 32: 110–114.PubMedGoogle Scholar
  252. Shah, H.N. and M.D. Collins. 1988. Proposal for reclassification of Bacteroides asaccharolyticus, Bacteroides gingivalis, and Bacteroides endodontalis in a new genus, Porphyromonas. Int. J. Syst. Bacteriol. 38: 128–131.Google Scholar
  253. Shah, H.N., M.D. Collins, I. Olsen, B.J. Paster and F.E. Dewhirst. 1995. Reclassification of Bacteroides levii (Holdeman, Cato and Moore) in the genus Porphyromonas, as Porphyromonas levii comb. nov. Int. J. Syst. Bacteriol. 45: 586–588.Google Scholar
  254. Sharma, A., H.T. Sojar, I. Glurich, K. Honma, H.K. Kuramitsu and R.J. Genco. 1998. Cloning, expression, and sequencing of a cell surface antigen containing a leucine-rich repeat motif from Bacteroides forsythus ATCC 43037. Infect. Immun. 66: 5703–5710.PubMedGoogle Scholar
  255. Sharma, A., S. Inagaki, K. Honma, C. Sfintescu, P.J. Baker and R.T. Evans. 2005. Tannerella forsythia-induced alveolar bone loss in mice involves leucine-rich-repeat BspA protein. J. Dent. Res. 84: 462–467.PubMedGoogle Scholar
  256. Slots, J. and R.J. Genco. 1980. Bacteroides melaninogenicus subsp. macacae: new subspecies from monkey periodontopathic indigenous microflora. Int. J. Syst. Bacteriol. 30: 82–85.Google Scholar
  257. Song, Y., C. Liu, J. Lee, M. Bolanos, M.L. Vaisanen and S.M. Finegold. 2005. “Bacteroides goldsteinii sp. nov.” isolated from clinical specimens of human intestinal origin. J. Clin. Microbiol. 43: 4522–4527.PubMedGoogle Scholar
  258. Summanen, P.H., B. Durmaz, M.L. Vaisanen, C. Liu, D. Molitoris, E. Eerola, I.M. Helander and S.M. Finegold. 2005. Porphyromonas somerae sp. nov., a pathogen isolated from humans and distinct from Porphyromonas levii. J. Clin. Microbiol. 43: 4455–4459.PubMedGoogle Scholar
  259. Summanen, P.H., B. Durmaz, M.L. Vaisanen, C. Liu, D. Molitoris, E. Eerola, I.M. Helander and S.M. Finegold. 2006. In List of new names and new combinations previously effectively, but not validly, published. Validation List no. 109. Int. J. Syst. Evol. Microbiol. 56: 925–927.Google Scholar
  260. Sutter, V.L. and W.T. Carter. 1972. Evaluation of media and reagents for indole-spot tests in anaerobic bacteriology. Am. J. Clin. Pathol. 58: 335–338.PubMedGoogle Scholar
  261. Takemoto, T., H. Kurihara and G. Dahlen. 1997. Characterization of Bacteroides forsythus isolates. J. Clin. Microbiol. 35: 1378–1381.PubMedGoogle Scholar
  262. Tan, K.S., K.P. Song and G. Ong. 2001. Bacteroides forsythus prtH genotype in periodontitis patients: occurrence and association with periodontal disease. J. Periodont. Res. 36: 398–403.PubMedGoogle Scholar
  263. Tanner, A., M.F. Maiden, K. Lee, L.B. Shulman and H.P. Weber. 1997. Dental implant infections. Clin. Infect. Dis. 25 Suppl. 2: S213–217.PubMedGoogle Scholar
  264. Tanner, A.C., C. Haffer, G.T. Bratthall, R.A. Visconti and S.S. Socransky. 1979. A study of the bacteria associated with advancing periodontitis in man. J. Clin. Periodontol. 6: 278–307.PubMedGoogle Scholar
  265. Tanner, A.C., M.N. Strzempko, C.A. Belsky and G.A. McKinley. 1985. API ZYM and API An-Ident reactions of fastidious oral gram-negative species. J. Clin. Microbiol. 22: 333–335.PubMedGoogle Scholar
  266. Tanner, A.C., M.F. Maiden, J.J. Zambon, G.S. Thoren and R.L. Kent, Jr. 1998. Rapid chair-side DNA probe assay of Bacteroides forsythus and Porphyromonas gingivalis. J. Periodont. Res. 33: 105–117.PubMedGoogle Scholar
  267. Tanner, A.C.R., M.A. Listgarten, J.L. Ebersole and M.N. Strezempko. 1986. Bacteroides forsythus sp. nov, a slow-growing, fusiform ­Bacteroides sp. from the human oral cavity. Int. J. Syst. Bacteriol. 36: 213–221.Google Scholar
  268. Ueki, A., H. Akasaka, D. Suzuki and K. Ueki. 2006. Paludibacter propionicigenes gen. nov., sp. nov., a novel strictly anaerobic, Gram-negative, propionate-producing bacterium isolated from plant residue in irrigated rice-field soil in Japan. Int. J. Syst. Evol. Microbiol. 56: 39–44.PubMedGoogle Scholar
  269. Umeda, M., Y. Tominaga, T. He, K. Yano, H. Watanabe and I. Ishikawa. 1996. Microbial flora in the acute phase of periodontitis and the effect of local administration of minocycline. J. Periodontol. 67: 422–427.PubMedGoogle Scholar
  270. Van Steenbergen, T.J.M., A.J. Van Winkelhoff, D. Mayrand, D. Grenier and J. De Graaff. 1984. Bacteroides endodontalis sp. nov., an asaccharolytic black-pigmented bacteriodes species from infected dental root canals. Int. J. Syst. Bacteriol. 34: 118–120.Google Scholar
  271. Vandamme, P., M. Vancanneyt, A. van Belkum, P. Segers, W.G. Quint, K. Kersters, B.J. Paster and F.E. Dewhirst. 1996. Polyphasic analysis of strains of the genus Capnocytophaga and Centers for Disease Control group DF-3. Int. J. Syst. Bacteriol. 46: 782–791.PubMedGoogle Scholar
  272. Wagner, D.K., J.J. Wright, A.F. Ansher and V.J. Gill. 1988. Dysgonic ­fermenter 3-associated gastrointestinal disease in a patient with common variable hypogammaglobulinemia. Am.J. Med. 84: 315–318.PubMedGoogle Scholar
  273. Wallace, P.L., D.G. Hollis, R.E. Weaver and C.W. Moss. 1989. Characterization of CDC group DF-3 by cellular fatty acid analysis. J. Clin. Microbiol. 27: 735–737.PubMedGoogle Scholar
  274. Willems, A. and M.D. Collins. 1995. Reclassification of Oribaculum catoniae (Moore and Moore 1994) as Porphyromonas catoniae comb. nov. and emendation of the genus Porphyromonas. Int. J. Syst. Bacteriol. 45: 578–581.PubMedGoogle Scholar
  275. Wyss, C. 1989. Dependence of proliferation of Bacteroides forsythus on exogenous N-acetylmuramic acid. Infect. Immun. 57: 1757–1759.PubMedGoogle Scholar
  276. Yoneda, M., T. Hirofuji, H. Anan, A. Matsumoto, T. Hamachi, K. Nakayama and K. Maeda. 2001. Mixed infection of Porphyromonas gingivalis and Bacteroides forsythus in a murine abscess model: involvement of gingipains in a synergistic effect. J. Periodont. Res. 36: 237–243.PubMedGoogle Scholar
  277. Zhu, X.Y., T. Zhong, Y. Pandya and R.D. Joerger. 2002. 16S rRNA-based analysis of microbiota from the cecum of broiler chickens. Appl. Environ. Microbiol. 68: 124–137.PubMedGoogle Scholar
  278. Avguštin, G., R.J. Wallace and H.J. Flint. 1997. Phenotypic diversity among ruminal isolates of Prevotella ruminicola: proposal of Prevotella brevis sp. nov., Prevotella bryantii sp. nov., and Prevotella albensis sp. nov. and redefinition of Prevotella ruminicola. Int. J. Syst. Bacteriol. 47: 284–288.PubMedGoogle Scholar
  279. Berger, P., T. Adekambi, M.N. Mallet and M. Drancourt. 2005. Prevotella massiliensis sp. nov. isolated from human blood. Res. Microbiol. 156: 967–973.PubMedGoogle Scholar
  280. Bergey, D.H., F.C. Harrison, R.S. Breed, B.W. Hammer and F.M. Huntoon. 1930. Bergey’s Manual of Determinative Bacteriology, 3rd edn. Williams & Wilkins, Baltimore.Google Scholar
  281. Bryant, M.P., N. Small, C. Bouma and H. Chu. 1958. Bacteroides ruminicola n. sp. and Succinimonas amylolytica; the new genus and species; species of succinic acid-producing anaerobic bacteria of the bovine rumen. J. Bacteriol. 76: 15–23.PubMedGoogle Scholar
  282. Bryant, M.P. and I.M. Robinson. 1962. Some nutritional characteristics of predominant culturable ruminal bacteria. J. Bacteriol. 84: 605–614.PubMedGoogle Scholar
  283. Cato, E.P., R.W. Kelley, W.E.C. Moore and L.V. Holdeman. 1982. Bacteroides zoogleoformans (Weinberg, Nativelle and Prevot 1937) corrig., comb. nov.: emended description. Int. J. Syst. Bacteriol. 32: 271–274.Google Scholar
  284. Downes, J., I. Sutcliffe, A.C. Tanner and W.G. Wade. 2005. Prevotella marshii sp. nov. and Prevotella baroniae sp. nov., isolated from the human oral cavity. Int. J. Syst. Evol. Microbiol. 55: 1551–1555.PubMedGoogle Scholar
  285. Downes, J., I.C. Sutcliffe, T. Hofstad and W.G. Wade. 2006. Prevotella bergensis sp. nov., isolated from human infections. Int. J. Syst. Evol. Microbiol. 56: 609–612.PubMedGoogle Scholar
  286. Glazunova, O.O., T. Launay, D. Raoult and V. Roux. 2007. Prevotella timonensis sp. nov., isolated from a human breast abscess. Int. J. Syst. Evol. Microbiol. 57: 883–886.PubMedGoogle Scholar
  287. Gregory, E.M., W.E. Moore and L.V. Holdeman. 1978. Superoxide dismutase in anaerobes: survey. Appl. Environ. Microbiol. 35: 988–991.PubMedGoogle Scholar
  288. Haapasalo, M., H. Ranta, H. Shah, K. Ranta, K. Lounatmaa and R.M. Kroppenstedt. 1986a. Mitsuokella dentalis sp. nov. from dental root canals. Int. J. Syst. Bacteriol. 36: 566–568.Google Scholar
  289. Haapasalo, M., H. Ranta, H. Shah, K. Ranta, K. Lounatmaa and R.M. Kroppenstedt. 1986b. Biochemical and structural characterization of an unusual group of Gram-negative, anaerobic rods from human periapical osteitis. J. Gen. Microbiol. 132: 417–426.PubMedGoogle Scholar
  290. Hammann, R. and H. Werner. 1981. Presence of diaminopimelic acid in propionate-negative Bacteroides species and in some butyric acid-producing strains. J. Med. Microbiol. 14: 205–212.PubMedGoogle Scholar
  291. Hayashi, H., K. Shibata, M. Sakamoto, S. Tomita and Y. Benno. 2007. Prevotella copri sp. nov. and Prevotella stercorea sp. nov., isolated from human faeces. Int. J. Syst. Evol. Microbiol. 57: 941–946.PubMedGoogle Scholar
  292. Hofstad, T. 1974. The distribution of heptose and 2-keto-3-deoxy-­octonate in Bacteroidaceae. J. Gen. Microbiol. 85: 314–320.PubMedGoogle Scholar
  293. Holdeman, L.V. and W.E.C. Moore. 1970. Bacteroides. Outline of Clinical Methods in Anaerobic Bacteriology, 2nd revn (edited by E.P. Cato, C.S. Cummins, L.V. Holdeman, J.L. Johnson, W.E.C. Moore, R.M. Smibert and L.D.S. Smith). Virginia Polytechnic Institute Anaerobe Laboratory, Blacksburg, VA, pp. 57–66.Google Scholar
  294. Holdeman, L.V., E.P. Cato and W.E.C. Moore (editors). 1977. Anaerobe Laboratory Manual, 4th edn. Anaerobe Laboratory, Virginia Polytechnic Institute and State University, Blacksburg, VA.Google Scholar
  295. Holdeman, L.V. and J.L. Johnson. 1977. Bacteroides disiens sp. nov. and Bacteroides bivius sp. nov. from human clinical infections. Int. J. Syst. Bacteriol. 27: 337–345.Google Scholar
  296. Holdeman, L.V., E.P. Cato, J.A. Burmeister and W.E.C. Moore. 1980. Descriptions of Eubacterium timidum sp. nov. Eubacterium brachy sp. nov. and Eubacterium nodatum sp. nov. isolated from human periodontitis. Int. J. Syst. Bacteriol. 30: 163–169.Google Scholar
  297. Holdeman, L.V. and J.L. Johnson. 1982. Description of Bacteroides loescheii sp. nov. and emendation of the descriptions of Bacteroides melaninogenicus (Oliver and Wherry) Roy and Kelly 1939 and Bacteroides denticola Shah and Collins 1981. Int. J. Syst. Bacteriol. 32: 399–409.Google Scholar
  298. Holdeman, L.V., W.E.C. Moore, P.J. Churn and J.L. Johnson. 1982. Bacteroides oris and Bacteroides buccae, new species from human periodontitis and other human infections. Int. J. Syst. Bacteriol. 32: 125–131.Google Scholar
  299. Holdeman, L.V., R.W. Kelly and W.E.C. Moore. 1984. Genus I. Bacteroides. In Bergey’s Manual of Systematic Bacteriology, vol. 1 (edited by Krieg and Holt). Williams & Wilkins, Baltimore, pp. 604–631.Google Scholar
  300. Johnson, J.L. and L.V. Holdeman. 1983. Bacteroides intermedius comb. nov. and descriptions of Bacteroides corporis sp. nov. and Bacteroides levii sp. nov. Int. J. Syst. Bacteriol. 33: 15–25.Google Scholar
  301. Johnson, J.L. and L.V. Holdeman. 1985. Bacteriodes capillus Kornman and Holt and Bacteroides pentosaceus Shah and Collins, later synonyms of Bacteroides buccae Holdeman et al. Int. J. Syst. Bacteriol. 35: 114.Google Scholar
  302. Könönen, E., E. Eerola, E.V. Frandsen, J. Jalava, J. Mättö, S. Salmenlinna and H. Jousimies-Somer. 1998a. Phylogenetic characterization and proposal of a new pigmented species to the genus Prevotella: Prevotella pallens sp. nov. Int. J. Syst. Bacteriol. 48: 47–51.PubMedGoogle Scholar
  303. Könönen, E., J. Mättö, M.L. Väisänen-Tunkelrott, E.V. Frandsen, I. Helander, S. Asikainen, S.M. Finegold and H. Jousimies-Somer. 1998b. Biochemical and genetic characterization of a Prevotella intermedia/nigrescens-like organism. Int. J. Syst. Bacteriol. 48: 39–46.PubMedGoogle Scholar
  304. Kornman, K.S. and S.C. Holt. 1981. Physiological and ultrastructural characterization of a new Bacteroides species (Bacteroides capillus) isolated from severe localized periodontitis. J. Periodont. Res. 16: 542–555.PubMedGoogle Scholar
  305. Kornman, K.S. and S.C. Holt. 1982. In Validation of the publication of new names and new combinations previously effectively published outside the IJSB. List no. 8. Int. J. Syst. Bacteriol. 32: 266–268.Google Scholar
  306. Lambe, D.W., Jr. 1974. Determination of Bacteroides melaninogenicus serogroups by fluorescent antibody staining. Appl. Microbiol. 28: 561–567.PubMedGoogle Scholar
  307. Loesche, W.J., S.S. Socransky and R.J. Gibbons. 1964. Bacteroides oralis, proposed new species isolated from the oral cavity of man. J. Bacteriol. 88: 1329–1337.PubMedGoogle Scholar
  308. Miyagawa, E., R. Azuma and T. Suto. 1978. Distribution of sphingolipids in Bacteroides species. J. Gen. Appl. Microbiol. 24: 341–348.Google Scholar
  309. Miyagawa, E., R. Azuma and T. Suto. 1979. Cellular fatty acid composition in Gram-negative obligately anaerobic rods. J. Gen. Microbiol. 25: 41–51.Google Scholar
  310. Miyagawa, E. and T. Suto. 1980. Cellular fatty acid composition in Bacteroides oralis and Bacteroides ruminicola. J. Gen. Appl. Microbiol. 26: 331–343.Google Scholar
  311. Miyagawa, E., R. Azuma and T. Suto. 1981. Peptidoglycan composition of gram-negative obligately anaerobic rods. J. Gen. Appl. Microbiol. 22: 199–208.Google Scholar
  312. Moore, L.V.H., J.L. Johnson and W.E.C. Moore. 1994. Descriptions of Prevotella tannerae sp. nov. and Prevotella enoeca sp. nov. from the human gingival crevice and emendation of the description of Prevotella zoogleoformans. Int. J. Syst. Bacteriol. 44: 599–602.PubMedGoogle Scholar
  313. Moore, L.V.H. and W.E.C. Moore. 1994. Oribaculum catoniae gen. nov., sp. nov., Catonella morbi gen. nov., sp. nov., Hallella seregens gen. nov., sp. nov., Johnsonella ignava gen. nov., sp. nov., and Dialister pneumosintes gen. nov., comb. nov., nom. rev., anaerobic Gram-negative bacilli from the human gingival crevice. Int. J. Syst. Bacteriol. 44: 187–192.PubMedGoogle Scholar
  314. Okuda, K., T. Kato, J. Shiozu, I. Takazoe and T. Nakamura. 1985. Bacteroides heparinolyticus sp. nov. isolated from humans with periodontitis. Int. J. Syst. Bacteriol. 35: 438–442.Google Scholar
  315. Oliver, W.W. and W.B. Wherry. 1921. Notes on some bacterial parasites of the human mucous membranesq. J. Infect. Dis. 28: 341–344.Google Scholar
  316. Olsen, I. and H.N. Shah. 2001. International Committee on Systematics of Prokaryotes Subcommittee on the taxonomy of Gram-negative anaerobic rods. Minutes of the meetings, 9 and 10 July 2000, Manchester, UK. Int. J. Syst. Evol. Microbiol. 51: 1943–1944.Google Scholar
  317. Pittman, K.A. and M.P. Bryant. 1964. Peptides and other nitrogen sources for growth of Bacteroides ruminicola. J. Bacteriol. 88: 401–410.PubMedGoogle Scholar
  318. Prévot, A.R. 1938. Etudes de systematique bacterienne. III. Invalidite du genre Bacteroides Castellani et Chalmers demembrement et reclassification. Ann. Inst. Pasteur 20: 285–307.Google Scholar
  319. Prévot, A.R. 1966. Manual for the classification and determination of the anaerobic bacteria, 1st Am. Ed. edn. Lea and Febiger, Philadelphia.Google Scholar
  320. Prévot, A. R., A. Turpin and P. Kaiser. 1967. Les Bactéries Anaérobies. Dunod, Paris.Google Scholar
  321. Roy, T.E. and C.D. Kelly. 1939. Genus VIII. Bacteroides Castellani and Charmers. In Bergey’s Manual of Determinative Bacteriology, 5th edn (edited by Bergey, Breed, Murray and Hitchens). Williams & Wilkins, Baltimore, pp. 569–570.Google Scholar
  322. Sakamoto, M., M. Suzuki, Y. Huang, M. Umeda, I. Ishikawa and Y. Benno. 2004. Prevotella shahii sp. nov. and Prevotella salivae sp. nov., isolated from the human oral cavity. Int. J. Syst. Evol. Microbiol. 54: 877–883.PubMedGoogle Scholar
  323. Sakamoto, M., Y. Huang, M. Umeda, I. Ishikawa and Y. Benno. 2005a. Prevotella multiformis sp. nov., isolated from human subgingival plaque. Int. J. Syst. Evol. Microbiol. 55: 815–819.PubMedGoogle Scholar
  324. Sakamoto, M., M. Umeda, I. Ishikawa and Y. Benno. 2005b. Prevotella multisaccharivorax sp. nov., isolated from human subgingival plaque. Int. J. Syst. Evol. Microbiol. 55: 1839–1843.PubMedGoogle Scholar
  325. Schwabacher, H., D.R. Lucas and C. Rimington. 1947. Bacterium melaninogenicum – a misnomer. J. Gen. Microbiol. 1: 109–120.PubMedGoogle Scholar
  326. Shah, H.N., R.A. Williams, G.H. Bowden and J.M. Hardie. 1976. Comparison of the biochemical properties of Bacteroides melaninogenicus from human dental plaque and other sites. J. Appl. Bacteriol. 41: 473–495.PubMedGoogle Scholar
  327. Shah, H.N., R. Bonnett, B. Mateen and R.A. Williams. 1979. The porphyrin pigmentation of subspecies of Bacteroides melaninogenicus. Biochem. J. 180: 45–50.PubMedGoogle Scholar
  328. Shah, H.N. and M.D. Collins. 1980. Fatty acid and isoprenoid quinone composition in the classification of Bacteroides melaninogenicus and related taxa. J. Appl. Bacteriol. 48: 75–87.PubMedGoogle Scholar
  329. Shah, H.N. and M. Collins. 1981. Bacteroides buccalis, sp. nov., Bacteroides denticola, sp. nov., and Bacteroides pentosaceus, sp. nov., new species of the genus Bacteroides from the oral cavity. Zentralbl. Bakteriol. Parasitenkd. Infektionskr. Hyg. Abt. 1 Orig. C. 2: 235–241.Google Scholar
  330. Shah, H.N. and M.D. Collins. 1982. In Validation of new names and new combinations not previously published in the IJSB. List no. 8. Int. J. Syst. Bacteriol. 32: 266–268.Google Scholar
  331. Shah, H.N., T.J.M. Vansteenbergen, J.M. Hardie and J. Degraaff. 1982. DNA-base composition, DNA–DNA reassociation and isoelectric-focusing of proteins of strains designated Bacteroides oralis. FEMS Microbiol. Lett. 13: 125–130.Google Scholar
  332. Shah, H.N. and R.A.D. Williams. 1982. Dehyrogenase patterns in the taxonomy of Bacteroides. J. Gen. Microbiol. 128: 2955–2965.PubMedGoogle Scholar
  333. Shah, H.N. and M.D. Collins. 1983. Genus Bacteroides. a chemotaxonomical perspective. J. Appl. Bacteriol. 55: 403–416.PubMedGoogle Scholar
  334. Shah, H.N., M.D. Collins, J. Watabe and T. Mitsuoka. 1985. Bacteroides oulorum sp. nov., a nonpigmented saccharolytic species from the oral cavity. Int. J. Syst. Bacteriol. 35: 193–197.Google Scholar
  335. Shah, H.N. and R.A.D. Williams. 1987a. Catabolism of aspartate and asparagine by Bacteroides intermedius and Bacteroides gingivalis. Curr. Microbiol. 15: 313–318.Google Scholar
  336. Shah, H.N. and R.A.D. Williams. 1987b. Utilization of glucose and amino acids by Bacteroides intermedius and Bacteroides gingivalis. Curr. Microbiol. 15: 241–246.Google Scholar
  337. Shah, H.N. and D.M. Collins. 1990. Prevotella, a new genus to include Bacteroides melaninogenicus and related species formerly classified in the genus Bacteroides. Int. J. Syst. Bacteriol. 40: 205–208.PubMedGoogle Scholar
  338. Shah, H.N. and S.E. Gharbia. 1992. Biochemical and chemical studies on strains designated Prevotella intermedia and proposal of a new pigmented species, Prevotella nigrescens sp. nov. Int. J. Syst. Bacteriol. 42: 542–546.PubMedGoogle Scholar
  339. Shah, H.N., S.E. Gharbia and K. Brocklehurst. 1993. Isolation and characterization of gingivain, a cysteine proteinase from Porphyromonas gingivalis W83 using covalent chromatography by thiol-disulfide interchange and 2,2′-dipyridyl disulfide as a two-hydronic state thiol-specific catalytic site titrant inhibitor and reactivity probe. In Biology of the species of Porphyromonas gingivalis (edited by Shah, Mayrand and Genco). CRC Press, Boca Raton, FL, pp. 245–258.Google Scholar
  340. Ueki, A., H. Akasaka, D. Suzuki, S. Hattori and K. Ueki. 2006. Xylanibacter oryzae gen. nov., sp. nov., a novel strictly anaerobic, Gram-negative, xylanolytic bacterium isolated from rice-plant residue in flooded rice-field soil in Japan. Int. J. Syst. Evol. Microbiol. 56: 2215–2221.PubMedGoogle Scholar
  341. Van Steenbergen, J.J.M., J.J. De Soet and M. De Graff. 1979. DNA base composition of various strains of Bacteroides melaninogenicus. FEMS Microbiol. Lett. 5: 127–130.Google Scholar
  342. Watabe, J., Y. Benno and T. Mitsuoka. 1983. Taxonomic study of Bacteroides oralis and related organisms and proposal of Bacteroides veroralis sp. nov. Int. J. Syst. Bacteriol. 33: 57–64.Google Scholar
  343. Weinberg, M., R. Nativelle and A.R. Prévot. 1937. Les Microbes Anaérobies. Masson et Cie, Paris.Google Scholar
  344. Werner, H. 1991. International Committee on Systematic Bacteriology Subcommittee on Gram-negative anaerobic rods. Minutes of the meeting, 13 and 14 September 1990, Osaka, Japan. Int. J. Syst. Bacteriol. 41: 590–591.Google Scholar
  345. Willems, A. and M.D. Collins. 1995. 16S ribosomal RNA gene similarities indicate that Hallella seregens (Moore and Moore) and Mitsuokella dentalis (Haapasalo et al.) are genealogically highly related and are members of the genus Prevotella: emended description of the genus Prevotella (Shah and Collins) and description of Prevotella dentalis comb. nov. Int. J. Syst. Bacteriol. 45: 832–836.PubMedGoogle Scholar
  346. Wu, C.C., J.L. Johnson, W.E.C. Moore and L.V.H. Moore. 1992. Emended descriptions of Prevotella denticola, Prevotella loescheii, Prevotella veroralis, and Prevotella melaninogenica. Int. J. Syst. Bacteriol. 42: 536–541.PubMedGoogle Scholar
  347. Cavalier-Smith, T. 2002. The neomuran origin of archaebacteria, the negibacterial root of the universal tree and bacterial megaclassification. Int. J. Syst. Evol. Microbiol. 52: 7–76.PubMedGoogle Scholar
  348. Bergey, D.H., F.C. Harrison, R.S. Breed, B.W. Hammer and F.M. Huntoon. 1923. Bergey’s Manual of Determinative Bacteriology. Williams & Wilkins, Baltimore.Google Scholar
  349. Bernardet, J.-F., P. Segers, M. Vancanneyt, F. Berthe, K. Kersters and P. Vandamme. 1996. Cutting a Gordian knot: emended classification and description of the genus Flavobacterium, emended description of the family Flavobacteriaceae, and proposal of Flavobacterium hydatis nom. nov. (basonym, Cytophaga aquatilis Strohl and Tait 1978). Int. J. Syst. Bacteriol. 46: 128–148.Google Scholar
  350. Abbanat, D.R., E.R. Leadbetter, I.W. Godchaux and A. Escher. 1986. Sulphonolipids are molecular determinants of gliding motility. Nature 324: 367–369.Google Scholar
  351. Abell, G.C. and J.P. Bowman. 2005. Ecological and biogeographic relationships of class Flavobacteria in the Southern Ocean. FEMS Microbiol. Ecol. 51: 265–277.PubMedGoogle Scholar
  352. Aber, R.C., C. Wennersten and R.C. Moellering, Jr. 1978. Antimicrobial susceptibility of flavobacteria. Antimicrob. Agents Chemother. 14: 483–487.PubMedGoogle Scholar
  353. Ackermann, H.W. and S.T. Abedon. 2001. Bacteriophage Names 2000 The Bacteriophage Ecology Group. (http://www.phage.org/names.htm).
  354. Agbo, J.A.C. and M.O. Moss. 1979. The isolation and characterization of agarolytic bacteria from a lowland river. J. Gen. Microbiol. 115: 355–368.Google Scholar
  355. Agogué, H., E.O. Casamayor, M. Bourrain, I. Obernosterer, F. Joux, G.J. Herndl and P. Lebaron. 2005. A survey on bacteria inhabiting the sea surface microlayer of coastal ecosystems. FEMS Microbiol. Ecol. 54: 269–280.PubMedGoogle Scholar
  356. Akay, M., E. Gunduz and Z. Gulbas. 2006. Catheter-related bacteremia due to Chryseobacterium indologenes in a bone marrow transplant recipient. Bone Marrow Transplant. 37: 435–436.PubMedGoogle Scholar
  357. Alain, K., L. Intertaglia, P. Catala and P. Lebaron. 2008. Eudoraea adriatica gen. nov., sp. nov., a novel marine bacterium of the family Flavobacteriaceae. Int. J. Syst. Evol. Microbiol. 58: 2275–2281.PubMedGoogle Scholar
  358. Albareda, M., M.S. Dardanelli, C. Sousa, M. Megias, F. Temprano and D.N. Rodriguez-Navarro. 2006. Factors affecting the attachment of rhizospheric bacteria to bean and soybean roots. FEMS Microbiol. Lett. 259: 67–73.PubMedGoogle Scholar
  359. Allen, E.E. and D.H. Bartlett. 2002. Structure and regulation of the omega-3 polyunsaturated fatty acid synthase genes from the deep-sea bacterium Photobacterium profundum strain SS9. Microbiology 148: 1903–1913.PubMedGoogle Scholar
  360. Allen, T.D., P.A. Lawson, M.D. Collins, E. Falsen and R.S. Tanner. 2006. Cloacibacterium normanense gen. nov., sp. nov., a novel bacterium in the family Flavobacteriaceae isolated from municipal wastewater. Int. J. Syst. Evol. Microbiol. 56: 1311–1316.PubMedGoogle Scholar
  361. Allymehr, M. 2006. Seroprevalence of Ornithobacterium rhinotracheale infection in broiler and broiler breeder chickens in West Azerbaijan Province, Iran. J. Vet. Med. A Physiol. Pathol. Clin. Med. 53: 40–42.PubMedGoogle Scholar
  362. Altschul, S., T. Madden, A. Schaffer, J. Zhang, Z. Zhang, W. Miller and D. Lipman. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25: 3389–3402.PubMedGoogle Scholar
  363. Álvarez, B., P. Secades, M.J. McBride and J.A. Guijarro. 2004. ­Development of genetic techniques for the psychrotrophic fish pathogen Flavobacterium psychrophilum. Appl. Environ. Microbiol. 70: 581–587.PubMedGoogle Scholar
  364. Álvarez, B., P. Secades, M. Prieto, M.J. McBride and J.A. Guijarro. 2006. A mutation in Flavobacterium psychrophilum tlpB inhibits gliding ­motility and induces biofilm formation. Appl. Environ. Microbiol. 72: 4044–4053.PubMedGoogle Scholar
  365. Amachi, S., Y. Mishima, H. Shinoyama, Y. Muramatsu and T. Fujii. 2005. Active transport and accumulation of iodide by newly isolated marine bacteria. Appl. Environ. Microbiol. 71: 741–745.PubMedGoogle Scholar
  366. Amonsin, A., J.F. Wellehan, L.L. Li, P. Vandamme, C. Lindeman, M. Edman, R.A. Robinson and V. Kapur. 1997. Molecular epidemiology of Ornithobacterium rhinotracheale. J. Clin. Microbiol. 35: 2894–2898.PubMedGoogle Scholar
  367. Anacker, R.L. and E.J. Ordal. 1955. Study of a bacteriophage infecting the myxobacterium Chondrococcus columnaris. J. Bacteriol. 70: 738–741.PubMedGoogle Scholar
  368. Anderson, R.L. and E.J. Ordal. 1961. Cytophaga succinicans sp. n., a facultatively anaerobic, aquatic myxobacterium. J. Bacteriol. 81: 130–138.PubMedGoogle Scholar
  369. Arias, C.R., T.L. Welker, C.A. Shoemaker, J.W. Abernathy and P.H. Klesius. 2004. Genetic fingerprinting of Flavobacterium columnare isolates from cultured fish. J. Appl. Microbiol. 97: 421–428.PubMedGoogle Scholar
  370. Arns, C., H.M. Hafez, T. Yano, M. Monterio, M. Alves, H. Domingues and L. Coswig. 1998. Ornithobacterium rhinotracheale: Detecto serologica em aves matrzes e Fragos de Corte. Proc. Assoc. Broiler Producers. Presented at the APINCO`98, Campinas, Brazil.Google Scholar
  371. Arun, A.B., W.M. Chen, W.A. Lai, J.H. Chou, F.T. Shen, P.D. Rekha and C.C. Young. 2009. Lutaonella thermophila gen. nov., sp. nov., a moderately thermophilic member of the family Flavobacteriaceae isolated from a coastal hot spring. Int. J. Syst. Evol. Microbiol. 59: 2069–2073.PubMedGoogle Scholar
  372. Asker, D., T. Beppu and K. Ueda. 2007a. Zeaxanthinibacter enoshimensis gen. nov., sp. nov., a novel zeaxanthin-producing marine bacterium of the family Flavobacteriaceae, isolated from seawater off Enoshima Island, Japan. Int. J. Syst. Evol. Microbiol. 57: 837–843.PubMedGoogle Scholar
  373. Asker, D., T. Beppu and K. Ueda. 2007b. Mesoflavibacter zeaxanthinifaciens gen. nov., sp. nov., a novel zeaxanthin-producing marine bacterium of the family Flavobacteriaceae. Syst. Appl. Microbiol. 30: 291–296.PubMedGoogle Scholar
  374. Aslam, Z., W.T. Im, M.K. Kim and S.T. Lee. 2005. Flavobacterium granuli sp. nov., isolated from granules used in a wastewater treatment plant. Int. J. Syst. Evol. Microbiol. 55: 747–751.PubMedGoogle Scholar
  375. Asplin, F.D. 1955. A septicemic disease of ducklings. Vet. Rec. 67: 854–858.Google Scholar
  376. Austin, B. and D.A. Austin. 1999. Bacterial Fish Pathogens: Disease of Farmed and Wild Fish, 3rd edn. Springer/Praxis Publishing, Chichester.Google Scholar
  377. Avendaño-Herrera, R., B. Magarinos, S. Lopez-Romalde, J.L. Romalde and A.E. Toranzo. 2004a. Phenotypic characterization and description of two major O-serotypes in Tenacibaculum maritimum strains from marine fishes. Dis. Aquat. Org. 58: 1–8.PubMedGoogle Scholar
  378. Avendaño-Herrera, R., B. Magarinos, A.E. Toranzo, R. Beaz and J.L. Romalde. 2004b. Species-specific polymerase chain reaction primer sets for the diagnosis of Tenacibaculum maritimum infection. Dis. Aquat. Org. 62: 75–83.PubMedGoogle Scholar
  379. Avendaño-Herrera, R., J. Rodriguez, B. Magarinos, J.L. Romalde and A.E. Toranzo. 2004c. Intraspecific diversity of the marine fish pathogen Tenacibaculum maritimum as determined by randomly amplified polymorphic DNA-PCR. J. Appl. Microbiol. 96: 871–877.PubMedGoogle Scholar
  380. Avendaño-Herrera, R., B. Magariños, M.A. Morinigo, J.L. Romalde and A.E. Toranzo. 2005. A novel O-serotype in Tenacibaculum maritimum strains isolated from cultured sole (Solea senegalensis). Bull. Eur. Assoc. Fish. Pathol. 25: 70–74.Google Scholar
  381. Back, A., S. Sprenger, G. Rajashekara, D.A. Halvorson and K.V. Nagaraja. 1997. Antimicrobial sensitivity of Ornithobacterium rhinotracheale isolated from different geographic location. Proceedings of the 48th North Central Avian Disease Conference, Des Moines, IA, pp. 15–18.Google Scholar
  382. Back, A., D. Halvorson, G. Rajashekara and K.V. Nagaraja. 1998a. Development of a serum plate agglutination test to detect antibodies to Ornithobacterium rhinotracheale. J. Vet. Diagn. Invest. 10: 84–86.PubMedGoogle Scholar
  383. Back, A., G. Rajashekara, R.B. Jeremiah, D.A. Halvorson and K.V. Nagaraja. 1998b. Tissue distribution of Ornithobacterium rhinotracheale in experimentally infected turkeys. Vet. Rec. 143: 52–53.PubMedGoogle Scholar
  384. Bader, J.A. and J.E.B. Shotts. 1998. Identification of Flavobacterium and Flexibacter species by species-specific polymerase chain reaction primers to the 16S rRNA gene. J. Aquat. Anim. Health 10: 311–319.Google Scholar
  385. Bader, J.A., C.A. Shoemaker and P.H. Klesius. 2003. Rapid detection of columnaris disease in channel catfish (Ictalurus punctatus) with a new species-specific 16-S rRNA gene-based PCR primer for Flavobacterium columnare. J. Microbiol. Methods 52: 209–220.PubMedGoogle Scholar
  386. Bae, S.S., K.K. Kwon, S.H. Yang, H.S. Lee, S.J. Kim and J.H. Lee. 2007. Flagellimonas eckloniae gen. nov., sp. nov., a mesophilic marine bacterium of the family Flavobacteriaceae, isolated from the rhizosphere of Ecklonia kurome. Int. J. Syst. Evol. Microbiol. 57: 1050–1054.PubMedGoogle Scholar
  387. Bagley, D.H., Jr, J.C. Alexander Jr, V.J. Gill, R. Dolin and A.S. Ketcham. 1976. Late Flavobacterium species meningitis after craniofacial exenteration. Arch. Intern. Med. 136: 229–231.Google Scholar
  388. Bahar, A.A. and Z. Demirbag. 2007. Isolation of pathogenic bacteria from Oberea linearis (Coleoptera: Cerambycidae). Biologia 62: 13–18.Google Scholar
  389. Bai, J.Y. 1983. [Serological studies of Flavobacterium farinofermentans nov. sp. – anti-O serotyping and distribution]. Zhonghua Yu Fang Yi Xue Za Zhi 17: 138–140.PubMedGoogle Scholar
  390. Bai, Y., D. Yang, J. Wang, S. Xu, X. Wang and L. An. 2006. Phylogenetic diversity of culturable bacteria from alpine permafrost in the Tianshan Mountains, northwestern China. Res. Microbiol. 157: 741–751.PubMedGoogle Scholar
  391. Bakunina, I.Y., R.A. Kuhlmann, L.M. Likhosherstov, M.D. Martynova, O.I. Nedashkovskaya, V.V. Mikhailov and L.A. Elyakova. 2002. Alpha-N-acetylgalactosaminidase from marine bacterium Arenibacter latericius KMM 426T removing blood type specificity of A-erythrocytes. Biochemistry (Mosc.) 67: 689–695.Google Scholar
  392. Bangun, A., J.L. Johnson and D.N. Tripathy. 1987. Taxonomy of Pasteurella anatipestifer. I. DNA base composition and DNA–DNA hybridization analysis. Avian Dis. 31: 43–45.PubMedGoogle Scholar
  393. Bano, N. and J.T. Hollibaugh. 2002. Phylogenetic composition of bacterioplankton assemblages from the Arctic Ocean. Appl. Environ. Microbiol. 68: 505–518.PubMedGoogle Scholar
  394. Barbeyron, T., A. Gerard, P. Potin, B. Henrissat and B. Kloareg. 1998. The kappa-carrageenase of the marine bacterium Cytophaga drobachiensis. Structural and phylogenetic relationships within family-16 glycoside hydrolases. Mol. Biol. Evol. 15: 528–537.PubMedGoogle Scholar
  395. Barbeyron, T., S. L’Haridon, E. Corre, B. Kloareg and P. Potin. 2001. Zobellia galactanovorans gen. nov., sp. nov., a marine species of Flavobacteriaceae isolated from a red alga, and classification of Cytophaga uliginosa (ZoBell and Upham 1944) Reichenbach 1989 as Zobellia uliginosa gen. nov., comb. nov. Int. J. Syst. Evol. Microbiol. 51: 985–997.PubMedGoogle Scholar
  396. Baumann, P. and L. Baumann. 1981. The marine Gram-negative eubacteria; genera Photobacterium, Beneckea, Alteromonas, Pseudomonas, and Alcaligenes. In The Prokaryotes: A Handbook on Habitats, Isolation, and Identification of Bacteria (edited by Starr, Stolp, Trüper, Balows and Schlegel). Springer, New York, pp. 1302–1330.Google Scholar
  397. Bauwens, M. and J. De Ley. 1981. Improvements in the taxonomy of Flavobacterium by DNA:rRNA hybridization. In The Flavobacterium-Cytophaga group, Gesellschaft für Biotechnologische Forschung Monograph Series No. 5 (edited by Reichenbach and Weeks). Verlag Chemie, Weinheim, pp. 27–31.Google Scholar
  398. Behrendt, U., A. Ulrich, C. Sproer and P. Schumann. 2007. Chryseobacterium luteum sp. nov., associated with the phyllosphere of grasses. Int. J. Syst. Evol. Microbiol. 57: 1881–1885.PubMedGoogle Scholar
  399. Bellais, S., S. Leotard, L. Poirel, T. Naas and P. Nordmann. 1999. Molecular characterization of a carbapenem-hydrolyzing beta-lactamase from Chryseobacterium (Flavobacterium) indologenes. FEMS Microbiol. Lett. 171: 127–132.PubMedGoogle Scholar
  400. Bellais, S., D. Aubert, T. Naas and P. Nordmann. 2000a. Molecular and biochemical heterogeneity of class B carbapenem-hydrolyzing beta-lactamases in Chryseobacterium meningosepticum. Antimicrob. Agents Chemother. 44: 1878–1886.PubMedGoogle Scholar
  401. Bellais, S., L. Poirel, T. Naas, D. Girlich and P. Nordmann. 2000b. Genetic-biochemical analysis and distribution of the Ambler class A beta-lactamase CME-2, responsible for extended-spectrum cephalosporin resistance in Chryseobacterium (Flavobacterium) meningosepticum. Antimicrob. Agents Chemother. 44: 1–9.PubMedGoogle Scholar
  402. Bellais, S., D. Girlich, A. Karim and P. Nordmann. 2002a. EBR-1, a novel Ambler subclass B1 beta-lactamase from Empedobacter brevis. Antimicrob. Agents Chemother. 46: 3223–3227.PubMedGoogle Scholar
  403. Bellais, S., T. Naas and P. Nordmann. 2002b. Genetic and biochemical characterization of CGB-1, an Ambler class B carbapenem-hydrolyzing beta-lactamase from Chryseobacterium gleum. Antimicrob. Agents Chemother. 46: 2791–2796.PubMedGoogle Scholar
  404. Bellais, S., T. Naas and P. Nordmann. 2002c. Molecular and biochemical characterization of Ambler class A extended-spectrum beta-lactamase CGA-1 from Chryseobacterium gleum. Antimicrob. Agents Chemother. 46: 966–970.PubMedGoogle Scholar
  405. Bergey, D.H., F.C. Harrison, R.S. Breed, B.W. Hammer and F.M. Huntoon. 1923. Bergey’s Manual of Determinative Bacteriology. Williams & Wilkins, Baltimore.Google Scholar
  406. Bernardet, J.-F. 1989. ‘Flexibacter columnaris’: first description in France and comparison with bacterial strains from other origins. Dis. Aquat. Org. 6: 37–44.Google Scholar
  407. Bernardet, J.-F. and P.A.D. Grimont. 1989. Deoxyribonucleic acid relatedness and phenotypic characterization of Flexibacter columnaris sp. nov., nom. rev., Flexibacter psychrophilus sp. nov., nom. rev., and Flexibacter maritimus Wakabayashi, Hikida, and Masumura 1986. Int. J. Syst. Bacteriol. 39: 346–354.Google Scholar
  408. Bernardet, J.-F. and B. Kerouault. 1989. Phenotypic and genomic studies of “Cytophaga psychrophila” isolated from diseased rainbow trout (Oncorhynchus mykiss) in France. Appl. Environ. Microbiol. 55: 1796–1800.PubMedGoogle Scholar
  409. Bernardet, J.-F. and J.P. Bowman. 2006. The genus Flavobacterium. In The Prokaryotes: A Handbook on the Biology of Bacteria, 3rd edn, vol. 7, Proteobacteria: Delta and Epsilon Subclasses. Deeply Rooting Bacteria (edited by Dworkin, Falkow, Rosenberg, Schleifer and Stackebrandt). Springer, New York, pp. 481–531.Google Scholar
  410. Bernardet, J.-F. and Y. Nakagawa. 2006. An introduction to the family Flavobacteriaceae. In The Prokaryotes: A Handbook on the Biology of Bacteria, 3rd edn, vol. 7, Proteobacteria: Delta and Epsilon Subclasses. Deeply Rooting Bacteria (edited by Dworkin, Falkow, Rosenberg, Schleifer and Stackebrandt). Springer, New York, pp. 455–480.Google Scholar
  411. Bernardet, J.-F., P. Segers, M. Vancanneyt, F. Berthe, K. Kersters and P. Vandamme. 1996. Cutting a gordian knot: emended classification and description of the genus Flavobacterium, emended description of the family Flavobacteriaceae, and proposal of Flavobacterium hydatis nom. nov. (basonym, Cytophaga aquatilis Strohl and Tait 1978). Int. J. Syst. Bacteriol. 46: 128–148.Google Scholar
  412. Bernardet, J.-F., Y. Nakagawa and B. Holmes. 2002. Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int. J. Syst. Evol. Microbiol. 52: 1049–1070.PubMedGoogle Scholar
  413. Bernardet, J.-F., M. Vancanneyt, O. Matte-Tailliez, L. Grisez, P. Tailliez, C. Bizet, M. Nowakowski, B. Kerouault and J. Swings. 2005. Polyphasic study of Chryseobacterium strains isolated from diseased aquatic animals. Syst. Appl. Microbiol. 28: 640–660.PubMedGoogle Scholar
  414. Bernardet, J.-F., C. Hugo and B. Bruun. 2006. The genera Chryseobacterium and Elizabethkingia. In The Prokaryotes: A Handbook on the Biology of Bacteria, 3rd edn, vol. 7, Proteobacteria: Delta and Epsilon Subclasses. Deeply Rooting Bacteria (edited by Dworkin, Falkow, Rosenberg, Schleifer and Stackebrandt). Springer, New York, pp. 638–676.Google Scholar
  415. Berthe-Corti, L. and A. Bruns. 1999. The impact of oxygen tension on cell density and metabolic diversity of microbial communities in alkane degrading continuous-flow cultures. Microb. Ecol. 37: 70–77.PubMedGoogle Scholar
  416. Bisschop, S.P., M. Van Vuuren and B. Gummow. 2004. The use of a bacterin vaccine in broiler breeders for the control of Ornithobacterium rhinotracheale in commercial broilers. J. S. Afr. Vet. Assoc. 75: 125–128.PubMedGoogle Scholar
  417. Bissett, A., J. Bowman and C. Burke. 2006. Bacterial diversity in organically-enriched fish farm sediments. FEMS Microbiol. Ecol. 55: 48–56.PubMedGoogle Scholar
  418. Bloch, K.C., R. Nadarajah and R. Jacobs. 1997. Chryseobacterium meningosepticum: an emerging pathogen among immunocompromised adults. Report of 6 cases and literature review. Medicine (Baltimore) 76: 30–41.Google Scholar
  419. Bobo, R.A. and E.J. Newton. 1976. A previously undescribed gram-negative bacillus causing septicemia and meningitis. Am. J. Clin. Pathol. 65: 564–569.PubMedGoogle Scholar
  420. Bock, R., P. Freidlin, M. Manoim, A. Inbar, A. Frommer, P. Vandamme and P. Wilding. 1997. Ornithobacterium rhinotracheale (ORT) associated with a new turkey respiratory tract infectious agent in Israel. Proceedings of the 11th International Congress of the World Veterinary Poultry Association, Budapest, p. 120.Google Scholar
  421. Bodour, A.A., K.P. Drees and R.M. Maier. 2003. Distribution of biosurfactant-producing bacteria in undisturbed and contaminated arid Southwestern soils. Appl. Environ. Microbiol. 69: 3280–3287.PubMedGoogle Scholar
  422. Bolton, R.W. and J.K. Dyer. 1983. Suppression of murine lymphocyte mitogen responses by exopolysaccharide from Capnocytophaga ochracea. Infect. Immun. 39: 476–479.PubMedGoogle Scholar
  423. Borg, A.F. 1948. Studies on myxobacteria associated with diseases in salmonid fishes. PhD thesis, University of Washington, Seattle.Google Scholar
  424. Borg, A.F. 1960. Studies on myxobacteria associated with diseases in salmonid fishes. Wildl. Dis. 8: 85.Google Scholar
  425. Borriss, M., E. Helmke, R. Hanschke and T. Schweder. 2003. Isolation and characterization of marine psychrophilic phage-host systems from Arctic sea ice. Extremophiles 7: 377–384.PubMedGoogle Scholar
  426. Borriss, M., T. Lombardot, F.O. Glockner, D. Becher, D. Albrecht and T. Schweder. 2007. Genome and proteome characterization of the psychrophilic Flavobacterium bacteriophage 11b. Extremophiles 11: 95–104.PubMedGoogle Scholar
  427. Botha, W.C., P.J. Jooste and C.J. Hugo. 1998. The incidence of Weeksella- and Bergeyella-like bacteria in the food environment. J. Appl. Microbiol. 84: 349–356.PubMedGoogle Scholar
  428. Bottone, E.J., R.M. Madayag and M.N. Qureshi. 1992. Acanthamoeba keratitis: synergy between amebic and bacterial cocontaminants in contact lens care systems as a prelude to infection. J. Clin. Microbiol. 30: 2447–2450.PubMedGoogle Scholar
  429. Bowman, J.P. 2000. Description of Cellulophaga algicola sp. nov., isolated from the surfaces of Antarctic algae, and reclassification of Cytophaga uliginosa (ZoBell and Upham 1944) Reichenbach 1989 as Cellulophaga uliginosa comb. nov. Int. J. Syst. Evol. Microbiol. 50: 1861–1868.PubMedGoogle Scholar
  430. Bowman, J.P. 2006. The marine clade of the family Flavobacteriaceae: the genera Aequorivita, Arenibacter, Cellulophaga, Croceibacter, Formosa, Gelidibacter, Gillisia, Maribacter, Mesonia, Muricauda, Polaribacter, Psychroflexus, Psychroserpens, Robiginitalea, Salegentibacter, Tenacibaculum, Ulvibacter, Vitellibacter and Zobellia. In The Prokaryotes: A Handbook on the Biology of Bacteria, 3rd edn, vol. 7, Proteobacteria: Delta and Epsilon Subclasses. Deeply Rooting Bacteria (edited by Dworkin, Falkow, Rosenberg, Schleifer and Stackebrandt). Springer, New York, pp. 677–694.Google Scholar
  431. Bowman, J.P. and D.S. Nichols. 2002. Aequorivita gen. nov., a member of the family Flavobacteriaceae isolated from terrestrial and marine Antarctic habitats. Int. J. Syst. Evol. Microbiol. 52: 1533–1541.PubMedGoogle Scholar
  432. Bowman, J.P. and D.S. Nichols. 2005. Novel members of the family Flavobacteriaceae from Antarctic maritime habitats including Subsaximicrobium wynnwilliamsii gen. nov., sp. nov., Subsaximicrobium saxinquilinus sp. nov., Subsaxibacter broadyi gen. nov., sp. nov., Lacinutrix copepodicola gen. nov., sp. nov., and novel species of the genera Bizionia, Gelidibacter and Gillisia. Int. J. Syst. Evol. Microbiol. 55: 1471–1486.PubMedGoogle Scholar
  433. Bowman, J.P. and B. Nowak. 2004. Salmonid gill bacteria and their relationship to amoebic gill disease. J. Fish Dis. 27: 483–492.PubMedGoogle Scholar
  434. Bowman, J.P., S.A. McCammon, J.L. Brown, P.D. Nichols and T.A. McMeekin. 1997. Psychroserpens burtonensis gen. nov., sp. nov., and Gelidibacter algens gen. nov., sp. nov., psychrophilic bacteria isolated from Antarctic lacustrine and sea ice habitats. Int. J. Syst. Bacteriol. 47: 670–677.PubMedGoogle Scholar
  435. Bowman, J.P., S.A. McCammon, T. Lewis, J.H. Skerratt, J.L. Brown, D.S. Nichols and T.A. McMeekin. 1998. Psychroflexus torquis gen. nov., sp. nov., a psychrophilic species from Antarctic sea ice, and reclassification of Flavobacterium gondwanense (Dobson et al. 1993) as Psychroflexus gondwanense gen. nov., comb. nov. Microbiology 144: 1601–1609.PubMedGoogle Scholar
  436. Bowman, J.P., S.A. McCammon, T.E. Lewis, J.H. Skerratt, J.L. Brown, D.S. Nichols and T.A. McMeekin. 1999. In Validation of publication of new names and new combinations previously effectively published outside the IJSB, List no. 68. Int. J. Syst. Bacteriol. 49: 1–3.Google Scholar
  437. Bowman, J.P., C. Mancuso, C.M. Nichols and J.A.E. Gibson. 2003. Algoriphagus ratkowskyi gen. nov., sp. nov., Brumimicrobium glaciale gen. nov., sp. nov., Cryomorpha ignava gen. nov., sp. nov. and Crocinitomix catalasitica gen. nov., sp. nov., novel flavobacteria isolated from various polar habitats. Int. J. Syst. Evol. Microbiol. 53: 1343–1355.PubMedGoogle Scholar
  438. Brambilla, E., O. Päuker, S. Cousin, U. Steiner, A. Reimer and E. Stackebrandt. 2007. High phylogenetic diversity of Flavobacterium spp. isolated from a hardwater creek, Harz Mountains, Germany. Org. Divers. Evol. 7: 145–154.Google Scholar
  439. Brandelli, A. and A. Riffel. 2005. Production of an extracellular keratinase from Chryseobacterium sp. growing on raw feathers. Electr. J. Biotechnol. 8: 35–42.Google Scholar
  440. Braun, T.F. and M.J. McBride. 2005. Flavobacterium johnsoniae GldJ is a lipoprotein that is required for gliding motility. J. Bacteriol. 187: 2628–2637.PubMedGoogle Scholar
  441. Braun, T.F., M.K. Khubbar, D.A. Saffarini and M.J. McBride. 2005. Flavobacterium johnsoniae gliding motility genes identified by mariner mutagenesis. J. Bacteriol. 187: 6943–6952.PubMedGoogle Scholar
  442. Breed, R.S. 1957. Genus IV. Agarbacterium Angst 1929. In Bergey’s Manual of Determinative Bacteriology, 7th edn (edited by Breed, Murray and Smith). Williams & Wilkins, Baltimore, pp. 322–328.Google Scholar
  443. Breed, R.S., E.G.D. Murray and N.R. Smith (editors). 1957. Bergey’s Manual of Determinative Bacteriology. Williams & Wilkins, Baltimore.Google Scholar
  444. Brenner, D.J., D.G. Hollis, G.R. Fanning and R.E. Weaver. 1989. Capnocytophaga canimorsus sp. nov. (formerly CDC Group Df-2), a cause of septicemia following dog bite, and C. cynodegmisp. nov., a cause of localized wound-infection following dog bite. J. Clin. Microbiol. 27: 231–235.PubMedGoogle Scholar
  445. Brenner, D.J., D.G. Hollis, G.R. Fanning and R.E. Weaver. 1990. In Validation of the publication of new names and new combinations previously effectively published outside the IJSB. List no. 32. Int. J. Syst. Bacteriol. 40: 105–106.Google Scholar
  446. Brinkmeyer, R., K. Knittel, J. Jurgens, H. Weyland, R. Amann and E. Helmke. 2003. Diversity and structure of bacterial communities in arctic versus antarctic pack ice. Appl. Environ. Microbiol. 69: 6610–6619.PubMedGoogle Scholar
  447. Brisou, J., C. Tysset and B. Vacher. 1959. Etude de trois souches microbiennes, famille des Pseudomonadaceae, dont la synergie provoque une maladie de caractère septicémique chez les poissons blancs de la Dordogne, du Lot et de leurs affluents. Ann. Inst. Pasteur 96: 689–696.Google Scholar
  448. Brisou, J., C. Tysset and A. Jacob. 1960. Etude d’un germe de la famille des Pseudomonadaceae (Tribu des Chromobactereae) Empedobacter aquatile isolé d’un produit frais de charcuterie. Arch. Inst. Pasteur Algérie 38: 353–360.Google Scholar
  449. Brown, M.V. and J.P. Bowman. 2001. A molecular phylogenetic survey of sea-ice microbial communities (SIMCO). FEMS Microbiol. Ecol. 35: 267–275.PubMedGoogle Scholar
  450. Bruner, D.W. and J. Fabricant. 1954. A strain of Moraxella anatipestifer (Pfeifferella anatipestifer) isolated from ducks. Cornell Vet. 44: 461–464.PubMedGoogle Scholar
  451. Bruner, D.W., C.I. Angstrom and J.I. Price. 1970. Pasteurella anatipestifer infection in pheasants. A case report. Cornell Vet. 60: 491–494.PubMedGoogle Scholar
  452. Bruns, A., M. Rohde and L. Berthe-Corti. 2001. Muricauda ruestringensis gen. nov., sp. nov., a facultatively anaerobic, appendaged bacterium from German North Sea intertidal sediment. Int. J. Syst. Evol. Microbiol. 51: 1997–2006.PubMedGoogle Scholar
  453. Bruun, B. 1982. Studies on a collection of strains of the genus Flavobacterium. 1. Biochemical studies. Acta Pathol. Microbiol. Immunol. Scand. [B] 90: 415–421.Google Scholar
  454. Bruun, B. 1987. Antimicrobial susceptibility of Flavobacterium meningosepticum strains identified by DNA–DNA hybridization. Acta Pathol. Microbiol. Immunol. Scand. [B] 95: 95–101.Google Scholar
  455. Bruun, B. and J. Ursing. 1987. Phenotypic characterization of Flavobacterium meningosepticum strains identified by DNA–DNA hybridization. Acta Pathol. Microbiol. Immunol. Scand. Sect. B 95: 41–47.Google Scholar
  456. Bruun, B., E.T. Jensen, K. Lundstrom and G.E. Andersen. 1989. Flavobacterium meningosepticum infection in a neonatal ward. Eur. J. Clin. Microbiol. Infect. Dis. 8: 509–514.PubMedGoogle Scholar
  457. Butler, T., R.E. Weaver, T.K. Ramani, C.T. Uyeda, R.A. Bobo, J.S. Ryu and R.B. Kohler. 1977. Unidentified gram-negative rod infection. A new disease of man. Ann. Intern. Med. 86: 1–5.PubMedGoogle Scholar
  458. Callies, E. and W. Mannheim. 1978. Classification of the Flavobacterium-Cytophaga complex on the basis of respiratory quinones and fumarate respiration. Int. J. Syst. Bacteriol. 28: 14–19.Google Scholar
  459. Callies, E. and W. Mannheim. 1980. Deoxyribonucleic acid relatedness of some menaquinone-producing Flavobacterium and Cytophaga strains. Antonie van Leeuwenhoek 46: 41–49.PubMedGoogle Scholar
  460. Calmes, R., G.W. Rambicure, W. Gorman and T.T. Lillich. 1980. Energy metabolism in Capnocytophaga ochracea. Infect. Immun. 29: 551–560.PubMedGoogle Scholar
  461. Campbell, L.L. 1957. Genus Beneckea Campbell. In Bergey’s Manual of Determinative Bacteriology, 7th edn (edited by Breed, Murray and Smith). Williams & Wilkins, Baltimore, pp. 328–332.Google Scholar
  462. Campbell, L.L. and O.B. Williams. 1951. A study of chitin-decomposing micro-organisms of marine origin. J. Gen. Microbiol. 5: 894–905.PubMedGoogle Scholar
  463. Campbell, C.L., D.L. Mummey, E.T. Schmidtmann and W.C. Wilson. 2004. Culture-independent analysis of midgut microbiota in the arbovirus vector Culicoides sonorensis (Diptera: Ceratopogonidae). J. Med. Entomol. 41: 340–348.PubMedGoogle Scholar
  464. Campbell, S., R.M. Harada and Q.X. Li. 2008. Chryseobacterium arothri sp. nov., isolated from the kidneys of a pufferfish. Int. J. Syst. Evol. Microbiol. 58: 290–293.PubMedGoogle Scholar
  465. Canal, C.W., J.A. Leao, S.L. Rocha, M. Macagnan, C.A. Lima-Rosa, S.D. Oliveira and A. Back. 2005. Isolation and characterization of Ornithobacterium rhinotracheale from chickens in Brazil. Res. Vet. Sci. 78: 225–230.PubMedGoogle Scholar
  466. Carson, J., L.M. Schmidtke and B.L. Munday. 1993. Cytophaga johnsonae: a putative skin pathogen of juvenile farmed barramundi, Lates calcarifer Bloch. J. Fish Dis. 16: 209–218.Google Scholar
  467. Cauwerts, K., P. De Herdt, F. Haesebrouck, J. Vervloesem and R. Ducatelle. 2002. The effect of Ornithobacterium rhinotracheale vaccination of broiler breeder chickens on the performance of their progeny. Avian. Pathol. 31: 619–624.PubMedGoogle Scholar
  468. Cepeda, C., S. García-Márquez and Y. Santos. 2004. Improved growth of Flavobacterium psychrophilum using a new culture medium. Aquaculture 238: 75–82.Google Scholar
  469. Chakroun, C., F. Grimont, M.C. Urdaci and J.-F. Bernardet. 1998. Fingerprinting of Flavobacterium psychrophilum isolates by ribotyping and plasmid profiling. Dis. Aquat. Org. 33: 167–177.PubMedGoogle Scholar
  470. Chang, J.C., P.R. Hsueh, J.J. Wu, S.W. Ho, W.C. Hsieh and K.T. Luh. 1997. Antimicrobial susceptibility of flavobacteria as determined by agar dilution and disk diffusion methods. Antimicrob. Agents Chemother. 41: 1301–1306.PubMedGoogle Scholar
  471. Charlton, B.R., S.E. Channing-Santiago, A.A. Bickford, C.J. Cardona, R.P. Chin, G.L. Cooper, R. Droual, J.S. Jeffrey, C.U. Meteyer, H.L. Shivaprasad and R.L. Walker. 1993. Preliminary characterization of a pleomorphic Gram-negative rod associated with avian respiratory disease. J. Vet. Diagn. Invest. 5: 47–51.PubMedGoogle Scholar
  472. Chase, J.M. 1965. Nutrition of some aquatic myxobacteria. MSc thesis, University of Washington, Seattle.Google Scholar
  473. Chen, G.X., R. Zhang and H.W. Zhou. 2006. Heterogeneity of metallo-beta-lactamases in clinical isolates of Chryseobacterium meningosepticum from Hangzhou, China. J. Antimicrob. Chemother. 57: 750–752.Google Scholar
  474. Cheng, S.M. and J.M. Foght. 2007. Cultivation-independent and -dependent characterization of Bacteria resident beneath John Evans Glacier. FEMS Microbiol. Ecol. 59: 318–330.PubMedGoogle Scholar
  475. Chester, F.D. 1897. Report of the mycologist: bacteriological work. Del. Coll. Agric. Exp. Sta. 9th Annual Report. Mercantile Printing Co, Wilmington, DE: 38–145.Google Scholar
  476. Chester, F.D. 1901. A Manual of Determinative Bacteriology. Macmillan, New York.Google Scholar
  477. Chicote, E., A.M. Garcia, D.A. Moreno, M.I. Sarro, P.I. Lorenzo and F. Montero. 2005. Isolation and identification of bacteria from spent nuclear fuel pools. J. Ind. Microbiol. Biotechnol. 32: 155–162.PubMedGoogle Scholar
  478. Chiu, C.H., M. Waddingdon, W.-S. Hsieh, D. Greenberg, P.C. Schreckenberger and A.M. Carnahan. 2000. Atypical Chryseobacterium meningosepticum and meningitis and sepsis in newborns and the immunocompromised, Taiwan. Emerg. Infect. Dis. 6: 481–486.PubMedGoogle Scholar
  479. Cho, J.-C. and S.J. Giovannoni. 2003. In Validation of publication of new names and new combinations previously effectively published outside the IJSEM. List no. 92. Int. J. Syst. Evol. Microbiol. 53: 935–937.Google Scholar
  480. Cho, J.C. and S.J. Giovannoni. 2003. Croceibacter atlanticus gen. nov., sp. nov., a novel marine bacterium in the family Flavobacteriaceae. Syst. Appl. Microbiol. 26: 76–83.PubMedGoogle Scholar
  481. Cho, J.C. and S.J. Giovannoni. 2004. Robiginitalea biformata gen. nov., sp. nov., a novel marine bacterium in the family Flavobacteriaceae with a higher G+C content. Int. J. Syst. Evol. Microbiol. 54: 1101–1106.PubMedGoogle Scholar
  482. Choi, D.H. and B.C. Cho. 2006. Lutibacter litoralis gen. nov., sp. nov., a marine bacterium of the family Flavobacteriaceae isolated from tidal flat sediment. Int. J. Syst. Evol. Microbiol. 56: 771–776.PubMedGoogle Scholar
  483. Choi, D.H., Y.G. Kim, C.Y. Hwang, H. Yi, J. Chun and B.C. Cho. 2006. Tenacibaculum litoreum sp. nov., isolated from tidal flat sediment. Int. J. Syst. Evol. Microbiol. 56: 635–640.PubMedGoogle Scholar
  484. Chowdhury, M.B.R. and H. Wakabayashi. 1988. Effects of sodium, potassium, calcium and magnesium ions on the survival of Flexibacter columnaris in water. Fish Pathol. 23: 231–235.Google Scholar
  485. Christensen, W.B. 1949. Hydrogen sulfide production and citrate utilization in the differentiation of enteric pathogens and coliform bacteria. In Research Bulletin no. 1. Weld County Health Department, Greeley, CO.Google Scholar
  486. Christensen, P.J. 1977. The history, biology, and taxonomy of the Cytophaga group. Can. J. Microbiol. 23: 1599–1653.PubMedGoogle Scholar
  487. Christensen, H., M. Bisgaard, W. Frederiksen, R. Mutters, P. Kuhnert and J.E. Olsen. 2001. Is characterization of a single isolate sufficient for valid publication of a new genus or species? Proposal to modify Recommendation 30b of the Bacteriological Code (1990 Revision). Int. J. Syst. Evol. Microbiol. 51: 2221–2225.PubMedGoogle Scholar
  488. Chung, H.-Y. 1990. On the bacterial disease of captive bullfrog. In Proceedings of the Republic of China-Japan Symposium on Fish Diseases, NSC Symposium Series No. 16 (edited by Kou, Wakabayashi, Liao, Chen and Lo). The National Science Council, Taipei, Taiwan, pp. 81–89.Google Scholar
  489. Ciantar, M., D.A. Spratt, H.N. Newman and M. Wilson. 2001. Assessment of five culture media for the growth and isolation of Capnocytophaga spp. Clin. Microbiol. Infect. 7: 158–160.PubMedGoogle Scholar
  490. Clark, J.W. and S. Kambhampati. 2003. Phylogenetic relationships among Blattabacterium, endosymbiotic bacteria from the wood roach, Cryptocercus. Mol. Phylogenet. Evol. 26: 82–88.PubMedGoogle Scholar
  491. Clayton, R.A., G. Sutton, P.S. Hinkle, Jr, C. Bult and C. Fields. 1995. Intraspecific variation in small-subunit rRNA sequences in GenBank: why single sequences may not adequately represent prokaryotic taxa. Int. J. Syst. Bacteriol. 45: 595–599.PubMedGoogle Scholar
  492. Colding, H., J. Bangsborg, N.E. Fiehn, T. Bennekov and B. Bruun. 1994. Ribotyping for differentiating Flavobacterium meningosepticum isolates from clinical and environmental sources. J. Clin. Microbiol. 32: 501–505.PubMedGoogle Scholar
  493. Collins, M.D., H.N. Shah, A.S. McKee and R.M. Kroppenstedt. 1982. Chemotaxonomy of the genus Capnocytophaga (Leadbetter, Holt & Socransky). J. Appl. Bacteriol. 52: 409–415.PubMedGoogle Scholar
  494. Colwell, R.R., R.V. Citarella and P.K. Chen. 1966. DNA base composition of Cytophaga marinoflava n. sp. determined by buoyant density measurements in cesium chloride. Can. J. Microbiol. 12: 1099–1103.PubMedGoogle Scholar
  495. Connon, S.A. and S.J. Giovannoni. 2002. High-throughput methods for culturing microorganisms in very-low-nutrient media yield diverse new marine isolates. Appl. Environ. Microbiol. 68: 3878–3885.PubMedGoogle Scholar
  496. Cooper, A.J., A.P. Kalinowski, N.B. Shoemaker and A.A. Salyers. 1997. Construction and characterization of a Bacteroides thetaiotaomicron recA mutant: transfer of Bacteroides integrated conjugative elements is RecA independent. J. Bacteriol. 179: 6221–6227.PubMedGoogle Scholar
  497. Córdova, J.L., L. Cárdenas, L. Cárdenas and A. Yudelevich. 2002. Multiple bacterial infection of Alexandrium catenella (Dinophyceae). J. Plankton Res. 24: 1–8.Google Scholar
  498. Cornil, A. and A. Babes. 1890. Les bactéries et leur role dans l’étiologie, l’anatomie et l’histologie pathologiques des maladies infectieuse, Rev. 3rd edn, vol. 1. Felix Alcan, Paris.Google Scholar
  499. Cottrell, M.T. and D.L. Kirchman. 2000. Community composition of marine bacterioplankton determined by 16S rRNA gene clone libraries and fluorescence in situ hybridization. Appl. Environ. Microbiol. 66: 5116–5122.PubMedGoogle Scholar
  500. Cousin, S., O. Päuker and E. Stackebrandt. 2007. Flavobacterium aquidurense sp. nov. and Flavobacterium hercynium sp. nov., from a hard-water creek. Int. J. Syst. Evol. Microbiol. 57: 243–249.PubMedGoogle Scholar
  501. Crasta, K.C., K.L. Chua, S. Subramaniam, J. Frey, H. Loh and H.M. Tan. 2002. Identification and characterization of CAMP cohemolysin as a potential virulence factor of Riemerella anatipestifer. J. Bacteriol. 184: 1932–1939.PubMedGoogle Scholar
  502. Crump, B.C., E.V. Armbrust and J.A. Baross. 1999. Phylogenetic analysis of particle-attached and free-living bacterial communities in the Columbia river, its estuary, and the adjacent coastal ocean. Appl. Environ. Microbiol. 65: 3192–3204.PubMedGoogle Scholar
  503. Darwish, A.M. and A.A. Ismaiel. 2005. Genetic diversity of Flavobacterium columnare examined by restriction fragment length polymorphism and sequencing of the 16S ribosomal RNA gene and the 16S–23S rDNA spacer. Mol. Cell. Probes 16: 267–274.Google Scholar
  504. Darwish, A.M., A.A. Ismaiel, J.C. Newton and J. Tang. 2004. Identification of Flavobacterium columnare by a species-specific polymerase chain reaction and renaming of ATCC43622 strain to Flavobacterium johnsoniae. Mol. Cell. Probes 18: 421–427.PubMedGoogle Scholar
  505. Daskalov, H., D.A. Austin and B. Austin. 1999. An improved growth medium for Flavobacterium psychrophilum. Lett. Appl. Microbiol. 28: 297–299.PubMedGoogle Scholar
  506. Davis, H.S. 1922. A new bacterial disease of freshwater fishes. Bull. U. S. Bur. Fish. 38: 261–280.Google Scholar
  507. Davis, J.M., M.M. Peel and J.A. Gillians. 1979. Colonization of an amputation site by Flavobacterium odoratum after gentamicin therapy. Med. J. Aust. 2: 703–704.PubMedGoogle Scholar
  508. de Beer, H. 2005. A taxonomic study of Chryseobacterium species in meat. PhD thesis, University of the Free State, Bloemfontein, South Africa.Google Scholar
  509. de Beer, H., C.J. Hugo, P.J. Jooste, A. Willems, M. Vancanneyt, T. Coenye and P.A. Vandamme. 2005. Chryseobacterium vrystaatense sp. nov., isolated from raw chicken in a chicken-processing plant. Int. J. Syst. Evol. Microbiol. 55: 2149–2153.PubMedGoogle Scholar
  510. de Beer, H., C.J. Hugo, P.J. Jooste, M. Vancanneyt, T. Coenye and P. Vandamme. 2006. Chryseobacterium piscium sp. nov., isolated from fish of the South Atlantic Ocean off South Africa. Int. J. Syst. Evol. Microbiol. 56: 1317–1322.PubMedGoogle Scholar
  511. Decostere, A., F. Haesebrouck, E. Van Driessche, G. Charlier and R. Ducatelle. 1999. Characterization of the adhesion of Flavobacterium columnare (Flexibacter columnaris) to gill tissue. J. Fish Dis. 22: 465–474.Google Scholar
  512. Decostere, A., L.A. Devriese, R. Ducatelle and F. Haesebrouck. 2002. Bergeyella (Weeksella) zoohelcum associated with respiratory disease in a cat. Vet. Rec. 151: 392.PubMedGoogle Scholar
  513. Dees, S.B., D.E. Karr, D. Hollis and C.W. Moss. 1982. Cellular fatty acids of Capnocytophaga species. J. Clin. Microbiol. 16: 779–783.PubMedGoogle Scholar
  514. Dees, S.B., C.W. Moss, D.G. Hollis and R.E. Weaver. 1986. Chemical characterization of Flavobacterium odoratum, Flavobacterium breve, and Flavobacterium-like groups IIe, IIh, and IIf. J. Clin. Microbiol. 23: 267–273.PubMedGoogle Scholar
  515. DeRosa, M., R. Droual, R. Chin and H. Shivaprasad. 1997. Interaction of Ornithobacterium rhinotracheale and Bordetella avium in turkey poults. Proceedings of the 46th Western Poultry Disease Conference, ­Sacramento, pp. 52–53.Google Scholar
  516. Descamps, V., S. Colin, M. Lahaye, M. Jam, C. Richard, P. Potin, T. Barbeyron, J.C. Yvin and B. Kloareg. 2006. Isolation and culture of a marine bacterium degrading the sulfated fucans from marine brown algae. Mar. Biotechnol. (NY) 8: 27–39.Google Scholar
  517. Devriese, L.A., J. Hommez, P. Vandamme, K. Kersters and F. Haesebrouck. 1995. In vitro antibiotic sensitivity of Ornithobacterium rhinotracheale strains from poultry and wild birds. Vet. Rec. 137: 435–436.PubMedGoogle Scholar
  518. Diarra, K., Z.G. Nong and C. Jie. 2005. Peanut milk and peanut milk based products production: a review. Crit. Rev. Food Sci. Nutr. 45: 405–423.PubMedGoogle Scholar
  519. Diefenthal, T. and H. Dargatz. 1995. Rapid purification of proline-specific endopeptidase from Flavobacterium meningosepticum heterologously expressed in Escherichia coli. World J. Microbiol. Biotechnol. 11: 209–212.Google Scholar
  520. Dobson, S.J., R.R. Colwell, T.A. McMeekin and P.D. Franzmann. 1993. Direct sequencing of the polymerase chain reaction: amplified 16S ribosomal RNA gene of Flavobacterium gondwanense sp. nov. and Flavobacterium salegens sp. nov., two new species from a hypersaline antarctic lake. Int. J. Syst. Bacteriol. 43: 77–83.PubMedGoogle Scholar
  521. Domenech, J., M.S. Reddy, J.W. Kloepper, B. Ramos and J. Gutierrez-Mañero. 2006. Combined application of the biological product LS213 with Bacillus, Pseudomonas or Chryseobacterium for growth promotion and biological control of soil-borne diseases in pepper and tomato. BioControl 51: 245–258.Google Scholar
  522. Donachie, S.P., J.P. Bowman and M. Alam. 2004. Psychroflexus tropicus sp. nov., an obligately halophilic Cytophaga–Flavobacterium–Bacteroides group bacterium from an Hawaiian hypersaline lake. Int. J. Syst. Evol. Microbiol. 54: 935–940.PubMedGoogle Scholar
  523. Dorey, M.J. 1959. Some properties of a pectolytic soil Flavobacterium. J. Gen. Microbiol. 20: 91–104.PubMedGoogle Scholar
  524. Drancourt, M., P. Berger and D. Raoult. 2004. Systematic 16S rRNA gene sequencing of atypical clinical isolates identified 27 new bacterial species associated with humans. J. Clin. Microbiol. 42: 2197–2202.PubMedGoogle Scholar
  525. Droual, R. and R. Chin. 1997. Interaction of Ornithobacterium rhinotracheale and Escherichia coli 78:H9 when inoculated into the air sac in turkey poults. Western Poultry Disease Conference, Sacramento. 11.Google Scholar
  526. du Moulin, G.C. 1979. Airway colonization by Flavobacterium in an intensive care unit. J. Clin. Microbiol. 10: 155–160.PubMedGoogle Scholar
  527. Duchaud, E., M. Boussaha, V. Loux, J.-F. Bernardet, C. Michel, B. Kerouault, S. Mondot, P. Nicolas, R. Bossy, C. Caron, P. Bessieres, J.F. Gibrat, S. Claverol, F. Dumetz, M. Le Henaff and A. Benmansour. 2007. Complete genome sequence of the fish pathogen Flavobacterium psychrophilum. Nat. Biotechnol. 25: 763–769.PubMedGoogle Scholar
  528. Dudouyt, J., P. van Empel, Y. Gardin and D. Céline. 1995. Isolement d´un nouvel agent pathogene chez la dinde: Ornithobacterium rhinotracheale; conduite a tenir. Léres Journees De La Recherche Avicole. Sous Le Patronage Du Ministere De L´Agriculture Et De La Peche. Centre De Congress D´angers, 28–30 Mars, 1995. 240–243.Google Scholar
  529. Dugas, J.E., L. Zurek, B.J. Paster, B.A. Keddie and E.R. Leadbetter. 2001. Isolation and characterization of a Chryseobacterium strain from the gut of the American cockroach, Periplaneta americana. Arch. Microbiol. 175: 259–262.PubMedGoogle Scholar
  530. Dumetz, F., E. Duchaud, S.E. LaPatra, C. Le Marrec, S. Claverol, M.C. Urdaci and M. Le Henaff. 2006. A protective immune response is generated in rainbow trout by an OmpH-like surface antigen (P18) of Flavobacterium psychrophilum. Appl. Environ. Microbiol. 72: 4845–4852.PubMedGoogle Scholar
  531. Dworkin, M. 1969. Sensitivity of gliding bacteria to actinomycin D. J. Bacteriol. 98: 851–852.PubMedGoogle Scholar
  532. Dyer, J.K. and R.W. Bolton. 1985. Purification and chemical characterization of an exopolysaccharide isolated from Capnocytophaga ochracea. Can. J. Microbiol. 31: 1–5.PubMedGoogle Scholar
  533. Eiler, A. and S. Bertilsson. 2007. Flavobacteria blooms in four eutrophic lakes: linking population dynamics of freshwater bacterioplankton to resource availability. Appl. Environ. Microbiol. 73: 3511–3518.PubMedGoogle Scholar
  534. Einen, J. and L. Øvreås. 2006. Flaviramulus basaltis gen. nov., sp. nov., a novel member of the family Flavobacteriaceae isolated from seafloor basalt. Int. J. Syst. Evol. Microbiol. 56: 2455–2461.PubMedGoogle Scholar
  535. Eisenberg, J. 1891. Bacteriologische Diagnostik. Hilfstabellen zum Gebrauche beim Praktischen Arbeiten. 3 Aufl, vol. VII–XXX. Leopold Voss, Hamburg.Google Scholar
  536. El-Gohary, A.A. 1998. Ornithobacterium rhinotracheale (ORT) associated with hatching problems in chicken and turkey eggs. Vet. Med. J. Giza, Egypt 46: 183–191.Google Scholar
  537. El-Sukhon, S.N., A. Musa and M. Al-Attar. 2002. Studies on the bacterial etiology of airsacculitis of broilers in northern and middle Jordan with special reference to Escherichia coli, Ornithobacterium rhinotracheale, and Bordetella avium. Avian Dis. 46: 605–612.PubMedGoogle Scholar
  538. Elder, J.H. and S. Alexander. 1982. endo-b-N-Acetylglucosaminidase F: endoglycosidase from Flavobacterium meningosepticum that cleaves both high-mannose and complex glycoproteins. Proc. Natl. Acad. Sci. U. S. A. 79: 4540–4544.PubMedGoogle Scholar
  539. Elifantz, H., R.R. Malmstrom, M.T. Cottrell and D.L. Kirchman. 2005. Assimilation of polysaccharides and glucose by major bacterial groups in the Delaware Estuary. Appl. Environ. Microbiol. 71: 7799–7805.PubMedGoogle Scholar
  540. Engelbrecht, K., P.J. Jooste and B.A. Prior. 1996a. Quantitative and qualitative determination of the aerobic bacterial populations of Cape marine fish. S. Afr. J. Food Sci. Nutr. 8: 60–65.Google Scholar
  541. Engelbrecht, K., P.J. Jooste and B.A. Prior. 1996b. Spoilage characteristics of Gram-negative genera and species isolated from Cape marine fish. S. Afr. J. Food Sci. Nutr. 8: 66–71.Google Scholar
  542. Erganis, O., H.H. Hadimli, K. Kav, M. Corlu and D. Ozturk. 2002. A comparative study on detection of Ornithobacterium rhinotracheale antibodies in meat-type turkeys by dot immunobinding assay, rapid agglutination test and serum agglutination test. Avian Pathol. 31: 201–204.PubMedGoogle Scholar
  543. Euzéby, J.P. 1997. List of bacterial names with standing in nomenclature: a folder available on the Internet. Int. J. Syst. Bacteriol. 47: 590–592.PubMedGoogle Scholar
  544. Faung, S.T., L. Chiu and C.T. Wang. 1996. Platelet lysis and functional perturbation by 13-methyl myristate, the major fatty acid in Flavobacterium ranacida. Thromb. Res. 81: 91–100.PubMedGoogle Scholar
  545. Fautz, E., L. Grotjahn and H. Reichenbach. 1981. Hydroxy fatty acids as valuable chemosystematic markers in gliding bacteria and flavobacteria. In The Flavobacterium-Cytophaga Group, Gesellschaft für Biotechnologische Forschung Monograph Series No. 5. (edited by Reichenbach and Weeks). Verlag Chemie, Weinheim, pp. 17–26.Google Scholar
  546. Felsenstein, J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783–791.Google Scholar
  547. Fischer, L.J., R.S. Weyant, E.H. White and F.D. Quinn. 1995. Intracellular multiplication and toxic destruction of cultured macrophages by Capnocytophaga canimorsus. Infect. Immun. 63: 3484–3490.PubMedGoogle Scholar
  548. Fitzgerald, S.L., J.M. Greyling and R.R. Bragg. 1998. Correlation between ability of Ornithobacterium rhinotracheale to agglutinate red blood cells and susceptibility to fosfomycin. Onderstepoort J. Vet. Res. 65: 317–320.PubMedGoogle Scholar
  549. Flaherty, D.K., F.H. Deck, M.A. Hood, C. Liebert, F. Singleton, P. Winzenburger, K. Bishop, L.R. Smith, L.M. Bynum and W.B. Witmer. 1984. A Cytophaga species endotoxin as a putative agent of occupation-related lung disease. Infect. Immun. 43: 213–216.PubMedGoogle Scholar
  550. Follett, E.A. and D.M. Webley. 1965. An electron microscope study of the cell surface of Cytophaga johnsonii and some observations on related organisms. Antonie van Leeuwenhoek 31: 361–382.PubMedGoogle Scholar
  551. Forlenza, S.W., M.G. Newman, A.I. Lipsey, S.E. Siegel and U. Blachman. 1980. Capnocytophaga sepsis: a newly recognised clinical entity in granulocytopenic patients. Lancet 1: 567–568.PubMedGoogle Scholar
  552. Forlenza, S.W., M.G. Newman, A.L. Horikoshi and U. Blachman. 1981. Antimicrobial susceptibility of Capnocytophaga. Antimicrob. Agents Chemother. 19: 144–146.PubMedGoogle Scholar
  553. Frankland, G.C. and P.F. Frankland. 1889. Über einige typische Mikroorganismen im Wasser und im Boden. Z. Hyg. Infektionskr. 6: 373–400.Google Scholar
  554. Fraser, S.L. and J.H. Jorgensen. 1997. Reappraisal of the antimicrobial susceptibilities of Chryseobacterium and Flavobacterium species and methods for reliable susceptibility testing. Antimicrob. Agents Chemother. 41: 2738–2741.PubMedGoogle Scholar
  555. Frette, L., N.O. Jorgensen, H. Irming and N. Kroer. 2004. Tenacibaculum skagerrakense sp. nov., a marine bacterium isolated from the pelagic zone in Skagerrak, Denmark. Int. J. Syst. Evol. Microbiol. 54: 519–524.PubMedGoogle Scholar
  556. Friedrich, T., S. Geibel, R. Kalmbach, I. Chizhov, K. Ataka, J. Heberle, M. Engelhard and E. Bamberg. 2002. Proteorhodopsin is a light-driven proton pump with variable vectoriality. J. Mol. Biol. 321: 821–838.PubMedGoogle Scholar
  557. Fung, J.C., M. Berman and T. Fiorentino. 1983. Capnocytophaga: a review of the literature. Am. J. Med. Technol. 49: 589–591.PubMedGoogle Scholar
  558. Gallego, V., M.T. García and A. Ventosa. 2006. Chryseobacterium hispanicum sp. nov., isolated from the drinking water distribution system of Sevilla, Spain. Int. J. Syst. Evol. Microbiol. 56: 1589–1592.PubMedGoogle Scholar
  559. García-López, M.L., M. Prieto and A. Otero. 1998. The physiological ­attributes of Gram-negative bacteria associated with spoilage of meat and meat products. In The Microbiology of Meat and Poultry (edited by Davies and Board). Blackie Academic & Professional, London, pp. 1–34.Google Scholar
  560. Garnjobst, L. 1945. Cytophaga columnaris (Davis) in pure culture: a myxobacterium pathogenic to fish. J. Bacteriol. 49: 113–128.PubMedGoogle Scholar
  561. Gennari, M. and C. Cozzolino. 1989. Observations on Flavobacterium, Cytophagaceae and other pigmented bacteria isolated from fresh and ice stored sardines. Arch. Vet. Ital. 40: 372–384.Google Scholar
  562. Gherna, R. and C.R. Woese. 1992. A partial phylogenetic analysis of the “Flavobacter-Bacteroides” phylum: basis for taxonomic restructuring. Syst. Appl. Microbiol. 15: 513–521.PubMedGoogle Scholar
  563. Ghozlan, H., H. Deif, R.A. Kandil and S. Sabry. 2006. Biodiversity of moderately halophilic bacteria in hypersaline habitats in Egypt. J. Gen. Appl. Microbiol. 52: 63–72.PubMedGoogle Scholar
  564. Gich, F., K. Schubert, A. Bruns, H. Hoffelner and J. Overmann. 2005. Specific detection, isolation, and characterization of selected, previously uncultured members of the freshwater bacterioplankton community. Appl. Environ. Microbiol. 71: 5908–5919.PubMedGoogle Scholar
  565. Gill, V.J. 2000. Capnocytophaga. In Douglas and Benett’s Principles and Practice of Infectious Diseases, 5th edn (edited by Mandell, Bennett and Dolin). Churchill Livingstone, New York, pp. 2441–2444.Google Scholar
  566. Gilligan, P.H., L.R. McCarthy and B.K. Bissett. 1981. Capnocytophaga ochracea septicemia. J. Clin. Microbiol. 13: 643–645.PubMedGoogle Scholar
  567. Glaser, J. and J.L. Pate. 1973. Isolation and characterization of gliding motility mutants of Cytophaga columnaris. Arch. Mikrobiol. 93: 295–309.PubMedGoogle Scholar
  568. Godchaux, W., III and E.R. Leadbetter. 1980. Capnocytophaga spp. contain sulfonolipids that are novel in procaryotes. J. Bacteriol. 144: 592–602.PubMedGoogle Scholar
  569. Godchaux, W., III and E.R. Leadbetter. 1983. Unusual sulfonolipids are characteristic of the Cytophaga-Flexibacter group. J. Bacteriol. 153: 1238–1246.PubMedGoogle Scholar
  570. Godchaux, W.III, and E.R. Leadbetter. 1984. Sulfonolipids of gliding bacteria. Structure of the N-acylaminosulfonates. J. Biol. Chem. 259: 2982–2990.PubMedGoogle Scholar
  571. Godchaux, W.III, L. Gorski and E.R. Leadbetter. 1990. Outer membrane polysaccharide deficiency in two nongliding mutants of Cytophaga johnsonae. J. Bacteriol. 172: 1250–1255.PubMedGoogle Scholar
  572. Goldstein, E.J., D.M. Citron and C.V. Merriam. 1999. Linezolid activity compared to those of selected macrolides and other agents against aerobic and anaerobic pathogens isolated from soft tissue bite infections in humans. Antimicrob. Agents Chemother. 43: 1469–1474.PubMedGoogle Scholar
  573. Gómez-Consarnau, L., J.M. González, M. Coll-Lladó, P. Gourdon, T. Pascher, R. Neutze, C. Pedrós-Alió and J. Pinhassi. 2007. Light stimulates growth of proteorhodopsin-containing marine Flavobacteria. Nature 445: 210–213.PubMedGoogle Scholar
  574. González, C.J., J.A. Santos, M.L. García-López and A. Otero. 2000. ­Psychrobacters and related bacteria in freshwater fish. J. Food Prot. 63: 315–321.PubMedGoogle Scholar
  575. Gorski, L., I.W. Godchaux, E.R. Leadbetter and R.R. Wagner. 1992. Diversity in surface features of Cytophaga johnsonae motility mutants. J. Gen. Microbiol. 138: 1767–1772.Google Scholar
  576. Gosink, J.J., C.R. Woese and J.T. Staley. 1998. Polaribacter gen. nov., with three new species, P. irgensii sp. nov., P. franzmannii sp. nov. and P. filamentus sp. nov., gas vacuolate polar marine bacteria of the Cytophaga–Flavobacterium–Bacteroides group and reclassification of ­‘Flectobacillus glomeratus’ as Polaribacter glomeratus comb. nov. Int. J. Syst. Bacteriol. 48: 223–235.PubMedGoogle Scholar
  577. Gräf, W. 1962. Über Wassermyxobakterien. (in German with English and French abstracts). Arch. Hyg. Bakteriol. 146: 114–125.Google Scholar
  578. Graham, R., C.A. Brandly and G.L. Dunlap. 1938. Studies of duck septicemia. Cornell Vet. 28: 1–8.Google Scholar
  579. Green, S.L., D.M. Bouley, R.J. Tolwani, K.S. Waggie, B.D. Lifland, G.M. Otto and J.E. Ferrell, Jr. 1999. Identification and management of an outbreak of Flavobacterium meningosepticum infection in a colony of South African clawed frogs (Xenopus laevis). J. Am. Vet. Med. Assoc. 214: 1833–1183.PubMedGoogle Scholar
  580. Green, B.T., K. Green and P.E. Nolan. 2001. Myroides odoratus cellulitis and bacteremia: case report and review. Scand. J. Infect. Dis. 33: 932–934.PubMedGoogle Scholar
  581. Green, D.H., L.E. Llewellyn, A.P. Negri, S.I. Blackburn and C.J. Bolch. 2004. Phylogenetic and functional diversity of the cultivable bacterial community associated with the paralytic shellfish poisoning dinoflagellate Gymnodinium catenatum. FEMS Microbiol. Ecol. 47: 345–357.PubMedGoogle Scholar
  582. Green, S.J., E. Inbar, F.C. Michel, Jr, Y. Hadar and D. Minz. 2006. Succession of bacterial communities during early plant development: transition from seed to root and effect of compost amendment. Appl. Environ. Microbiol. 72: 3975–3983.PubMedGoogle Scholar
  583. Greene, C.E. 1998. Infectious diseases of the dog and cat, 2nd edn. W.B. Saunders, Philadelphia.Google Scholar
  584. Greub, G., B. La Scola and D. Raoult. 2004. Amoebae-resisting bacteria isolated from human nasal swabs by amoebal coculture. Emerg. Infect. Dis. 10: 470–477.PubMedGoogle Scholar
  585. Grimault, E., J.C. Glerant, P. Aubry, G. Laurans, J.P. Poinsot and V. Jounieaux. 1996. Uncommon site of Bergeyella zoohelcum. Apropos of a case. Rev. Pneumol. Clin. 52: 387–389.PubMedGoogle Scholar
  586. Groben, R., G.J. Doucette, M. Kopp, M. Kodama, R. Amann and L.K. Medlin. 2000. 16S rRNA targeted probes for the identification of bacterial strains isolated from cultures of the toxic dinoflagellate Alexandrium tamarense. Microb. Ecol. 39: 186–196.PubMedGoogle Scholar
  587. Grossart, H.P., F. Levold, M. Allgaier, M. Simon and T. Brinkhoff. 2005. Marine diatom species harbour distinct bacterial communities. Environ. Microbiol. 7: 860–873.PubMedGoogle Scholar
  588. Groudieva, T., M. Kambourova, H. Yusef, M. Royter, R. Grote, H. Trinks and G. Antranikian. 2004. Diversity and cold-active hydrolytic enzymes of culturable bacteria associated with Arctic sea ice, Spitzbergen. Extremophiles 8: 475–488.PubMedGoogle Scholar
  589. Güngör, S., M. Özen, A. Akinci and R. Durmaz. 2003. A Chryseobacterium meningosepticum outbreak in a neonatal ward. Infect. Control. Hosp. Epidemiol. 24: 613–617.PubMedGoogle Scholar
  590. Gunnarsson, G., H. Baldursson and I. Hilmarsdottir. 2002. Septic arthritis caused by Chryseobacterium meningosepticum in an immunocompetent male. Scand. J. Infect. Dis. 34: 299–300.PubMedGoogle Scholar
  591. Gutell, R.R., B. Weiser, C.R. Woese and H.F. Noller. 1985. Comparative anatomy of 16-S-like ribosomal RNA. Prog. Nucleic Acid Res. Mol. Biol. 32: 155–216.PubMedGoogle Scholar
  592. Haburjak, J.J. and T.A. Schubert. 1997. Flavobacterium breve meningitis in a dog. J. Am. Anim. Hosp. Assoc. 33: 509–512.PubMedGoogle Scholar
  593. Hadas, E., M. Derda, J. Winiecka-Krusnell and A. Sutek. 2004. Acanthamoeba spp. as vehicles of pathogenic bacteria. Acta Parasitol. 49: 276–280.Google Scholar
  594. Hafez, H.M. 1998. Current status on the laboratory diagnosis of Ornithobacterium rhinotracheale “ORT” in poultry. Berl. Munch. Tierarztl. Wochenschr. 111: 143–145.PubMedGoogle Scholar
  595. Hafez, H.M. 2002. Diagnosis of Ornithobacterium rhinotracheale. Inter. J. Poult. Sci. 1: 114–118.Google Scholar
  596. Hafez, H.M. and W. Beyer. 1997. Preliminary investigation on Ornithobacterium rhinotracheale (ORT) isolates using PCR-fingerprints. ­Proceedings of the XIth International Congress of the World Veterinary Poultry Association Budapest, p. 51.Google Scholar
  597. Hafez, H.M. and S. Friedrich. 1998. Isolierung von Ornithobacterium rhinotracheale „ORT“ aus Mastputen in Österreich. Tierärztl. Umschau 53: 500–504.Google Scholar
  598. Hafez, H.M. and C. Popp. 2003. Ornithobacterium rhinotracheale: Bestimmung der Pathogenität an Hühnerembryonen. Proceedings of the 64th Semi-annual Meeting of German Poultry Diseases Group, Hannover, Germany, pp. 79–85.Google Scholar
  599. Hafez, H.M. and D. Schulze. 2003. Examination on the efficacy of chemical disinfectants on Ornithobacterium rhinotracheale in vitro. Archiv für Geflügelkunde 67: 153–156.Google Scholar
  600. Hafez, H.M. and R. Sting. 1996. Serological surveillance on Ornithobacterium rhinotracheale in poultry flocks using self-made ELISA. ­Proceedings of the 45th Western Poultry Disease Conference, ­Cancun, pp. 163–164.Google Scholar
  601. Hafez, H.M. and R. Sting. 1999. Investigations on different Ornithobacterium rhinotracheale “ORT” isolates. Avian Dis. 43: 1–7.PubMedGoogle Scholar
  602. Hafez, H.M., W. Kruse, J. Emele and R. Sting. 1993. Eine Atemwegsinfektion bei Mastputen durch Pasteurella-ähnliche Erreger: Klinik, Diagnostik und Therapie. Presented at the Proc. Int. Conf. on Poultry Diseases, Potsdam.Google Scholar
  603. Hafez, H.M., A. Mazaheri and R. Sting. 2000. Efficacy of ELISA for detection of antibodies against several Ornithobacterium rhinotracheale serotypes. Deutsche Tierärztliche Wochenschrift 107: 142–143.PubMedGoogle Scholar
  604. Hamana, K. and S. Matsuzaki. 1990. Occurrence of homospermidine as a major polyamine in the authentic genus Flavobacterium. Can. J. Microbiol. 36: 228–231.Google Scholar
  605. Hamana, K. and Y. Nakagawa. 2001. Polyamine distribution profiles in newly validated genera and species within the Flavobacterium-Flexibacter-Cytophaga-Sphingobacterium complex. Microbios 106(Suppl 2): 105–116.PubMedGoogle Scholar
  606. Hansen, G.H., O. Bergh, J. Michaelsen and D. Knappskog. 1992. Flexibacter ovolyticus sp. nov., a pathogen of eggs and larvae of Atlantic halibut, Hippoglossus hippoglossus L. Int. J. Syst. Bacteriol. 42: 451–458.PubMedGoogle Scholar
  607. Hantsis-Zacharov, E. and M. Halpern. 2007. Chryseobacterium haifense sp. nov., a psychrotolerant bacterium isolated from raw milk. Int. J. Syst. Evol. Microbiol. 57: 2344–2348.PubMedGoogle Scholar
  608. Hanzawa, N., S. Kanai, A. Katsuta, Y. Nakagawa and K. Yamasato. 1995. 16S rDNA-based phylogenetic analysis of marine flavobacteria. J. Mar. Biotechnol. 3: 111–114.Google Scholar
  609. Harrison, F.C. 1929. The discoloration of halibut. Can. J. Res. 1: 214–239.Google Scholar
  610. Hauduroy, A., G. Ehringer, A. Urbain, G. Guillot and J. Magrou. 1937. Dictionnaire des bactéries pathogènes. Masson et Cie, Paris.Google Scholar
  611. Hauduroy, P., G. Ehringer, G. Guillot, J. Magrou, A.R. Prévot, Rosset and J. Urbain. 1953. Dictionnaire des bactéries pathogènes, 2nd edn. Masson et Cie, Paris.Google Scholar
  612. Hawkey, P.M., H. Malnick, S.A. Glover, N. Cook and J.A. Watts. 1984. Capnocytophaga ochracea infection: two cases and a review of the published work. J. Clin. Pathol. 37: 1066–1070.PubMedGoogle Scholar
  613. Hayes, P.R. 1977. A taxonomic study of Flavobacteria and related Gram-negative yellow pigmented rods. J. Appl. Bacteriol. 43: 345–367.Google Scholar
  614. Heeder, C.J., V.C. Lopes, K.V. Nagaraja, D.P. Shaw and D.A. Halvorson. 2001. Seroprevalence of Ornithobacterium rhinotracheale infection in commercial laying hens in the north central region of the United States. Avian Dis. 45: 1064–1067.PubMedGoogle Scholar
  615. Heeg, P., W. Heizmann and H. Mentzel. 1994. Infections caused by Flavobacterium meningosepticum in patients in a neonatal intensive care unit. Zentralbl. Hyg. Umweltmed. 195: 282–287.PubMedGoogle Scholar
  616. Hendrickson, J.M. and K.F. Hilbert. 1932. A new and serious septicemic disease of young ducks with a description of the causative organism. Pfeifferella anatipestifer. Cornell Vet. 22: 239–252.Google Scholar
  617. Herzog, P., I. Winkler, D. Wolking, P. Kampfer and A. Lipski. 2008. Chryseobacterium ureilyticum sp. nov., Chryseobacterium gambrini sp. nov., Chryseobacterium pallidum sp. nov. and Chryseobacterium molle sp. nov., isolated from beer-bottling plants. Int. J. Syst. Evol. Microbiol. 58: 26–33.PubMedGoogle Scholar
  618. Hikida, M., H. Wakabayashi, S. Egusa and K. Masumura. 1979. Flexibacter sp., a gliding bacterium pathogenic to some marine fishes in Japan. Bull. Jpn. Soc. Sci. Fish. 45: 421–428.Google Scholar
  619. Hinz, K.-H. and H.M. Hafez. 1997. Early history of Ornithobacterium rhinotracheale (ORT). Arch. Gefluegelk. 61: 95–96.Google Scholar
  620. Hinz, K.H., C. Blome and M. Ryll. 1994. Acute exudative pneumonia and airsacculitis associated with Ornithobacterium rhinotracheale in turkeys. Vet. Rec. 135: 233–234.PubMedGoogle Scholar
  621. Hinz, K.H., M. Ryll, B. Kohler and G. Glunder. 1998. Phenotypic characteristics of Riemerella anatipestifer and similar micro-organisms from various hosts. Avian Pathol. 27: 33–42.PubMedGoogle Scholar
  622. Holmes, B. 1987. Identification and distribution of Flavobacterium meningosepticum in clinical material. J. Appl. Bacteriol. 62: 29–41.PubMedGoogle Scholar
  623. Holmes, B. 1992. The genera Flavobacterium, Sphingobacterium, and Weeksella. In The Prokaryotes: A Handbook on the Biology of Bacteria: Ecophysiology, Isolation, Identification, Applications, 2nd edn, vol. 4 (edited by Balows, Trüper, Dworkin, Harder and Schleifer). Springer, New York, pp. 3620–3630.Google Scholar
  624. Holmes, B. 1993. Recent developments in Flavobacterium taxonomy. In Advances in the taxonomy and significance of Flavobacterium, Cytophaga and related bacteria (edited by Jooste). University of the Orange Free State Press, Bloemfontein, South Africa, pp. 6–15.Google Scholar
  625. Holmes, B. and R.J. Owen. 1979. Proposal that Flavobacterium breve be substituted as the type species of the genus in place of Flavobacterium aquatile and emended description of the genus Flavobacterium: status of the named species of Flavobacterium, Request for an Opinion. Int. J. Syst. Bacteriol. 29: 416–426.Google Scholar
  626. Holmes, B. and R.J. Owen. 1981. Emendation of the genus Flavobacterium and the status of the genus. Developments after the 8th edition of Bergey’s Manual. In The Flavobacterium-Cytophaga Group, Gesellschaft für Biotechnologische Forschung Monograph Series No. 5 (edited by Reichenbach and Weeks). Verlag Chemie, Weinheim, pp. 17–26.Google Scholar
  627. Holmes, B. and R.J. Owen. 1982. Flavobacterium breve sp. nov., nom. rev. Int. J. Syst. Bacteriol. 32: 233–234.Google Scholar
  628. Holmes, B., J.J.S. Snell and S.P. Lapage. 1977. Revised description, from clinical isolates, of Flavobacterium odoratum Stutzer and Kwaschnina 1929, and designation of the neotype strain. Int. J. Syst. Bacteriol. 27: 330–336.Google Scholar
  629. Holmes, B., J.J.S. Snell and S.P. Lapage. 1978. Revised description, from clinical strains, of Flavobacterium breve (Lustig) Bergey et al. 1923 and proposal of the neotype strain. Int. J. Syst. Bacteriol. 28: 201–208.Google Scholar
  630. Holmes, B., J.J. Snell and S.P. Lapage. 1979. Flavobacterium odoratum: a species resistant to a wide range of antimicrobial agents. J. Clin. Pathol. 32: 73–77.PubMedGoogle Scholar
  631. Holmes, B., R.J. Owen and D.G. Hollis. 1982. Flavobacterium spiritivorum, a new species Isolated from human clinical specimens. Int. J. Syst. Bacteriol. 32: 157–165.Google Scholar
  632. Holmes, B., R.J. Owen and T.A. McMeekin. 1984a. Genus Flavobacterium Bergey, Harrison, Breed, Hammer, and Huntoon 1923, 97AL. In Bergey’s Manual of Systematic Bacteriology, vol. 1 (edited by Krieg and Holt). Williams & Wilkins, Baltimore, pp. 353–361.Google Scholar
  633. Holmes, B., R.J. Owen, A.G. Steigerwalt and D.J. Brenner. 1984b. Flavobacterium gleum, a new species found in human clinical specimens. Int. J. Syst. Bacteriol. 34: 21–25.Google Scholar
  634. Holmes, B., A.G. Steigerwalt, R.E. Weaver and D.J. Brenner. 1986a. Weeksella zoohelcum sp. nov. (formerly group-IIj), from human clinical specimens. Syst. Appl. Microbiol. 8: 191–196.Google Scholar
  635. Holmes, B., A.G. Steigerwalt, R.E. Weaver and D.J. Brenner. 1986b. Weeksella virosa gen. nov., sp. nov. (formerly group-IIf), found in human clinical specimens. Syst. Appl. Microbiol. 8: 185–190.Google Scholar
  636. Holmes, B., A.G. Steigerwalt, R.E. Weaver and D.J. Brenner. 1987. In Validation of the publication of new names and new combinations previously effectively published outside the IJSB. List no. 23. Int. J. Syst. Bacteriol. 37: 179–180.Google Scholar
  637. Holmes, B., R.E. Weaver, A.G. Steigerwalt and D.J. Brenner. 1988. A taxonomic study of Flavobacterium spiritivorum and Sphingobacterium mizutae: proposal of Flavobacterium yabuuchiae sp. nov. and Flavobacterium mizutaii comb. nov. Int. J. Syst. Bacteriol. 38: 348–353.Google Scholar
  638. Holt, R.A. 1988. Cytophaga psychrophila, the causative agent of bacterial cold-water disease in salmonid fish. PhD thesis, Oregon State University, Corvallis.Google Scholar
  639. Holt, S.C., G. Forcier and B.J. Takacs. 1979. Fatty acid composition of gliding bacteria: oral isolates of Capnocytophaga compared with Sporocytophaga. Infect. Immun. 26: 298–304.PubMedGoogle Scholar
  640. Holt, R.A., A. Amandi, J.S. Rohovec and J.L. Fryer. 1989. Relation of water temperature to bacterial cold-water disease in coho salmon, chinook salmon, and rainbow trout. J. Aquat. Anim. Health 1: 94–101.Google Scholar
  641. Holt, R.A., J.S. Rohovec and J.L. Fryer. 1993. Bacterial cold-water disease. In Bacterial Diseases of Fish (edited by Inglis, Roberts and Brombage). Blackwell Scientific Publications, Oxford, pp. 3–22.Google Scholar
  642. Hoque, S.N., J. Graham, M.E. Kaufmann and S. Tabaqchali. 2001. Chryseobacterium (Flavobacterium) meningosepticum outbreak associated with colonization of water taps in a neonatal intensive care unit. J. Hosp. Infect. 47: 188–192.PubMedGoogle Scholar
  643. Horn, M., M.D. Harzenetter, T. Linner, E.N. Schmid, K.D. Muller, R. Michel and M. Wagner. 2001. Members of the Cytophaga–Flavobacterium–­Bacteroides phylum as intracellular bacteria of acanthamoebae: proposal of ‘Candidatus Amoebophilus asiaticus’. Environ. Microbiol. 3: 440–449.PubMedGoogle Scholar
  644. Horn, M.A., J. Ihssen, C. Matthies, A. Schramm, G. Acker and H.L. Drake. 2005. Dechloromonas denitrificans sp. nov., Flavobacterium denitrificans sp. nov., Paenibacillus anaericanus sp. nov. and Paenibacillus terrae strain MH72, N2O-producing bacteria isolated from the gut of the earthworm Aporrectodea caliginosa. Int. J. Syst. Evol. Microbiol. 55: 1255–1265.PubMedGoogle Scholar
  645. Hosoya, R. and K. Hamana. 2004. Distribution of two triamines, ­spermidine and homospermidine, and an aromatic amine, 2-­phenylethylamine, within the phylum Bacteroidetes. J. Gen. Appl. Microbiol. 50: 255–260.PubMedGoogle Scholar
  646. Hsueh, P.R., T.R. Hsiue and W.C. Hsieh. 1996a. Pyomyositis in intravenous drug abusers: report of a unique case and review of the literature. Clin. Infect. Dis. 22: 858–860.PubMedGoogle Scholar
  647. Hsueh, P.R., T.R. Hsiue, J.J. Wu, L.J. Teng, S.W. Ho, W.C. Hsieh and K.T. Luh. 1996b. Flavobacterium indologenes bacteremia: clinical and microbiological characteristics. Clin. Infect. Dis. 23: 550–555.PubMedGoogle Scholar
  648. Hsueh, P.R., L.J. Teng, S.W. Ho, W.C. Hsieh and K.T. Luh. 1996c. Clinical and microbiological characteristics of Flavobacterium indologenes infections associated with indwelling devices. J. Clin. Microbiol. 34: 1908–1913.PubMedGoogle Scholar
  649. Hsueh, P.R., L.J. Teng, P.C. Yang, S.W. Ho, W.C. Hsieh and K.T. Luh. 1997. Increasing incidence of nosocomial Chryseobacterium indologenes infections in Taiwan. Eur. J. Clin. Microbiol. Infect. Dis. 16: 568–574.PubMedGoogle Scholar
  650. Hu, C.H., Y. Xu, M.S. Xia, L. Xiong and Z.R. Xu. 2007. Effects of Cu2+-exchanged montmorillonite on growth performance, microbial ­ecology and intestinal morphology of Nile tilapia (Oreochromis niloticus). Aquaculture 270: 200–206.Google Scholar
  651. Huang, B., J. Kwang, H. Loh, J. Frey, H.-M. Tan and K.-L. Chua. 2002. Development of a ELISA using a recombinant 41 kDa partial protein (P45N′) for the detection of Riemerella anatipestifer infections in ducks. Vet. Microbiol. 88: 339–349.PubMedGoogle Scholar
  652. Huber, I., B. Spanggaard, K.F. Appel, L. Rossen, T. Nielsen and L. Gram. 2004. Phylogenetic analysis and in situ identification of the intestinal microbial community of rainbow trout (Oncorhynchus mykiss, ­Walbaum). J. Appl. Microbiol. 96: 117–132.PubMedGoogle Scholar
  653. Hugo, C.J. 1997. A taxonomic study of the genus Chryseobacterium from food and environmental sources. PhD thesis, University of the Orange Free State, Bloemfontein, South Africa.Google Scholar
  654. Hugo, C.J. and P.J. Jooste. 1997. Preliminary differentiation of food strains of Chryseobacterium and Empedobacter using multilocus enzyme electrophoresis. Food Microbiol. 14: 133–142.Google Scholar
  655. Hugo, C.J. and P.J. Jooste. 2003. Culture media for genera in the family Flavobacteriaceae. In Handbook of Culture Media for Food Microbiology, 2nd edn (edited by Corry, Curtis and Baird). Elsevier Science Publishers, London, pp. 355–367.Google Scholar
  656. Hugo, C.J., P.J. Jooste, P. Segers, M. Vancanneyt and K. Kersters. 1999. A polyphasic taxonomic study of Chryseobacterium strains isolated from dairy sources. Syst. Appl. Microbiol. 22: 586–595.PubMedGoogle Scholar
  657. Hugo, C.J., P. Segers, B. Hoste, M. Vancanneyt and K. Kersters. 2003. Chryseobacterium joostei sp. nov., isolated from the dairy environment. Int. J. Syst. Evol. Microbiol. 53: 771–777.PubMedGoogle Scholar
  658. Hugo, C.J., B. Bruun and P.J. Jooste. 2004a. The genera Bergeyella and Weeksella. In The Prokaryotes: An Evolving Electronic Resource for the Microbiological Community, 3rd edn, release 3.16 (edited by Dworkin, Falkow, Rosenberg, Schleifer and Stackebrandt). Springer, New York.Google Scholar
  659. Hugo, C.J., B. Bruun and P.J. Jooste. 2004b. The genera Empedobacter and Myroides. In The Prokaryotes: An Evolving Electronic Resource for the Microbiological Community, 3rd edn, release 3.16 (edited by Dworkin, Falkow, Rosenberg, Schleifer and Stackebrandt). Springer, New York.Google Scholar
  660. Humphrey, B.A., M.R. Dickson and K.C. Marshall. 1979. Physicochemical and in situ observations of the adhesion of gliding bacteria to surfaces. Arch. Microbiol. 120: 231–238.Google Scholar
  661. Humphry, D.R., A. George, G.W. Black and S.P. Cummings. 2001. ­Flavobacterium frigidarium sp. nov., an aerobic, psychrophilic, xylanolytic and laminarinolytic bacterium from Antarctica. Int. J. Syst. Evol. Microbiol. 51: 1235–1243.PubMedGoogle Scholar
  662. Hung, A.L. and A. Alvarado. 2001. Phenotypic and molecular characterization of isolates of Ornithobacterium rhinotracheale from Peru. Avian Dis. 45: 999–1005.PubMedGoogle Scholar
  663. Imshenetski, A.A. and L. Solntseva. 1945. On the imperfect forms of myxobacteria (in Russian with English summary). Mikrobiologiya 14: 220–229.Google Scholar
  664. Inoue, K. and K. Komagata. 1976. Taxonomic study on obligately psychrophilic bacteria isolated from Antarctica. J. Gen. Appl. Microbiol. 22: 165–176.Google Scholar
  665. Irgens, R.L., I. Suzuki and J.T. Staley. 1989. Gas vacuolate bacteria obtained from marine waters of Antarctica. Curr. Microbiol. 18: 261–265.Google Scholar
  666. Isaksen, M.F. and B.B. Jorgensen. 1996. Adaptation of psychrophilic and psychrotrophic sulfate-reducing bacteria to permanently cold marine environments. Appl. Environ. Microbiol. 62: 408–414.PubMedGoogle Scholar
  667. Isotalo, P.A., D. Edgar and B. Toye. 2000. Polymicrobial tenosynovitis with Pasteurella multocida and other Gram negative bacilli after a Siberian tiger bite. J. Clin. Pathol. 53: 871–872.PubMedGoogle Scholar
  668. Ivanova, E.P., O.I. Nedashkovskaya, J. Chun, A.M. Lysenko, G.M. Frolova, V.I. Svetashev, M.V. Vysotskii, V.V. Mikhailov, A. Huq and R.R. Colwell. 2001. Arenibacter gen. nov., new genus of the family Flavobacteriaceae and description of a new species, Arenibacter latericius sp. nov. Int. J. Syst. Evol. Microbiol. 51: 1987–1995.PubMedGoogle Scholar
  669. Ivanova, E.P., I.Y. Bakunina, T. Sawabe, K. Hayashi, Y.V. Alexeeva, N.V. Zhukova, D.V. Nicolau, T.N. Zvaygintseva and V.V. Mikhailov. 2002a. Two species of culturable bacteria associated with degradation of brown algae Fucus evanescens. Microb. Ecol. 43: 242–249.PubMedGoogle Scholar
  670. Ivanova, E.P., T. Sawabe, Y.V. Alexeeva, A.M. Lysenko, N.M. Gorshkova, K. Hayashi, N.V. Zukova, R. Christen and V.V. Mikhailov. 2002b. Pseudoalteromonas issachenkonii sp. nov., a bacterium that degrades the thallus of the brown alga Fucus evanescens. Int. J. Syst. Evol. Microbiol. 52: 229–234.PubMedGoogle Scholar
  671. Ivanova, E.P., Y.V. Alexeeva, S. Flavier, J.P. Wright, N.V. Zhukova, N.M. Gorshkova, V.V. Mikhailov, D.V. Nicolau and R. Christen. 2004. Formosa algae gen. nov., sp. nov., a novel member of the family Flavobacteriaceae. Int. J. Syst. Evol. Microbiol. 54: 705–711.PubMedGoogle Scholar
  672. Ivanova, E.P., J.P. Bowman, R. Christen, N.V. Zhukova, A.M. Lysenko, N.M. Gorshkova, N. Mitik-Dineva, A.F. Sergeev and V.V. Mikhailov. 2006. Salegentibacter flavus sp. nov. Int. J. Syst. Evol. Microbiol. 56: 583–586.PubMedGoogle Scholar
  673. Izumi, S. and F. Aranishi. 2004. Plasmid profiling of Japanese Flavobacterium psychrophilum isolates. J. Aquat. Anim. Health 16: 99–103.Google Scholar
  674. James, S.R., H.R. Burton, T.A. McMeekin and C.A. Mancuso. 1994. Seasonal abundance of Halomonas meridiana, Halomonas subglaciescola, Flavobacterium gondwanense and Flavobacterium salegens in 4 Antarctic lakes. Antarctic Sci. 6: 325–332.Google Scholar
  675. Janknecht, P., C.M. Schneider and T. Ness. 2002. Outbreak of Empedobacter brevis endophthalmitis after cataract extraction. Graefes Arch. Clin. Exp. Ophthalmol. 240: 291–295.Google Scholar
  676. Jansen, R., N. Chansiripornchai, W. Gaastra and J.P. van Putten. 2004. Characterization of plasmid pOR1 from Ornithobacterium rhinotracheale and construction of a shuttle plasmid. Appl. Environ. Microbiol. 70: 5853–5858.PubMedGoogle Scholar
  677. Jeon, Y.S., H. Chung, S. Park, I. Hur, J.H. Lee and J. Chun. 2005. jPHYDIT: a JAVA-based integrated environment for molecular phylogeny of ribosomal RNA sequences. Bioinformatics 21: 3171–3173.PubMedGoogle Scholar
  678. Jirjis, F.F., S.L. Noll, D.A. Halvorson, K.V. Nagaraja, F. Martin and D.P. Shaw. 2004. Effects of bacterial coinfection on the pathogenesis of avian pneumovirus infection in turkeys. Avian Dis. 48: 34–49.PubMedGoogle Scholar
  679. Jit, S., M. Dadhwal, O. Prakash and R. Lal. 2008. Flavobacterium lindanitolerans sp. nov., isolated from hexachlorocyclohexane-contaminated soil. Int. J. Syst. Evol. Microbiol. 58: 1665–1669.PubMedGoogle Scholar
  680. Johansen, J.E., P. Nielsen and C. Sjøholm. 1999. Description of Cellulophaga baltica gen. nov., sp. nov., and Cellulophaga fucicola gen. nov., sp. nov. and reclassification of [Cytophaga lytica] to Cellulophaga lytica gen. nov., comb. nov. Int. J. Syst. Bacteriol. 49: 1231–1240.PubMedGoogle Scholar
  681. Johnson, J.L. and W.S. Chilton. 1966. Galactosamine glycan of Chondrococcus columnaris. Science 152: 1247–1248.PubMedGoogle Scholar
  682. Jooste, P.J. 1985. The taxonomy and significance of Flavobacterium-Cytophaga strains from dairy sources. PhD thesis, University of Orange Free State, Bloemfontein, Republic of South Africa.Google Scholar
  683. Jooste, P.J. and C.J. Hugo. 1999. The taxonomy, ecology and cultivation of bacterial genera belonging to the family Flavobacteriaceae. Int. J. Food Microbiol. 53: 81–94.PubMedGoogle Scholar
  684. Jooste, P.J., T.J. Britz and J. De Haast. 1985. A numerical taxonomic study of Flavobacterium-Cytophaga strains from dairy sources. J. Appl. Bacteriol. 59: 311–323.PubMedGoogle Scholar
  685. Jooste, P.J., T.J. Britz and P.M. Lategan. 1986. Screening for the presence of Flavobacterium strains in dairy sources. S. Afr. J. Dairy Sci. 18: 45–50.Google Scholar
  686. Joubert, P., R. Higgins, A. Laperle, I. Mikaelian, D. Venne and A. Silim. 1999. Isolation of Ornithobacterium rhinotracheale from turkeys in Quebec, Canada. Avian Dis. 43: 622–626.Google Scholar
  687. Jung, S.Y., S.J. Kang, M.H. Lee, S.Y. Lee, T.K. Oh and J.H. Yoon. 2005. Gaetbulibacter saemankumensis gen. nov., sp. nov., a novel member of the family Flavobacteriaceae isolated from a tidal flat sediment in Korea. Int. J. Syst. Evol. Microbiol. 55: 1845–1849.PubMedGoogle Scholar
  688. Jung, S.Y., T.K. Oh and J.H. Yoon. 2006. Tenacibaculum aestuarii sp. nov., isolated from a tidal flat sediment in Korea. Int. J. Syst. Evol. Microbiol. 56: 1577–1581.PubMedGoogle Scholar
  689. Junge, K., F. Imhoff, T. Staley and J.W. Deming. 2002. Phylogenetic diversity of numerically important Arctic sea-ice bacteria cultured at subzero temperature. Microb. Ecol. 43: 315–328.PubMedGoogle Scholar
  690. Kaiser, P. 1961. Etude de l’activité pectinolytique du sol et d’autres substrats naturels. Doctoral thesis, Université de Paris, France.Google Scholar
  691. Kamma, J.J., M. Nakou and F.A. Manti. 1995. Predominant microflora of severe, moderate and minimal periodontal lesions in young adults with rapidly progressive periodontitis. J. Periodont. Res. 30: 66–72.PubMedGoogle Scholar
  692. Kämpfer, P., U. Dreyer, A. Neef, W. Dott and H.J. Busse. 2003. Chryseobacterium defluvii sp. nov., isolated from wastewater. Int. J. Syst. Evol. Microbiol. 53: 93–97.PubMedGoogle Scholar
  693. Kämpfer, P., V. Avesani, M. Janssens, J. Charlier, T. De Baere and M. Vaneechoutte. 2006. Description of Wautersiella falsenii gen. nov., sp. nov., to accommodate clinical isolates phenotypically resembling members of the genera Chryseobacterium and Empedobacter. Int. J. Syst. Evol. Microbiol. 56: 2323–2329.PubMedGoogle Scholar
  694. Kapke, P.A., A.T. Brown and T.T. Lillich. 1980. Carbon dioxide metabolism by Capnocytophaga ochracea: identification, characterization, and regulation of a phosphoenolpyruvate carboxykinase. Infect. Immun. 27: 756–766.PubMedGoogle Scholar
  695. Kardos, G., J. Nagy, M. Antal, A. Bistyak, M. Tenk and I. Kiss. 2007. Development of a novel PCR assay specific for Riemerella anatipestifer. Lett. Appl. Microbiol. 44: 145–148.PubMedGoogle Scholar
  696. Karpouzas, D.G., A. Fotopoulou, U. Menkissoglu-Spiroudi and B.K. Singh. 2005. Non-specific biodegradation of the organophosphorus pesticides, cadusafos and ethoprophos, by two bacterial isolates. FEMS Microbiol. Ecol. 53: 369–378.PubMedGoogle Scholar
  697. Kelly, K.M. and A.Y. Chistoserdov. 2001. Phylogenetic analysis of the succession of bacterial communities in the Great South Bay (Long Island). FEMS Microbiol. Ecol. 35: 85–95.Google Scholar
  698. Kempf, M.J. and M.J. McBride. 2000. Transposon insertions in the Flavobacterium johnsoniae ftsX gene disrupt gliding motility and cell division. J. Bacteriol. 182: 1671–1679.PubMedGoogle Scholar
  699. Khajamohiddin, S., P.S. Babu, D. Chakka, M. Merrick, A. Bhaduri, R. Sowdhamini and D. Siddavattam. 2006. A novel meta-cleavage product hydrolase from Flavobacterium sp. ATCC 27551. Biochem. Biophys. Res. Commun. 351: 675–681.PubMedGoogle Scholar
  700. Khan, S.T., Y. Nakagawa and S. Harayama. 2006a. Krokinobacter gen. nov., with three novel species, in the family Flavobacteriaceae. Int. J. Syst. Evol. Microbiol. 56: 323–328.PubMedGoogle Scholar
  701. Khan, S.T., Y. Nakagawa and S. Harayama. 2006b. Sediminicola luteus gen. nov., sp. nov., a novel member of the family Flavobacteriaceae. Int. J. Syst. Evol. Microbiol. 56: 841–845.PubMedGoogle Scholar
  702. Khan, S.T., Y. Nakagawa and S. Harayama. 2006c. Sandarakinotalea sediminis gen. nov., sp. nov., a novel member of the family Flavobacteriaceae. Int. J. Syst. Evol. Microbiol. 56: 959–963.PubMedGoogle Scholar
  703. Khan, S.T., Y. Nakagawa and S. Harayama. 2007a. Sediminibacter furfurosus gen. nov., sp. nov. and Gilvibacter sediminis gen. nov., sp. nov., novel members of the family Flavobacteriaceae. Int. J. Syst. Evol. Microbiol. 57: 265–269.PubMedGoogle Scholar
  704. Khan, S.T., Y. Nakagawa and S. Harayama. 2007b. Galbibacter mesophilus gen. nov., sp. nov., a novel member of the family Flavobacteriaceae. Int. J. Syst. Evol. Microbiol. 57: 969–973.PubMedGoogle Scholar
  705. Khan, S.T., Y. Nakagawa and S. Harayama. 2008. Fulvibacter tottoriensis gen. nov., sp. nov., a member of the family Flavobacteriaceae isolated from marine sediment. Int. J. Syst. Evol. Microbiol. 58: 1670–1674.PubMedGoogle Scholar
  706. Kim, M.K., W.T. Im, Y.K. Shin, J.H. Lim, S.H. Kim, B.C. Lee, M.Y. Park, K.Y. Lee and S.T. Lee. 2004. Kaistella koreensis gen. nov., sp. nov., a novel member of the Chryseobacterium-Bergeyella-Riemerella branch. Int. J. Syst. Evol. Microbiol. 54: 2319–2324.PubMedGoogle Scholar
  707. Kim, K.K., H.S. Bae, P. Schumann and S.T. Lee. 2005a. Chryseobacterium daecheongense sp. nov., isolated from freshwater lake sediment. Int. J. Syst. Evol. Microbiol. 55: 133–138.PubMedGoogle Scholar
  708. Kim, K.K., M.K. Kim, J.H. Lim, H.Y. Park and S.T. Lee. 2005b. Transfer of Chryseobacterium meningosepticum and Chryseobacterium miricola to Elizabethkingia gen. nov. as Elizabethkingia meningoseptica comb. nov. and Elizabethkingia miricola comb. nov. Int. J. Syst. Evol. Microbiol. 55: 1287–1293.PubMedGoogle Scholar
  709. Kim, B.Y., H.Y. Weon, S. Cousin, S.H. Yoo, S.W. Kwon, S.J. Go and E. Stackebrandt. 2006a. Flavobacterium daejeonense sp. nov. and Flavobacterium suncheonense sp. nov., isolated from greenhouse soils in Korea. Int. J. Syst. Evol. Microbiol. 56: 1645–1649.PubMedGoogle Scholar
  710. Kim, J.-S., R.S. Dungan, S.-W. Kwon and H.-Y. Weon. 2006b. The community composition of root-associated bacteria of the tomato plant. World J. Microbiol. Biotechnol. 22: 1267–1273.Google Scholar
  711. Kim, J.H., K.Y. Kim, Y.T. Hahm, B.S. Kim, J. Chun. and C.J. Cha. 2008. Actibacter sediminis gen. nov., sp. nov., a marine bacterium of the family Flavobacteriaceae isolated from tidal flat sediment. Int. J. Syst. Evol. Microbiol. 58: 139–143.PubMedGoogle Scholar
  712. Kimura, M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16: 111–120.PubMedGoogle Scholar
  713. King, E.O. 1959. Studies on a group of previously unclassified bacteria associated with meningitis in infants. Am. J. Clin. Pathol. 31: 241–247.PubMedGoogle Scholar
  714. Kirby, J.T., H.S. Sader, T.R. Walsh and R.N. Jones. 2004. Antimicrobial susceptibility and epidemiology of a worldwide collection of Chryseobacterium spp: report from the SENTRY Antimicrobial Surveillance Program (1997–2001). J. Clin. Microbiol. 42: 445–448.PubMedGoogle Scholar
  715. Kirchman, D.L., L. Yu and M.T. Cottrell. 2003. Diversity and abundance of uncultured Cytophaga-like bacteria in the Delaware estuary. Appl. Environ. Microbiol. 69: 6587–6596.PubMedGoogle Scholar
  716. Kisand, V., R. Cuadros and J. Wikner. 2002. Phylogeny of culturable estuarine bacteria catabolizing riverine organic matter in the northern Baltic Sea. Appl. Environ. Microbiol. 68: 379–388.PubMedGoogle Scholar
  717. Kisand, V., N. Andersson and J. Wikner. 2005. Bacterial freshwater species successfully immigrate to the brackish water environment in the northern Baltic. Limnol. Oceanogr. 50: 945–956.Google Scholar
  718. Kivinen, P.K., M.R. Lahtinen, E. Ruotsalainen, I.T. Harvima and M.L. Katila. 2003. Bergeyella zoohelcum septicaemia of a patient suffering from severe skin infection. Acta Derm. Venereol. 83: 74–75.PubMedGoogle Scholar
  719. Koga, Y. and A.I. Zavaleta. 2005. Intraspecies genetic variability of Ornithobacterium rhinotracheale in commercial birds in Peru. Avian Dis. 49: 108–111.PubMedGoogle Scholar
  720. Köpke, B., R. Wilms, B. Engelen, H. Cypionka and H. Sass. 2005. Microbial diversity in coastal subsurface sediments: a cultivation approach using various electron acceptors and substrate gradients. Appl. Environ. Microbiol. 71: 7819–7830.PubMedGoogle Scholar
  721. Krasil’nikov, N.A. 1949. Guide to the bacteria and actinomycetes. Akad. Nauk. S.S.S.R., Moscow.Google Scholar
  722. Krehenbrink, M., F.B. Oppermann-Sanio and A. Steinbuchel. 2002. Evaluation of non-cyanobacterial genome sequences for occurrence of genes encoding proteins homologous to cyanophycin synthetase and cloning of an active cyanophycin synthetase from Acinetobacter sp. strain DSM 587. Arch. Microbiol. 177: 371–380.PubMedGoogle Scholar
  723. Kristiansen, J.E., A. Bremmelgaard, H.E. Busk, O. Heltberg, W. Frederiksen and T. Justesen. 1984. Rapid identification of Capnocytophaga isolated from septicemic patients. Eur. J. Clin. Microbiol. 3: 236–240.PubMedGoogle Scholar
  724. Kristensen, B., H.C. Schonheyder, N.A. Peterslund, S. Rosthoj, N. Clausen and W. Frederiksen. 1995. Capnocytophaga (Capnocytophaga ochracea group) bacteremia in hematological patients with profound granulocytopenia. Scand. J. Infect. Dis. 27: 153–155.PubMedGoogle Scholar
  725. Kuhnert, P. and B.M. Korczak. 2006. Prediction of whole-genome DNA–DNA similarity, determination of G+C content and phylogenetic analysis within the family Pasteurellaceae by multilocus sequence analysis (MLSA). Microbiology 152: 2537–2548.PubMedGoogle Scholar
  726. Kwon, K.K., H.S. Lee, H.B. Jung, J.H. Kang and S.J. Kim. 2006a. Yeosuana aromativorans gen. nov., sp. nov., a mesophilic marine bacterium belonging to the family Flavobacteriaceae, isolated from estuarine sediment of the South Sea, Korea. Int. J. Syst. Evol. Microbiol. 56: 727–732.PubMedGoogle Scholar
  727. Kwon, K.K., Y.K. Lee and H.K. Lee. 2006b. Costertonia aggregata gen. nov., sp. nov., a mesophilic marine bacterium of the family Flavobacteriaceae, isolated from a mature biofilm. Int. J. Syst. Evol. Microbiol. 56: 1349–1353.PubMedGoogle Scholar
  728. Laffineur, K., M. Janssens, J. Charlier, V. Avesani, G. Wauters and M. Delmée. 2002. Biochemical and susceptibility tests useful for identification of nonfermenting Gram-negative rods. J. Clin. Microbiol. 40: 1085–1087.PubMedGoogle Scholar
  729. Larkin, H.M. and R. Borrall. 1984. Genus III. Flectobacillus. In Bergey’s Manual of Systematic Bacteriology, vol. 1 (edited by Krieg and Holt). Williams & Wilkins, Baltimore, pp. 129–132.Google Scholar
  730. Lau, S.C., M.M. Tsoi, X. Li, I. Plakhotnikova, S. Dobretsov, K.W. Lau, M. Wu, P.K. Wong, J.R. Pawlik and P.Y. Qian. 2005a. Winogradskyella poriferorum sp. nov., a novel member of the family Flavobacteriaceae isolated from a sponge in the Bahamas. Int. J. Syst. Evol. Microbiol. 55: 1589–1592.PubMedGoogle Scholar
  731. Lau, S.C., M.M. Tsoi, X. Li, I. Plakhotnikova, S. Dobretsov, P.K. Wong, J.R. Pawlik and P.Y. Qian. 2005b. Nonlabens tegetincola gen. nov., sp. nov., a novel member of the family Flavobacteriaceae isolated from a microbial mat in a subtropical estuary. Int. J. Syst. Evol. Microbiol. 55: 2279–2283.PubMedGoogle Scholar
  732. Lau, S.C., M.M. Tsoi, X. Li, I. Plakhotnikova, S. Dobretsov, P.K. Wong and P.Y. Qian. 2005c. Gramella portivictoriae sp. nov., a novel member of the family Flavobacteriaceae isolated from marine sediment. Int. J. Syst. Evol. Microbiol. 55: 2497–2500.PubMedGoogle Scholar
  733. Lau, S.C., M.M. Tsoi, X. Li, I. Plakhotnikova, S. Dobretsov, M. Wu, P.K. Wong, J.R. Pawlik and P.Y. Qian. 2006. Stenothermobacter spongiae gen. nov., sp. nov., a novel member of the family Flavobacteriaceae isolated from a marine sponge in the Bahamas, and emended description of Nonlabens tegetincola. Int. J. Syst. Evol. Microbiol. 56: 181–185.PubMedGoogle Scholar
  734. Laughon, B.E., S.A. Syed and W.J. Loesche. 1982. API ZYM system for identification of Bacteroides spp., Capnocytophaga spp., and spirochetes of oral origin. J. Clin. Microbiol. 15: 97–102.PubMedGoogle Scholar
  735. Leadbetter, E.R. 1974. Order II. Cytophagales nomen novum. In Bergey’s Manual of Determinative Bacteriology, 8th edn (edited by Buchanan and Gibbons). Williams & Wilkins, Baltimore, pp. 99–122.Google Scholar
  736. Leadbetter, E.R., S.C. Holt and S.S. Socransky. 1979. Capnocytophaga: new genus of Gram-negative gliding bacteria. 1. General characteristics, taxonomic considerations and significance. Arch. Microbiol. 122: 9–16.PubMedGoogle Scholar
  737. Leadbetter, E.R., S.C. Holt and S.S. Socransky. 1982. In Validation of the publication of new names and new combinations previously effectively published outside the IJSB. List no. 8. Int. J. Syst. Bacteriol. 32: 266–268.Google Scholar
  738. Lee, S.D. 2007. Tamlana crocina gen. nov., sp. nov., a marine bacterium of the family Flavobacteriaceae, isolated from beach sediment in Korea. Int. J. Syst. Evol. Microbiol. 57: 764–769.PubMedGoogle Scholar
  739. Lee, C.C., M. Smith, R.E. Kibblewhite-Accinelli, T.G. Williams, K. Wagschal, G.H. Robertson and D.W. Wong. 2006a. Isolation and characterization of a cold-active xylanase enzyme from Flavobacterium sp. Curr. Microbiol. 52: 112–116.PubMedGoogle Scholar
  740. Lee, O.O., S.C. Lau, M.M. Tsoi, X. Li, I. Plakhotnikova, S. Dobretsov, M.C. Wu, P.K. Wong and P.Y. Qian. 2006b. Gillisia myxillae sp. nov., a novel member of the family Flavobacteriaceae, isolated from the marine sponge Myxilla incrustans. Int. J. Syst. Evol. Microbiol. 56: 1795–1799.PubMedGoogle Scholar
  741. Lee, H.S., K.K. Kwon, S.H. Yang, S.S. Bae, C.H. Park, S.J. Kim and J.H. Lee. 2008. Description of Croceitalea gen. nov. in the family Flavobacteriaceae with two species, Croceitalea eckloniae sp. nov. and Croceitalea dokdonensis sp. nov., isolated from the rhizosphere of the marine alga Ecklonia kurome. Int. J. Syst. Evol. Microbiol. 58: 2505–2510.PubMedGoogle Scholar
  742. Lee, D.H., H.Y. Kahng, Y.S. Lee, J.S. Jung, J.M. Kim, B.S. Chung, S.K. Park and C.O. Jeon. 2009. Jejuia pallidilutea gen. nov., sp. nov., a new member of the family Flavobacteriaceae isolated from seawater. Int. J. Syst. Evol. Microbiol. 59: 2148–2152.PubMedGoogle Scholar
  743. Leff, L.G., J.V. McArthur and L.J. Shimkets. 1998. Persistence and dissemination of introduced bacteria in freshwater microcosms. Microb. Ecol. 36: 202–2211.PubMedGoogle Scholar
  744. Leifson, E. 1963. Determination of Carbohydrate Metabolism of Marine Bacteria. J. Bacteriol. 85: 1183–1184.PubMedGoogle Scholar
  745. Lelliott, R.A. and D.E. Stead. 1987. Methods for the diagnosis of bacterial diseases in plants. Blackwell Scientific Publications, Oxford.Google Scholar
  746. Leroy-Setrin, S., G. Flaujac, K. Thenaisy and E. Chaslus-Dancla. 1998. Genetic diversity of Ornithobacterium rhinotracheale strains isolated from poultry in France. Lett. Appl. Microbiol. 26: 189–193.PubMedGoogle Scholar
  747. Lewin, R.A. 1969. A classification of Flexibacteria. J. Gen. Microbiol. 58: 189–206.PubMedGoogle Scholar
  748. Lewin, R.A. and D.M. Lounsbery. 1969. Isolation, cultivation and characterization of Flexibacteria. J. Gen. Microbiol. 58: 145–170.PubMedGoogle Scholar
  749. Li, Y., Y. Kawamura, N. Fujiwara, T. Naka, H. Liu, X. Huang, K. Kobayashi and T. Ezaki. 2003a. Chryseobacterium miricola sp. nov., a novel species isolated from condensation water of space station Mir. Syst. Appl. Microbiol. 26: 523–528.PubMedGoogle Scholar
  750. Liao, C.H. and J.M. Wells. 1986. Properties of Cytophaga johnsonae strains causing spoilage of fresh produce at food markets. Appl. Environ. Microbiol. 52: 1261–1265.PubMedGoogle Scholar
  751. Liebert, C.A., M.A. Hood, F.H. Deck, K. Bishop and D.K. Flaherty. 1984. Isolation and characterization of a new Cytophaga species implicated in a work-related lung-disease. Appl. Environ. Microbiol. 48: 936–943.PubMedGoogle Scholar
  752. Lijnen, H.R., B. Van Hoef, F. Ugwu, D. Collen and I. Roelants. 2000. Specific proteolysis of human plasminogen by a 24 kDa endopeptidase from a novel Chryseobacterium sp. Biochemistry 39: 479–488.PubMedGoogle Scholar
  753. Lillich, T.T. and R. Calmes. 1979. Cytochromes and dehydrogenases in membranes of a new human periodontal bacterial pathogen, Capnocytophaga ochracea. Arch. Oral Biol. 24: 699–702.PubMedGoogle Scholar
  754. Lim, J.M., C.O. Jeon, S.S. Lee, D.J. Park, L.H. Xu, C.L. Jiang and C.J. Kim. 2008. Reclassification of Salegentibacter catena Ying et al. 2007 as Salinimicrobium catena gen. nov., comb. nov. and description of Salinimicrobium xinjiangense sp. nov., a halophilic bacterium isolated from Xinjiang province in China. Int. J. Syst. Evol. Microbiol. 58: 438–442.PubMedGoogle Scholar
  755. Lin, J.T., W.S. Wang, C.C. Yen, J.H. Liu, T.J. Chiou, M.H. Yang, T.C. Chao and P.M. Chen. 2003. Chryseobacterium indologenes bacteremia in a bone marrow transplant recipient with chronic graft-versus-host disease. Scand. J. Infect. Dis. 35: 882–883.PubMedGoogle Scholar
  756. Lin, P.Y., C. Chu, L.H. Su, C.T. Huang, W.Y. Chang and C.H. Chiu. 2004. Clinical and microbiological analysis of bloodstream infections caused by Chryseobacterium meningosepticum in nonneonatal patients. J. Clin. Microbiol. 42: 3353–3355.PubMedGoogle Scholar
  757. Lin, P.Y., C.H. Chiu, C. Chu, P. Tang and L.H. Su. 2006. Invasion of murine respiratory tract epithelial cells by Chryseobacterium meningosepticum and identification of genes present specifically in an invasive strain. New Microbiol. 29: 55–62.PubMedGoogle Scholar
  758. Lingalo, B.M. 1997. The incidence of Flavobacteriaceae in marine fish with special reference to Myroides species. BSc (Hons.) research project thesis, University of the Free State, Bloemfontein, South Africa.Google Scholar
  759. Lion, C., F. Escande and J.C. Burdin. 1996. Capnocytophaga canimorsus infections in human: review of the literature and cases report. Eur. J. Epidemiol. 12: 521–533.PubMedGoogle Scholar
  760. Liu, Z.P., B.J. Wang, X. Dai, X.Y. Liu and S.J. Liu. 2006. Zhouia amylolytica gen. nov., sp. nov., a novel member of the family Flavobacteriaceae isolated from sediment of the South China Sea. Int. J. Syst. Evol. Microbiol. 56: 2825–2829.PubMedGoogle Scholar
  761. Liu, J., M.J. McBride and S. Subramaniam. 2007. Cell surface filaments of the gliding bacterium Flavobacterium johnsoniae revealed by cryo-electron tomography. J. Bacteriol. 189: 7503–7506.PubMedGoogle Scholar
  762. Liu, H., R. Liu, S.Y. Yang, W.K. Gao, C.X. Zhang, K.Y. Zhang and R. Lai. 2008. Flavobacterium anhuiense sp. nov., isolated from field soil. Int. J. Syst. Evol. Microbiol. 58: 756–760.PubMedGoogle Scholar
  763. Llobet-Brossa, E., R. Rosselló-Mora and R. Amann. 1998. Microbial community composition of wadden sea sediments as revealed by fluorescence in situ hybridization. Appl. Environ. Microbiol. 64: 2691–2696.PubMedGoogle Scholar
  764. Loh, H., T.P. Teo and H.C. Tan. 1992. Serotypes of ‘Pasteurellaanatipestifer isolates from ducks in Singapore: a proposal of new serotypes. Avian Pathol. 21: 453–459.PubMedGoogle Scholar
  765. London, J., R.A. Celesk, A. Kagermeier and J.L. Johnson. 1985. Emended description of Capnocytophaga gingivalis. Int. J. Syst. Bacteriol. 35: 369–370.Google Scholar
  766. Lopes, V., G. Rajashekara, A. Back, D.P. Shaw, D.A. Halvorson and K.V. Nagaraja. 2000. Outer membrane proteins for serologic detection of Ornithobacterium rhinotracheale infection in turkeys. Avian Dis. 44: 957–962.PubMedGoogle Scholar
  767. Lopes, V.C., A. Back, H.J. Shin, D.A. Halvorson and K.V. Nagaraja. 2002a. Development, characterization, and preliminary evaluation of a temperature-sensitive mutant of Ornithobacterium rhinotracheale for potential use as a live vaccine in turkeys. Avian Dis. 46: 162–168.PubMedGoogle Scholar
  768. Lopes, V.C., B. Velayudhan, D.A. Halvorson and K.V. Nagaraja. 2002b. Survival of Ornithobacterium rhinotracheale in sterilized poultry litter. Avian Dis. 46: 1011–1014.PubMedGoogle Scholar
  769. López, M.J., N.N. Nichols, B.S. Dien, J. Moreno and R.J. Bothast. 2004. Isolation of microorganisms for biological detoxification of lignocellulosic hydrolysates. Appl. Microbiol. Biotechnol. 64: 125–131.PubMedGoogle Scholar
  770. Lu, S.J., H.Q. Wang and Z.H. Yao. 2006. Isolation and characterization of gasoline-degrading bacteria from gas station leaking-contaminated soils. J. Environ. Sci. (China) 18: 969–972.Google Scholar
  771. Lustig, A. 1890. Diagnostica dei batteri delle acque con una guida alle ricerche batteriologiche e microscopiche. Rosenberg and Sellier, Turin.Google Scholar
  772. Lysyk, T.J., L. Kalischuk-Tymensen, L.B. Selinger, R.C. Lancaster, L. Wever and K.J. Cheng. 1999. Rearing stable fly larvae (Diptera: Muscidae) on an egg yolk medium. J. Med. Entomol. 36: 382–388.PubMedGoogle Scholar
  773. Macián, M.C., M.J. Pujalte, M.C. Márquez, W. Ludwig, A. Ventosa, E. Garay and K.H. Schleifer. 2002. Gelidibacter mesophilus sp. nov., a novel marine bacterium in the family Flavobacteriaceae. Int. J. Syst. Evol. Microbiol. 52: 1325–1329.PubMedGoogle Scholar
  774. MacLean, L.L., M.B. Perry, E.M. Crump and W.W. Kay. 2003. Structural characterization of the lipopolysaccharide O-polysaccharide antigen produced by Flavobacterium columnare ATCC 43622. Eur. J. Biochem. 270: 3440–3446.PubMedGoogle Scholar
  775. Madetoja, J., S. Nystedt and T. Wiklund. 2003. Survival and virulence of Flavobacterium psychrophilum in water microcosms. FEMS Microbiol. Ecol. 43: 217–223.PubMedGoogle Scholar
  776. Madrid, V.M., J.Y. Aller, R.C. Aller and A.Y. Chistoserdov. 2001. High prokaryote diversity and analysis of community structure in mobile mud deposits off French Guiana: identification of two new bacterial candidate divisions. FEMS Microbiol. Ecol. 37: 197–209.Google Scholar
  777. Madsen, L. and I. Dalsgaard. 2000. Comparative studies of Danish Flavobacterium psychrophilum isolates: ribotypes, plasmid profiles, serotypes and virulence. J. Fish Dis. 23: 211–218.Google Scholar
  778. Malik, Y.S., K. Olsen, K. Kumar and S.M. Goyal. 2003. In vitro antibiotic resistance profiles of Ornithobacterium rhinotracheale strains from Minnesota turkeys during 1996–2002. Avian Dis. 47: 588–593.PubMedGoogle Scholar
  779. Manani, T.A., E.K. Collison and S. Mpuchane. 2006. Microflora of minimally processed frozen vegetables sold in Gaborone, Botswana. J. Food Prot. 69: 2581–2586.Google Scholar
  780. Manavathi, B., S.B. Pakala, P. Gorla, M. Merrick and D. Siddavattam. 2005. Influence of zinc and cobalt on expression and activity of parathion hydrolase from Flavobacterium sp. ATCC 27551. Pestic. Biochem. Physiol. 83: 37–45.Google Scholar
  781. Mancuso Nichols, C., J.P. Bowman and J. Guezennec. 2005. Olleya marilimosa gen. nov., sp. nov., an exopolysaccharide-producing marine bacterium from the family Flavobacteriaceae, isolated from the Southern Ocean. Int. J. Syst. Evol. Microbiol. 55: 1557–1561.Google Scholar
  782. Maneerat, S., T. Nitoda, H. Kanzaki and F. Kawai. 2005. Bile acids are new products of a marine bacterium, Myroides sp. strain SM1. Appl. Microbiol. Biotechnol. 67: 679–683.PubMedGoogle Scholar
  783. Maneerat, S., T. Bamba, K. Harada, A. Kobayashi, H. Yamada and F. Kawai. 2006. A novel crude oil emulsifier excreted in the culture supernatant of a marine bacterium, Myroides sp. strain SM1. Appl. Microbiol. Biotechnol. 70: 254–259.PubMedGoogle Scholar
  784. Manfredi, R., A. Nanetti, M. Ferri, A. Mastroianni, O.V. Coronado and F. Chiodo. 1999. Flavobacterium spp. organisms as opportunistic bacterial pathogens during advanced HIV disease. J. Infect. 39: 146–152.PubMedGoogle Scholar
  785. Männistö, M.K. and M.M. Haggblom. 2006. Characterization of psychrotolerant heterotrophic bacteria from Finnish Lapland. Syst. Appl. Microbiol. 29: 229–243.PubMedGoogle Scholar
  786. Manz, W., K. Wendt-Potthoff, T.R. Neu, U. Szewzyk and J.R. Lawrence. 1999. Phylogenetic composition, spatial structure, and dynamics of lotic bacterial biofilms investigated by Fluorescent In Situ Hybridization and Confocal Laser Scanning microscopy. Microb. Ecol. 37: 225–237.PubMedGoogle Scholar
  787. Mardy, C. and B. Holmes. 1988. Incidence of vaginal Weeksella virosa (formerly group IIf). J. Clin. Pathol. 41: 211–214.PubMedGoogle Scholar
  788. Marien, M., A. Decostere, A. Martel, K. Chiers, R. Froyman and H. Nauwynck. 2005. Synergy between avian pneumovirus and Ornithobacterium rhinotracheale in turkeys. Avian Pathol. 34: 204–211.PubMedGoogle Scholar
  789. Marmur, J. and P. Doty. 1962. Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J. Mol. Biol. 5: 109–118.PubMedGoogle Scholar
  790. Mashimo, P.A., Y. Yamamoto, M. Nakamura and J. Slots. 1983. Selective recovery of oral Capnocytophaga spp. with sheep blood agar containing bacitracin and polymyxin B. J. Clin. Microbiol. 17: 187–191.Google Scholar
  791. Mauel, M.J., D.L. Miller, K.S. Frazier and M.E. Hines II. 2002. Bacterial pathogens isolated from cultured bullfrogs (Rana catesbeina). J. Vet. Diagn. Invest. 14: 431–433.PubMedGoogle Scholar
  792. McBain, A.J., R.G. Bartolo, C.E. Catrenich, D. Charbonneau, R.G. Ledder, A.H. Rickard, S.A. Symmons and P. Gilbert. 2003. Microbial characterization of biofilms in domestic drains and the establishment of stable biofilm microcosms. Appl. Environ. Microbiol. 69: 177–185.PubMedGoogle Scholar
  793. McBride, M.J. 2001. Bacterial gliding motility: multiple mechanisms for cell movement over surfaces. Annu. Rev. Microbiol. 55: 49–75.PubMedGoogle Scholar
  794. McBride, M.J. and S.A. Baker. 1996. Development of techniques to genetically manipulate members of the genera Cytophaga, Flavobacterium, Flexibacter, and Sporocytophaga. Appl. Environ. Microbiol. 62: 3017–3022.PubMedGoogle Scholar
  795. McBride, M.J. and M.J. Kempf. 1996. Development of techniques for the genetic manipulation of the gliding bacterium Cytophaga johnsonae. J. Bacteriol. 178: 583–590.PubMedGoogle Scholar
  796. McBride, M.J. and T.F. Braun. 2004. GldI is a lipoprotein that is required for Flavobacterium johnsoniae gliding motility and chitin utilization. J. Bacteriol. 186: 2295–2302.PubMedGoogle Scholar
  797. McBride, M.J., T.F. Braun and J.L. Brust. 2003. Flavobacterium johnsoniae GldH is a lipoprotein that is required for gliding motility and chitin utilization. J. Bacteriol. 185: 6648–6657.PubMedGoogle Scholar
  798. McCammon, S.A. and J.P. Bowman. 2000. Taxonomy of antarctic Flavobacterium species: description of Flavobacterium gillisiae sp. nov., Flavobacterium tegetincola sp. nov. and Flavobacterium xanthum sp. nov., nom. rev. and reclassification of Flavobacterium salegens as ­Salegentibacter salegens gen. nov., comb. nov. Int. J. Syst. Evol. Microbiol. 50: 1055–1063.PubMedGoogle Scholar
  799. McCammon, S.A., B.H. Innes, J.P. Bowman, P.D. Franzmann, S.J. Dobson, P.E. Holloway, J.H. Skerratt, P.D. Nichols and L.M. Rankin. 1998. Flavobacterium hibernum sp. nov., a lactose-utilizing bacterium from a freshwater Antarctic lake. Int. J. Syst. Bacteriol. 48: 1405–1412.PubMedGoogle Scholar
  800. McGuire, A.J., P.D. Franzmann and T.A. McMeekin. 1987. Flectobacillus glomeratus sp. nov., a curved, nonmotile, pigmented bacterium isolated from antarctic marine environments. Syst. Appl. Microbiol. 9: 265–272.Google Scholar
  801. McGuire, A.J., P.D. Franzmann and T.A. McMeekin. 1988. In Validation of the publication of new names and new combinations previously effectively published outside the IJSB. List no. 24. Int. J. Syst. Bacteriol. 38: 136–137.Google Scholar
  802. McSpadden Gardener, B.B. and D.M. Weller. 2001. Changes in populations of rhizosphere bacteria associated with take-all disease of wheat. Appl. Environ. Microbiol. 67: 4414–4425.PubMedGoogle Scholar
  803. Mesbah, M., U. Premachandran and W.B. Whitman. 1989. Precise measurement of the G+C content of deoxyribonucleic acid by high-­performance liquid chromatography. Int. J. Syst. Bacteriol. 39: 159–167.Google Scholar
  804. Mez, C. 1898. Mikroskopische Wasseranalyse, Anleitung zur Untersüchung des Wassers mit besonderer Berücksichtigung von Trink- und Abwasser. J. Springer, Berlin.Google Scholar
  805. Michel, C., O. Matte-Tailliez, B. Kerouault and J.-F. Bernardet. 2005. Resistance pattern and assessment of phenicol agents’ minimum inhibitory concentration in multiple drug resistant Chryseobacterium isolates from fish and aquatic habitats. J. Appl. Microbiol. 99: 323–332.PubMedGoogle Scholar
  806. Miteva, V.I. and J.E. Brenchley. 2005. Detection and isolation of ultrasmall microorganisms from a 120,000-year-old Greenland glacier ice core. Appl. Environ. Microbiol. 71: 7806–7818.PubMedGoogle Scholar
  807. Mitra, S., Y. Matsuo, T. Haga, M. Yasumoto-Hirose, J. Yoon, H. Kasai and A. Yokota. 2009. Leptobacterium flavescens gen. nov., sp. nov., a marine member of the family Flavobacteriaceae, isolated from marine sponge and seawater. Int. J. Syst. Evol. Microbiol. 59: 207–212.PubMedGoogle Scholar
  808. Møller, J.D., A.C. Barnes, I. Dalsgaard and A.E. Ellis. 2005. Characterisation of surface blebbing and membrane vesicles produced by Flavobacterium psychrophilum. Dis. Aquat. Org. 64: 201–209.PubMedGoogle Scholar
  809. Mori, R. 1888. Ueber pathogene Bacterien im Canalwasser. Z. Hyg. Infektionskr. 4: 47–54.Google Scholar
  810. Morita, Y., T. Nakamura, Q. Hasan, Y. Murakami, K. Yokoyama and E. Tamiya. 1997. Cold-active enzymes from cold-adapted bacteria. J. Am. Oil Chem. Soc. 74: 441–444.Google Scholar
  811. Mossad, S.B., A.E. Lichtin, G.S. Hall and S.M. Gordon. 1997. Diagnosis: Capnocytophaga canimorsus septicemia. Clin. Infect. Dis. 24: 123, 267.PubMedGoogle Scholar
  812. Motwani, B., D. Krezolek, S. Symeonides and W. Khayr. 2004. Myroides odoratum cellulitis and bacteremia: a case report. Infect. Dis. Clin. Practice 12: 343–344.Google Scholar
  813. Mudarris, M. and B. Austin. 1989. Systemic disease in turbot Scophthalmus maximus caused by a previously unrecognised Cytophaga-like bacterium. Dis. Aquat. Org. 6: 161–166.Google Scholar
  814. Mudarris, M., B. Austin, P. Segers, M. Vancanneyt, B. Hoste and J.-F. Bernardet. 1994. Flavobacterium scophthalmum sp. nov., a pathogen of turbot (Scophthalmus maximus L.). Int. J. Syst. Bacteriol. 44: 447–453.PubMedGoogle Scholar
  815. Mulbry, W.W. and J.S. Karns. 1989. Parathion hydrolase specified by the Flavobacterium opd gene: relationship between the gene and protein. J. Bacteriol. 171: 6740–6746.PubMedGoogle Scholar
  816. Müller, K.D., E.N. Schmid and R. Michel. 1999. Intracellular bacteria of Acanthamoebae resembling Legionella spp. turned out to be Cytophaga sp. Zentralbl. Bakteriol. 289: 389–397.PubMedGoogle Scholar
  817. Müller, S., B. Kiesel and L. Berthe-Corti. 2001. Muricauda ruestringensis has an asymmetric cell cycle. Acta Biotechnol. 21: 343–357.Google Scholar
  818. Murayama, Y., P.A. Mashimo, L.A. Tabak, M.J. Levine and S.A. Ellison. 1982. Isolation and partial characterization of a genus common antigen and species specific antigen of Capnocytophaga. Jpn. J. Med. Sci. Biol. 35: 153–170.PubMedGoogle Scholar
  819. Naeem, K., A. Malik and A. Ullah. 2003. Seroprevalence of Ornithobacterium rhinotracheale in chickens in Pakistan. Vet. Rec. 153: 533–534.PubMedGoogle Scholar
  820. Nagaraja, K.V., A. Back, S. Sorenger, G. Rajashekara and D.A. Halvorson. 1998. Tissue distribution post-infection and antimicrobal sensitivity of Ornithobacterium rhinotracheale. Proceedings of the 47th Western Poultry Disease Conference, Sacramento, pp. 57–60.Google Scholar
  821. Nakagawa, Y. and K. Yamasato. 1993. Phylogenetic diversity of the genus Cytophaga revealed by 16S ribosomal RNA sequencing and menaquinone analysis. J. Gen. Microbiol. 139: 1155–1161.PubMedGoogle Scholar
  822. Nakagawa, Y. and K. Yamasato. 1996. Emendation of the genus Cytophaga and transfer of Cytophaga agarovorans and Cytophaga salmonicolor to Marinilabilia gen. nov: phylogenetic analysis of the Flavobacterium cytophaga complex. Int. J. Syst. Bacteriol. 46: 599–603.Google Scholar
  823. Nakamura, M. and J. Slots. 1982. Aminopeptidase activity of Capnocytophaga. J. Periodont. Res. 17: 597–603.PubMedGoogle Scholar
  824. Nedashkovskaya, O.I., S.B. Kim, S.K. Han, A.M. Lysenko, M. Rohde, N.V. Zhukova, E. Falsen, G.M. Frolova, V.V. Mikhailov and K.S. Bae. 2003a. Mesonia algae gen. nov., sp. nov., a novel marine bacterium of the family Flavobacteriaceae isolated from the green alga Acrosiphonia sonderi (Kütz) Kornm. Int. J. Syst. Evol. Microbiol. 53: 1967–1971.PubMedGoogle Scholar
  825. Nedashkovskaya, O.I., M. Suzuki, M.V. Vysotskii and V.V. Mikhailov. 2003b. Arenibacter troitsensis sp. nov., isolated from marine bottom sediment. Int. J. Syst. Evol. Microbiol. 53: 1287–1290.PubMedGoogle Scholar
  826. Nedashkovskaya, O.I., M. Suzuki, M.V. Vysotskii and V.V. Mikhailov. 2003c. Vitellibacter vladivostokensis gen. nov., sp. nov., a new member of the phylum Cytophaga–Flavobacterium–Bacteroides. Int. J. Syst. Evol. Microbiol. 53: 1281–1286.PubMedGoogle Scholar
  827. Nedashkovskaya, O.I., S.B. Kim, S.K. Han, A.M. Lysenko, V.V. Mikhailov and K.S. Bae. 2004a. Arenibacter certesii sp. nov., a novel marine bacterium isolated from the green alga Ulva fenestrata. Int. J. Syst. Evol. Microbiol. 54: 1173–1176.PubMedGoogle Scholar
  828. Nedashkovskaya, O.I., S.B. Kim, S.K. Han, A.M. Lysenko, M. Rohde, M.S. Rhee, G.M. Frolova, E. Falsen, V.V. Mikhailov and K.S. Bae. 2004b. Maribacter gen. nov., a new member of the family Flavobacteriaceae, isolated from marine habitats, containing the species Maribacter sedimenticola sp. nov., Maribacter aquivivus sp. nov., Maribacter orientalis sp. nov. and Maribacter ulvicola sp. nov. Int. J. Syst. Evol. Microbiol. 54: 1017–1023.PubMedGoogle Scholar
  829. Nedashkovskaya, O.I., S.B. Kim, S.K. Han, M.S. Rhee, A.M. Lysenko, E. Falsen, G.M. Frolova, V.V. Mikhailov and K.S. Bae. 2004c. Ulvibacter litoralis gen. nov., sp. nov., a novel member of the family Flavobacteriaceae isolated from the green alga Ulva fenestrata. Int. J. Syst. Evol. Microbiol. 54: 119–123.PubMedGoogle Scholar
  830. Nedashkovskaya, O.I., S.B. Kim, S.K. Han, M.S. Rhee, A.M. Lysenko, M. Rohde, N.V. Zhukova, G.M. Frolova, V.V. Mikhailov and K.S. Bae. 2004d. Algibacter lectus gen. nov., sp. nov., a novel member of the family Flavobacteriaceae isolated from green algae. Int. J. Syst. Evol. Microbiol. 54: 1257–1261.PubMedGoogle Scholar
  831. Nedashkovskaya, O.I., M. Suzuki, A.M. Lysenko, C. Snauwaert, M. Vancanneyt, J. Swings, M.V. Vysotskii and V.V. Mikhailov. 2004e. Cellulophaga pacifica sp. nov. Int. J. Syst. Evol. Microbiol. 54: 609–613.PubMedGoogle Scholar
  832. Nedashkovskaya, O.I., M. Suzuki, M. Vancanneyt, I. Cleenwerck, A.M. Lysenko, V.V. Mikhailov and J. Swings. 2004f. Zobellia amurskyensis sp. nov., Zobellia laminariae sp. nov. and Zobellia russellii sp. nov., novel marine bacteria of the family Flavobacteriaceae. Int. J. Syst. Evol. Microbiol. 54: 1643–1648.PubMedGoogle Scholar
  833. Nedashkovskaya, O.I., M. Suzuki, M. Vancanneyt, I. Cleenwerck, N.V. Zhukova, M.V. Vysotskii, V.V. Mikhailov and J. Swings. 2004g. Salegentibacter holothuriorum sp. nov., isolated from the edible holothurian Apostichopus japonicus. Int. J. Syst. Evol. Microbiol. 54: 1107–1110.PubMedGoogle Scholar
  834. Nedashkovskaya, O.I., S.B. Kim, S.K. Han, C. Snauwaert, M. Vancanneyt, J. Swings, K.O. Kim, A.M. Lysenko, M. Rohde, G.M. Frolova, V.V. Mikhailov and K.S. Bae. 2005a. Winogradskyella thalassocola gen. nov., sp. nov., Winogradskyella epiphytica sp. nov. and Winogradskyella eximia sp. nov., marine bacteria of the family Flavobacteriaceae. Int. J. Syst. Evol. Microbiol. 55: 49–55.PubMedGoogle Scholar
  835. Nedashkovskaya, O.I., S.B. Kim, K.H. Lee, K.S. Bae, G.M. Frolova, V.V. Mikhailov and I.S. Kim. 2005b. Pibocella ponti gen. nov., sp. nov., a novel marine bacterium of the family Flavobacteriaceae isolated from the green alga Acrosiphonia sonderi. Int. J. Syst. Evol. Microbiol. 55: 177–181.PubMedGoogle Scholar
  836. Nedashkovskaya, O.I., S.B. Kim, K.H. Lee, V.V. Mikhailov and K.S. Bae. 2005c. Gillisia mitskevichiae sp. nov., a novel bacterium of the family Flavobacteriaceae, isolated from sea water. Int. J. Syst. Evol. Microbiol. 55: 321–323.PubMedGoogle Scholar
  837. Nedashkovskaya, O.I., S.B. Kim, A.M. Lysenko, G.M. Frolova, V.V. Mikhailov and K.S. Bae. 2005d. Bizionia paragorgiae gen. nov., sp. nov., a novel member of the family Flavobacteriaceae isolated from the soft coral Paragorgia arborea. Int. J. Syst. Evol. Microbiol. 55: 375–378.PubMedGoogle Scholar
  838. Nedashkovskaya, O.I., S.B. Kim, A.M. Lysenko, G.M. Frolova, V.V. Mikhailov, K.S. Bae, D.H. Lee and I.S. Kim. 2005e. Gramella echinicola gen. nov., sp. nov., a novel halophilic bacterium of the family Flavobacteriaceae isolated from the sea urchin Strongylocentrotus intermedius. Int. J. Syst. Evol. Microbiol. 55: 391–394.PubMedGoogle Scholar
  839. Nedashkovskaya, O.I., S.B. Kim, A.M. Lysenko, G.M. Frolova, V.V. Mikhailov, K.H. Lee and K.S. Bae. 2005f. Description of Aquimarina muelleri gen. nov., sp. nov., and proposal of the reclassification of [Cytophaga] latercula Lewin 1969 as Stanierella latercula gen. nov., comb. nov. Int. J. Syst. Evol. Microbiol. 55: 225–229.PubMedGoogle Scholar
  840. Nedashkovskaya, O.I., S.B. Kim, A.M. Lysenko, N.I. Kalinovskaya, V.V. Mikhailov, I.S. Kim and K.S. Bae. 2005g. Polaribacter butkevichii sp. nov., a novel marine mesophilic bacterium of the family Flavobacteriaceae. Curr. Microbiol. 51: 408–412.PubMedGoogle Scholar
  841. Nedashkovskaya, O.I., S.B. Kim, A.M. Lysenko, V.V. Mikhailov, K.S. Bae and I.S. Kim. 2005h. Salegentibacter mishustinae sp. nov., isolated from the sea urchin Strongylocentrotus intermedius. Int. J. Syst. Evol. Microbiol. 55: 235–238.PubMedGoogle Scholar
  842. Nedashkovskaya, O.I., M. Vancanneyt, P. Dawyndt, K. Engelbeen, K. Vandemeulebroecke, I. Cleenwerck, B. Hoste, J. Mergaert, T.L. Tan, G.M. Frolova, V.V. Mikhailov and J. Swings. 2005i. Reclassification of [Cytophaga] marinoflava Reichenbach 1989 as Leeuwenhoekiella marinoflava gen. nov., comb. nov. and description of Leeuwenhoekiella aequorea sp. nov. Int. J. Syst. Evol. Microbiol. 55: 1033–1038.PubMedGoogle Scholar
  843. Nedashkovskaya, O.I., S.B. Kim, J. Kwak, V.V. Mikhailov and K.S. Bae. 2006a. Mariniflexile gromovii gen. nov., sp. nov., a gliding bacterium isolated from the sea urchin Strongylocentrotus intermedius. Int. J. Syst. Evol. Microbiol. 56: 1635–1638.PubMedGoogle Scholar
  844. Nedashkovskaya, O.I., S.B. Kim, A.M. Lysenko, V.V. Mikhailov, I.S. Kim and K.S. Bae. 2006b. In List of new names and new combinations previously effectively, but not validly, published. Validation List no. 110. Int. J. Syst. Evol. Microbiol. 56: 1459–1460.Google Scholar
  845. Nedashkovskaya, O.I., S.B. Kim, M. Vancanneyt, D.S. Shin, A.M. Lysenko, L.S. Shevchenko, V.B. Krasokhin, V.V. Mikhailov, J. Swings and K.S. Bae. 2006c. Salegentibacter agarivorans sp. nov., a novel marine bacterium of the family Flavobacteriaceae isolated from the sponge Artemisina sp. Int. J. Syst. Evol. Microbiol. 56: 883–887.PubMedGoogle Scholar
  846. Nedashkovskaya, O.I., S.B. Kim, M. Vancanneyt, C. Snauwaert, A.M. Lysenko, M. Rohde, G.M. Frolova, N.V. Zhukova, V.V. Mikhailov, K.S. Bae, H.W. Oh and J. Swings. 2006d. Formosa agariphila sp. nov., a budding bacterium of the family Flavobacteriaceae isolated from marine environments, and emended description of the genus Formosa. Int. J. Syst. Evol. Microbiol. 56: 161–167.PubMedGoogle Scholar
  847. Nedashkovskaya, O.I., S.B. Kim, N.V. Zhukova, J. Kwak, V.V. Mikhailov and K.S. Bae. 2006e. Mesonia mobilis sp. nov., isolated from seawater, and emended description of the genus Mesonia. Int. J. Syst. Evol. Microbiol. 56: 2433–2436.PubMedGoogle Scholar
  848. Nedashkovskaya, O.I., M. Vancanneyt, L. Christiaens, N.I. Kalinovskaya, V.V. Mikhailov and J. Swings. 2006f. Aquimarina intermedia sp. nov., reclassification of Stanierella latercula (Lewin 1969) as Aquimarina latercula comb. nov. and Gaetbulimicrobium brevivitae Yoon et al. 2006 as Aquimarina brevivitae comb. nov. and emended description of the genus Aquimarina. Int. J. Syst. Evol. Microbiol. 56: 2037–2041.PubMedGoogle Scholar
  849. Nedashkovskaya, O.I., M. Vancanneyt, I. Cleenwerck, C. Snauwaert, S.B. Kim, A.M. Lysenko, L.S. Shevchenko, K.H. Lee, M.S. Park, G.M. Frolova, V.V. Mikhailov, K.S. Bae and J. Swings. 2006g. Arenibacter palladensis sp. nov., a novel marine bacterium isolated from the green alga Ulva fenestrata, and emended description of the genus Arenibacter. Int. J. Syst. Evol. Microbiol. 56: 155–160.PubMedGoogle Scholar
  850. Nedashkovskaya, O.I., M. Suzuki, S.B. Kim and V.V. Mikhailov. 2008. Kriegella aquimaris gen. nov., sp. nov., isolated from marine environments. Int. J. Syst. Evol. Microbiol. 58: 2624–2628.PubMedGoogle Scholar
  851. Nedashkovskaya, O.I., M. Suzuki, J.S. Lee, K.C. Lee, L.S. Shevchenko and V.V. Mikhailov. 2009. Pseudozobellia thermophila gen. nov., sp. nov., a bacterium of the family Flavobacteriaceae, isolated from the green alga Ulva fenestrata. Int. J. Syst. Evol. Microbiol. 59: 806–810.PubMedGoogle Scholar
  852. Nelson, S.S. and M.J. McBride. 2006. Mutations in Flavobacterium johnsoniae secDF result in defects in gliding motility and chitin utilization. J. Bacteriol. 188: 348–351.PubMedGoogle Scholar
  853. Nelson, S.S., P.P. Glocka, S. Agarwal, D.P. Grimm and M.J. McBride. 2007. Flavobacterium johnsoniae SprA is a cell surface protein involved in gliding motility. J. Bacteriol. 189: 7145–7150.PubMedGoogle Scholar