A Historical Perspective and Overview of Protein Structure Prediction

  • John C. Wooley
  • Yuzhen Ye

Abstract

Carrying on many different biological functions, proteins are all composed of one or more polypeptide chains, each containing from several to hundreds or even thousands of the 20 amino acids. During the 1950s at the dawn of modern biochemistry, an essential question for biochemists was to understand the structure and function of these polypeptide chains. The sequences of protein, also referred to as their primary structures, determine the different chemical properties for different proteins, and thus continue to captivate much of the attention of biochemists. As an early step in characterizing protein chemistry, British biochemist Frederick Sanger designed an experimental method to identify the sequence of insulin (Sanger et al., 1955). He became the first person to obtain the primary structure of a protein and in 1958 won his first Nobel Price in Chemistry. This important progress in sequencing did not answer the question of whether a single (individual) protein has a distinctive shape in three dimensions (3D), and if so, what factors determine its 3D architecture. However, during the period when Sanger was studying the primary structure of proteins, American biochemist Christian Anfinsen observed that the active polypeptide chain of a model protein, bovine pancreatic ribonuclease (RNase), could fold spontaneously into a unique 3D structure, which was later called native conformation of the protein (Anfinsen et al., 1954). Anfinsen also studied the refolding of RNase enzyme and observed that an enzyme unfolded under extreme chemical environment could refold spontaneously back into its native conformation upon changing the environment back to natural conditions (Anfinsen et al., 1961). By 1962, Anfinsen had developed his theory of protein folding (which was summarized in his 1972 Nobel acceptance speech): “The native conformation is determined by the totality of interatomic interactions and hence, by the amino acid sequence, in a given environment.”

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alberts, I. L., Todorov, N. P. and Dean, P. M. 2005. Receptor flexibility in de novo ligand design and docking. J. Med. Chem. 48:6585–6596.Google Scholar
  2. Alexandrov, N. N., Nussinov, R., and Zimmer, R. M. 1996. Fast protein fold recognition via sequence to structure alignment and contact capacity potentials. Pac. Symp. Biocomput. pp. 53–72.Google Scholar
  3. Alexandrov, N., and Shindyalov, I. 2003. PDP: Protein domain parser. Bioinformatics 19:429–430.Google Scholar
  4. Aloy, P., Bottcher, B., Ceulemans, H., Leutwein, C., Mellwig, C., Fischer, S., Gavin, A.-C., Bork, P., Superti-Furga, G., Serrano, L., and Russell, R. B. 2004. Structure-based assembly of protein complexes in yeast. Science 303:2026–2029.ADSGoogle Scholar
  5. Anfinsen, C. B. 1973. Principles that govern the folding of protein chains. Science 181:223–230.ADSGoogle Scholar
  6. Anfinsen, C. B., Haber, E., Sela, M., and White, F. H. J. 1961. The kinetics of formation of native ribonuclease during oxidation of the reduced polypeptide chain. Proc. Natl. Acad. Sci., USA 47:1309–1314.ADSGoogle Scholar
  7. Anfinsen, C. B., Redfield, R. R., Choate, W. I., Page, J., and Carroll, W. R. 1954. Studies on the gross structure, cross-linkages, and terminal sequences in ribonuclease. J. Biol. Chem. 207:201–210.Google Scholar
  8. Baaden, M., Meier, C., and Sansom, M. S. P. 2003. A molecular dynamics investigation of mono and dimeric states of the outer membrane enzyme OMPLA. J. Mol. Biol. 331:177–189.Google Scholar
  9. Baker, D., and Sali, A. 2001. Protein structure prediction and structural genomics. Science 294:93–96.ADSGoogle Scholar
  10. Baker, T. S., and Johnson, J. E. 1996. Low resolution meets high: Towards a resolution continuum from cells to atoms. Curr. Opin. Struct. Biol. 6:585–594.Google Scholar
  11. Berven, F. S., Flikka, K., Jensen, H. B., and Eidhammer, I. 2004. BOMP: A program to predict integral β -barrel outer membrane proteins encoded within genomes of Gram-negative bacteria. Nucleic Acids Res. 32(Web Server Issue):W394–W399.Google Scholar
  12. Bond, P. J., Faraldo-Gomez, J. D., and Sansom, M. S. P. 2002. OmpA: A pore or not a pore? Simulation and modeling studies. Biophys. J. 83:763–775.ADSGoogle Scholar
  13. Bowie, J. U., Luthy, R., and Eisenberg, D. 1991. A method to identify protein sequences that fold into a known three-dimensional structure. Science 253:164–170.ADSGoogle Scholar
  14. Bracken, C., Iakoucheva, L. M., Romero, P. R., and Dunker, A. K. 2004. Combining prediction, computation and experiment for the characterization of protein disorder. Curr. Opin. Struct. Biol. 14:570–576.Google Scholar
  15. Brenner, S. E. 2001. A tour of structural genomics. Nature Rev. Genet. 2:801–809.Google Scholar
  16. Brooks, B. R., Bruccoleri, R. E., Olafson, B. D., States, D. J., Swaminathan, S., and Karplus, M. 1983. CHARMM: A program for macromolecular energy, minimization, and dynamics calculations. J. Comp. Chem. 4:187–217.Google Scholar
  17. Browne, W. J., North, A. C., Phillips, D. C., Brew, K., Vanaman, T. C., and Hill, R. L. 1969. A possible three-dimensional structure of bovine alpha-lactalbumin based on that of hen's egg-white lysozyme. J. Mol. Biol. 42:65–86.Google Scholar
  18. Bryant, S. H., and Lawrence, C. E. 1993. An empirical energy function for threading protein sequence through the folding motif. Proteins 16:92–112.Google Scholar
  19. Bujnicki, J. M., Elofsson, A., Fischer, D., and Rychlewski, L. 2001. Structure prediction meta server. Bioinformatics 17:750–751.Google Scholar
  20. Busetta, B., and Barrans, Y. 1984. The prediction of protein domains. Biochim. Biophys. Acta Protein Struct. Mol. Enzymol. 790:117–124.Google Scholar
  21. Bystroff, C., and Baker, D. 1998. Prediction of local structure in proteins using a library of sequence-structure motifs. J. Mol. Biol. 281:565–577.Google Scholar
  22. Candler, A., Featherstone, M., Ali, R., Maloney, L., Watts, A., and Fischer, W. B. 2005. Computational analysis of mutations in the transmembrane region of Vpu from HIV-1. Biochim. Biophys. Acta Biomembranes 1716:1–10.Google Scholar
  23. Canutescu, A. A., Shelenkov, A. A., and Dunbrack, R. L., Jr. 2003. A graph-theory algorithm for rapid protein side-chain prediction. Protein Sci. 12:2001–2014.Google Scholar
  24. Casari, G., and Sippl, M. J. 1992. Structure-derived hydrophobic potential: Hydrophobic potential derived from X-ray structures of globular proteins is able to identify native folds. J. Mol. Biol. 224:725–732.Google Scholar
  25. Ceulemans, H., and Russell, R. B. 2004. Fast fitting of atomic structures to low-resolution electron density maps by surface overlap maximization. J. Mol. Biol. 338:783–793.Google Scholar
  26. Chen, C. P., and Rost, B. 2002. State-of-the-art in membrane protein prediction. Appl. Bioinformatics 1:21–35.Google Scholar
  27. Chen, R., Li, L., and Weng, Z. 2003. ZDOCK: An initial-stage protein-docking algorithm. Proteins 52:80–87.Google Scholar
  28. Chiu, W., Baker, M. L., Jiang, W., Dougherty, M., and Schmid, M. F. 2005. Electron cryomicroscopy of biological machines at subnanometer resolution. Structure 13:363–372.Google Scholar
  29. Chiu, W., Baker, M. L., Jiang, W., and Zhou, Z. H. 2002. Deriving folds of macromolecular complexes through electron cryomicroscopy and bioinformatics approaches. Curr. Opin. Struct. Biol. 12:263–269.Google Scholar
  30. Clore, G. M. 2000. Accurate and rapid docking of protein–protein complexes on the basis of intermolecular nuclear Overhauser enhancement data and dipolar couplings by rigid body minimization. Proc. Natl. Acad. Sci. USA 97:9021–9025.ADSGoogle Scholar
  31. Contreras-Moreira, B., and Bates, P. A. 2002. Domain Fishing: A first step in protein comparative modelling. Bioinformatics 18:1141–1142.Google Scholar
  32. Cserzo, M., Wallin, E., Simon, I., von Heijne, G., and Elofsson, A. 1997. Prediction of transmembrane alpha-helices in prokaryotic membrane proteins: The dense alignment surface method. Protein Eng. 10:673–676.Google Scholar
  33. Daley, D. O., Rapp, M., Granseth, E., Melen, K., Drew, D., and von Heijne, G. 2005. Global topology analysis of the Escherichia coli inner membrane proteome. Science 308:1321–1323.ADSGoogle Scholar
  34. Daniel, F. 2003. 3D-SHOTGUN: A novel, cooperative, fold-recognition meta-predictor. Proteins Struct. Funct. Genet. 51:434–441.Google Scholar
  35. Deane, C. M., and Blundell, T. L. 2001. CODA: A combined algorithm for predicting the structurally variable regions of protein models. Protein Sci. 10:599–612.Google Scholar
  36. Deber, C. M., Wang, C., Liu, L.-P., Prior, A. S., Agrawal, S., Muskat, B. L., and Cuticchia, A. J. 2001. TM Finder: A prediction program for transmembrane protein segments using a combination of hydrophobicity and nonpolar phase helicity scales. Protein Sci. 10:212–219.Google Scholar
  37. Desmet, J., Maeyer, M. D., Hazes, B., and Lasters, I. 1992. The dead-end elimination theorem and its use in protein side-chain positioning. Nature 356:539–542.ADSGoogle Scholar
  38. Dill, K. A., Fiebig, K. M., and Chan, H. S. 1993. Cooperativity in protein-folding kinetics. Proc. Natl. Acad. Sci. USA 90:1942–1946.ADSGoogle Scholar
  39. Dominguez, C., Boelens, R., and Bonvin, A. M. J. J. 2003. HADDOCK: A protein–protein docking approach based on biochemical or biophysical information. J. Am. Chem. Soc. 125:1731–1737.Google Scholar
  40. Donate, L. E., Rufino, S. D., Canard, L. H., and Blundell, T. L. 1996. Conformational analysis and clustering of short and medium size loops connecting regular secondary structures: A database for modeling and prediction. Protein Sci. 5:2600–2616.Google Scholar
  41. Duan, Y., and Kollman, P. A. 1998. Pathways to a protein folding intermediate observed in a 1-microsecond simulation in aqueous solution. Science 282:740–744.ADSGoogle Scholar
  42. Dumontier, M., Yao, R., Feldman, H. J., and Hogue, C. W. V. 2005. Armadillo: Domain boundary prediction by amino acid composition. J. Mol. Biol. 350:1061–1073.Google Scholar
  43. Dunbrack, J. R. L., and Karplus, M. 1993. Backbone-dependent rotamer library for proteins application to side-chain prediction. J. Mol. Biol. 230:543–574.Google Scholar
  44. Edgar, R. C., and Sjolander, K. 2004. COACH: Profile–profile alignment of protein families using hidden Markov models. Bioinformatics 20:1309–1318.Google Scholar
  45. Fahmy, A., and Wagner, G. 2002. TreeDock: A tool for protein docking based on minimizing van der Waals energies. J. Am. Chem. Soc. 124:1241–1250.Google Scholar
  46. Fanelli, F., and DeBenedetti, P. G. 2005. Computational modeling approaches to structure–function analysis of G protein-coupled receptors. Chem. Rev. 105:3297–3351.Google Scholar
  47. Fischer, D., Lin, S. L., Wolfson, H. L., and Nussinov, R. 1995. A geometry-based suite of molecular docking processes. J. Mol. Biol. 248:459–477.Google Scholar
  48. Friedberg, I., Jaroszewski, L., Ye, Y., and Godzik, A. 2004. The interplay of fold recognition and experimental structure determination in structural genomics. Curr. Opin. Struct. Biol. 14:307–312.Google Scholar
  49. Gabb, H. A., Jackson, R. M., and Sternberg, M. J. E. 1997. Modelling protein docking using shape complementarity, electrostatics and biochemical information. J. Mol. Biol. 272:106–120.Google Scholar
  50. Galzitskaya, O. V., and Melnik, B. S. 2003. Prediction of protein domain boundaries from sequence alone. Protein Sci. 12:696–701.Google Scholar
  51. Gardiner, E. J., Willett, P., and Artymiuk, P. J. (2001). Protein docking using a genetic algorithm. Proteins Struct. Funct. Genet. 44:44–56.Google Scholar
  52. Gavin, A.-C., Bosche, M., Krause, R., Grandi, P., Marzioch, M., Bauer, A., Schultz, J., Rick, J. M., Michon, A.-M., Cruciat, C.-M., Remor, M., Hofert, C., Schelder, M., Brajenovic, M., Ruffner, H., Merino, A., Klein, K., Hudak, M., Dickson, D., Rudi, T., Gnau, V., Bauch, A., Bastuck, S., Huhse, B., Leutwein, C., Heurtier, M.-A., Copley, R. R., Edelmann, A., Querfurth, E., Rybin, V., Drewes, G., Raida, M., Bouwmeester, T., Bork, P., Seraphin, B., Kuster, B., Neubauer, G. and Superti-Furga, G. 2002. Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 415:141–147.ADSGoogle Scholar
  53. George, R. A., and Heringa, J. 2002a. Protein domain identification and improved sequence similarity searching using PSI-BLAST. Proteins 48:672–681.Google Scholar
  54. George, R. A., and Heringa, J. 2002b. SnapDRAGON: A method to delineate protein structural domains from sequence data. J. Mol. Biol. 316:839–851.Google Scholar
  55. Gibson, K. D., and Scheraga, H. A. 1967a. Minimization of polypeptide energy, I. Preliminary structures of bovine pancreatic ribonuclease S-peptide. Proc. Natl. Acad. Sci. USA 58:420–427.ADSGoogle Scholar
  56. Gibson, K. D., and Scheraga, H. A. 1967b. Minimization of polypeptide energy. II. Preliminary structures of oxytocin, vasopressin, and an octapeptide from ribonuclease. Proc. Natl. Acad. Sci. USA 58:1317–1323.ADSGoogle Scholar
  57. Ginalski, K., Elofsson, A., Fischer, D., and Rychlewski, L. 2003. 3D-Jury: A simple approach to improve protein structure predictions. Bioinformatics 19:1015–1018.Google Scholar
  58. Giorgetti, A., and Carloni, P. 2003. Molecular modeling of ion channels: Structural predictions. Curr. Opin. Chem. Biol. 7:150–156.Google Scholar
  59. Gray, J. J., Moughon, S., Wang, C., Schueler-Furman, O., Kuhlman, B., Rohl, C. A., and Baker, D. 2003. Protein–protein docking with simultaneous optimization of rigid-body displacement and side-chain conformations. J. Mol. Biol. 331:281–299.Google Scholar
  60. Greer, J. 1981. Comparative model-building of the mammalian serine proteases. J. Mol. Biol. 153:1027–1042.Google Scholar
  61. Greer, J., and Bush, B. L. 1978. Macromolecular shape and surface maps by solvent exclusion. Proc. Natl. Acad. Sci. USA 75:303–307.ADSGoogle Scholar
  62. Guan, X., and Du, L. 1998. Domain identification by clustering sequence alignments. Bioinformatics 14:783–788.Google Scholar
  63. Guo, J.-T., Ellrott, K., Chung, W. J., Xu, D., Passovets, S., and Xu, Y. 2004. PROSPECT-PSPP: An automatic computational pipeline for protein structure prediction. Nucleic Acids Res. 32(Suppl. 2):W522–525.Google Scholar
  64. Guo, J. T., Xu, D., Kim, D., and Xu, Y. 2003. Improving the performance of DomainParser for structural domain partition using neural network. Nucleic Acids Res. 31:944–952.Google Scholar
  65. Heijne, V. 1986. The distribution of positively charged residues in bacterial inner membrane proteins correlates with the trans-membrane topology. EMBO J. 5:3021–3027.Google Scholar
  66. Henderson, R., Baldwin, J. M., Ceska, T. A., Zemlin, F., Beckmann, E., and Downing, K. H. 1990. Model for the structure of bacteriorhodopsin based on high-resolution electron cryo-microscopy. J. Mol. Biol. 213:899–929.Google Scholar
  67. Hirokawa, T., Boon-Chieng, S., and Mitaku, S. 1998. SOSUI: Classification and secondary structure prediction system for membrane proteins. Bioinformatics 14:378–379.Google Scholar
  68. Holm, L., and Sander, C. 1994. Parser for protein folding units. Proteins 19:256–268.Google Scholar
  69. Huo, S., Massova, I., and Kollman, P. A. 2002. Computational alanine scanning of the 1:1 human growth hormone—receptor complex. J. Comp. Chem. 23:15–27.Google Scholar
  70. Inbar, Y., Benyamini, H., Nussinov, R., and Wolfson, H. J. 2003. Protein structure prediction via combinatorial assembly of sub-structural units. Bioinformatics 19(Suppl. 1):i158–i168.Google Scholar
  71. Jiang, W., Baker, M. L., Ludtke, S. J., and Chiu, W. 2001. Bridging the information gap: Computational tools for intermediate resolution structure interpretation. J. Mol. Biol. 308:1033–1044.Google Scholar
  72. Jones, D. T. 1999. GenTHREADER: An efficient and reliable protein fold recognition method for genomic sequences. J. Mol. Biol. 287:797–815.Google Scholar
  73. Jones, D. T., Bryson, K., Coleman, A., McGuffin, L. J., Sadowski, M. I., Sodhi, J. S., and Ward, J. J. 2005. Prediction of novel and analogous folds using fragment assembly and fold recognition. Proteins 61(Suppl. 7):143–151.Google Scholar
  74. Jones, G., Willett, P., Glen, R. C., Leach, A. R., and Taylor, R. 1997. Development and validation of a genetic algorithm for flexible docking. J. Mol. Biol. 267:727–748.Google Scholar
  75. Karchin, R., Diekhans, M., Kelly, L., Thomas, D. J., Pieper, U., Eswar, N., Haussler, D., and Sali, A. 2005. LS-SNP: Large-scale annotation of coding non-synonymous SNPs based on multiple information sources. Bioinformatics 21:2814–2820.Google Scholar
  76. Karplus, K., Barrett, C., and Hughey, R. 1998. Hidden Markov models for detecting remote protein homologies. Bioinformatics 14:846–856.Google Scholar
  77. Katchalski-Katzir, E., Shariv, I., Eisenstein, M., Friesem, A. A., Aflalo, C., and Vakser, I. A. 1992. Molecular surface recognition: Determination of geometric fit between proteins and their ligands by correlation techniques. Proc. Natl. Acad. Sci. USA 89:2195–2199.ADSGoogle Scholar
  78. Kelley, L. A., MacCallum, R. M., and Sternberg, M. J. E. 2000. Enhanced genome annotation using structural profiles in the program 3D-PSSM. J. Mol. Biol. 299:501–522.Google Scholar
  79. Kihara, D., Lu, H., Kolinski, A., and Skolnick, J. 2001. TOUCHSTONE: An ab initio protein structure prediction method that uses threading-based tertiary restraints. Proc. Natl. Acad. Sci. USA 98:10125–10130.ADSGoogle Scholar
  80. Kim, D. E., Chivian, D., and Baker, D. 2004. Protein structure prediction and analysis using the Robetta server. Nucleic Acids Res. 32(Suppl. 2):W526–531.Google Scholar
  81. Klein, P., Kanehisa, M., and DeLisi, C. 1985. The detection and classification of membrane-spanning proteins. Biochim. Biophys. Acta Prot. Struct. Mol. Enzymol. 815:468–476.Google Scholar
  82. Koehl, P., and Delarue, M. 1995. A self consistent mean field approach to simultaneous gap closure and side-chain positioning in homology modelling. Nat. Struct. Biol. 2:163–170.Google Scholar
  83. Koh, I. Y. Y., Eyrich, V. A., Marti-Renom, M. A., Przybylski, D., Madhusudhan, M. S., Eswar, N., Grana, O., Pazos, F., Valencia, A., Sali, A., and Rost, B. 2003. EVA: Evaluation of protein structure prediction servers. Nucleic Acids Res. 31:3311–3315.Google Scholar
  84. Kolinski, A., and Skolnick, J. 1994a. Monte Carlo simulation of protein folding. II. Application to protein A, ROP, and crambin. Proteins 18:353–366.Google Scholar
  85. Kolinski, A., and Skolnick, J. 1994b. Monte Carlo simulations of protein folding. I. Lattice model and interaction scheme. Proteins 18:338–352.Google Scholar
  86. Kolinski, A., and Skolnick, J. 1998. Assembly of protein structure from sparse experimental data: An efficient Monte Carlo model. Proteins 32:475–494.Google Scholar
  87. Kolinski, A., and Skolnick, J. 2004. Reduced models of proteins and their applications. Polymer 45:511–524.Google Scholar
  88. Kosinski, J., Cymerman, I. A., Feder, M., Kurowski, M. A., Sasin, J. M., and Bujnicki, J. M. 2003. A “FRankenstein's monster” approach to comparative modeling: Merging the finest fragments of Fold-Recognition models and iterative model refinement aided by 3D structure evaluation. Proteins 53(S6):369–379.Google Scholar
  89. Kriventseva, E. V., Koch, I., Apweiler, R., Vingron, M., Bork, P., Gelfand, M. S., and Sunyaev, S. 2003. Increase of functional diversity by alternative splicing. Trends Genet. 19:124–128.Google Scholar
  90. Krogh, A., Brown, M., Mian, I. S., Sjolander, K., and Haussler, D. 1994. Hidden Markov models in computational biology: Applications to protein modeling. J. Mol. Biol. 235:1501–1531.Google Scholar
  91. Krogh, A., Larsson, B., von Heijne, G., and Sonnhammer, E. L. L. 2001. Predicting transmembrane protein topology with a hidden Markov model: Application to complete genomes. J. Mol. Biol. 305:567–580.Google Scholar
  92. Kurowski, M. A., and Bujnicki, J. M. 2003. GeneSilico protein structure prediction meta-server. Nucleic Acids Res. 31:3305–3307.Google Scholar
  93. Kyte, J., and Doolittle, R. F. 1982. A simple method for displaying the hydropathic character of a protein. J. Mol. Biol. 157:105–132.Google Scholar
  94. Lau, K. F., and Dill, K. A. 1989. A lattice statistical mechanics model of the conformational and sequence spaces of proteins. Macromolecules 22:3986–3997.ADSGoogle Scholar
  95. Lee, C. 1994. Predicting protein mutant energetics by self-consistent ensemble optimization. J. Mol. Biol. 236:918–939.Google Scholar
  96. Lee, C. 1995. Testing homology modeling on mutant proteins: Predicting structural and thermodynamic effects in the Ala98→Val mutants of T4 lysozyme. Fold Des. 1:1–12.Google Scholar
  97. Lee, J., Kim, S.-Y., and Lee, J. 2005. Protein structure prediction based on fragment assembly and parameter optimization. Biophys. Chem. 115:209–214.Google Scholar
  98. Levinthal, C. 1968. Are there pathways for protein folding? J. Chem. Phys. 65:44–45.Google Scholar
  99. Levitt, M., and Lifson, S. 1969. Refinement of protein conformations using a macromolecular energy minimization procedure. J. Mol. Biol. 46:269–279.Google Scholar
  100. Levitt, M., and Warshel, A. 1975. Computer simulation of protein folding. Nature 253:694–698.ADSGoogle Scholar
  101. Liwo, A., Lee, J., Ripoll, D. R., Pillardy, J., and Scheraga, H. A. 1999. Protein structure prediction by global optimization of a potential energy function. Proc. Natl. Acad. Sci. USA 96:5482–5485.ADSGoogle Scholar
  102. Lundstrom, J., Rychlewski, L., Bujnicki, J., and Elofsson, A. 2001. Pcons: A neural-network-based consensus predictor that improves fold recognition. Protein Sci. 10:2354–2362.Google Scholar
  103. Luthy, R., Bowie, J. U., and Eisenberg, D. 1992. Assessment of protein models with three-dimensional profiles. Nature 356:83–85.ADSGoogle Scholar
  104. Madej, T., Gibrati, J.F., and S.H. Bryant 1995 ‘Threading a database of protein cores.’ Proteins 32:289–306.Google Scholar
  105. Marsden, R. L., McGuffin, L. J., and Jones, D. T. 2002. Rapid protein domain assignment from amino acid sequence using predicted secondary structure. Protein Sci. 11:2814–2824.Google Scholar
  106. Marti-Renom, M. A., Madhusudhan, M. S., and Sali, A. 2004. Alignment of protein sequences by their profiles. Protein Sci. 13:1071–1087.Google Scholar
  107. Melen, K., Krogh, A., and von Heijne, G. 2003. Reliability measures for membrane protein topology prediction algorithms. J. Mol. Biol. 327:735–744.Google Scholar
  108. Mintseris, J., Wiehe, K., Pierce, B., Anderson, R., Chen, R., Janin, J., and Weng, Z. 2005. Protein—protein docking benchmark 2.0: An update. Proteins 60:214–216.Google Scholar
  109. Misura, K. M. S., and Baker, D. 2005. Progress and challenges in high-resolution refinement of protein structure models. Proteins 59:15–29.Google Scholar
  110. Moult, J. 2005. A decade of CASP: Progress, bottlenecks and prognosis in protein structure prediction. Curr. Opin. Struct. Biol. 15:285–289.Google Scholar
  111. Moult, J., Fidelis, K., Tramontano, A., Rost, B., and Hubbard, T. 2005. Critical assessment of methods of protein structure prediction (CASP)—Round VI. Proteins 61(S7):3–7.Google Scholar
  112. Moult, J., Hubbard, T., Fidelis, K., and Pedersen, J. T. 1999. Critical assessment of methods of protein structure prediction (CASP): Round III. Proteins(Suppl. 3):2–6.Google Scholar
  113. Moult, J., and James, M. N. G. 1986. An algorithm for determining the conformation of polypeptide segments in proteins by systematic search. Proteins 1:146–163.Google Scholar
  114. Murzin, A. G., Brenner, S. E., Hubbard, T., and Chothia, C. 1995. SCOP: A structural classification of proteins database for the investigation of sequences and structures. J. Mol. Biol. 247:536–540.Google Scholar
  115. Natt, N. K., Kaur, H., and Raghava, G. P. 2004. Prediction of transmembrane regions of β-barrel proteins using ANN- and SVM-based methods. Proteins 56:11–18.Google Scholar
  116. Neuwald, A. F., Liu, J. S., and Lawrence, C. E. 1995. Gibbs motif sampling: Detection of bacterial outer membrane protein repeats. Protein Sci. 4:1618–1632.Google Scholar
  117. Oldziej, S., Czaplewski, C., Liwo, A., Chinchio, M., Nanias, M., Vila, J. A., Khalili, M., Arnautova, Y. A., Jagielska, A., Makowski, M., Schafroth, H. D., Kazmierkiewicz, R., Ripoll, D. R., Pillardy, J., Saunders, J. A., Kang, Y. K., Gibson, K. D., and Scheraga, H. A. 2005. Physics-based protein-structure prediction using a hierarchical protocol based on the UNRES force field: Assessment in two blind tests. Proc. Natl. Acad. Sci. USA 102:7547–7552.ADSGoogle Scholar
  118. Oliva, B., Bates, P. A., Querol, E., Aviles, F. X., and Sternberg, M. J. 1997. An automated classification of the structure of protein loops. J. Mol. Biol. 266:814–830.Google Scholar
  119. Orengo, C. A., Michie, A. D., Jones, S., Jones, D. T., Swindells, M. B., and Thornton, J. M. 1997. CATH—a hierarchic classification of protein domain structures. Structure 5:1093–1108.Google Scholar
  120. Patthy, L. 1999. Protein Evolution. Malden, MA, Blackwell Science.Google Scholar
  121. Pearlman, D. A., Case, D. A., Caldwell, J. W., Ross, W. R., Cheatham, T. W., DeBolt, S., Ferguson, D., Seibel, G., and Kollman, P. 1995. AMBER, a computer program for applying molecular mechanics, normal mode analysis, molecular dynamics and free energy calculations to elucidate the structures and energies of molecules. Comput. Phys. Commun. 91:1–41.MATHADSGoogle Scholar
  122. Pedersen, J., and Moult, J. 1995. Ab initio structure prediction for small polypeptides and protein fragments using genetic algorithms. Proteins 23:454–460.Google Scholar
  123. Peitsch, M. C. 1996. ProMod and Swiss-Model: Internet-based tools for automated comparative protein modelling. Biochem. Soc. Trans. 24:274–279.Google Scholar
  124. Peitsch, M. C., and Jongeneel, V. 1993. A 3-dimensional model for the CD40 ligand predicts that it is a compact trimer similar to the tumor necrosis factors. Int. Immunol. 5:233–238.Google Scholar
  125. Petrey, D., and Honig, B. 2005. Protein structure prediction: Inroads to biology. Mol. Cell 20:811–819.Google Scholar
  126. Petrey, D., Xiang, X., Tang, C. L., Xie, L., Gimpelev, M., Mitors, T., Soto, C. S., Goldsmith-Fischman, S., Kernytsky, A., Schlessinger, A., Koh, I. Y. Y., Alexov, E., and Honig, B. 2003. Using multiple structure alignments, fast model building, and energetic analysis in fold recognition and homology modeling. Proteins Struct. Funct. Genet. 53:430–435.Google Scholar
  127. Ponder, J. W., and Richards, F. M. 1987. Tertiary templates for proteins. Use of packing criteria in the enumeration of allowed sequences for different structural classes. J. Mol. Biol. 193:775–791.Google Scholar
  128. Qian, B., Ortiz, A. R., and Baker, D. 2004. Improvement of comparative model accuracy by free-energy optimization along principal components of natural structural variation. Proc. Natl. Acad. Sci. USA 101(43):15346–15351.ADSGoogle Scholar
  129. Rigden, D. J. 2002. Use of covariance analysis for the prediction of structural domain boundaries from multiple protein sequence alignments. Protein Eng. 15:65–77.Google Scholar
  130. Rohl, C. A., Strauss, C., Chivian, D., and Baker, D. 2004. Modeling structurally variable regions in homologous proteins with Rosetta. Proteins 55:656–677.Google Scholar
  131. Rose, G. D. 1978. Prediction of chain turns in globular proteins on a hydrophobic basis. Nature 272:586–590.ADSGoogle Scholar
  132. Roseman, A. M. 2000. Docking structures of domains into maps from cryo-electron microscopy using local correlation. Acta Crystallogr. Sect. D Biol. Crystallogr. 56 (Pt 10):1332–1340.Google Scholar
  133. Rossman, M. G., and Liljas, A. 1974. Recognition of structural domains in globular proteins. J. Mol. Biol. 85:177–181.Google Scholar
  134. Rost, B., Casadio, R., Fariselli, P., and Sander, C. 1995. Transmembrane helices predicted at 95% accuracy. Protein Sci. 4:521–533.Google Scholar
  135. Rufino, S. D., Donate, L. E., Canard, L. H. J., and Blundell, T. L. 1997. Predicting the conformational class of short and medium size loops connecting regular secondary structures: Application to comparative modelling. J. Mol. Biol. 267:352–367.Google Scholar
  136. Rychlewski, L., Jaroszewski, L., Li, W., and Godzik, A. 2000. Comparison of sequence profiles. Strategies for structural predictions using sequence information. Protein Sci. 9:232–241.Google Scholar
  137. Sadreyev, R. I., Baker, D., and Grishin, N. V. 2003. Profile—profile comparisons by COMPASS predict intricate homologies between protein families. Protein Sci. 12:2262–2272.Google Scholar
  138. Sali, A., and Blundell, T. L. 1993. Comparative protein modelling by satisfaction of spatial restraints. J. Mol. Biol. 234:779–815.Google Scholar
  139. Samudrala, R., Xia, Y., Huang, E., and Levitt, M. 1999. Ab initio protein structure prediction using a combined hierarchical approach. Proteins 37(S3):194–198.Google Scholar
  140. Sanchez, R., Pieper, U., Mirkovi, N., de Bakker, P. I. W., Wittenstein, E., and Ali, A. (2000). MODBASE, a database of annotated comparative protein structure models. Nucleic Acids Res. 28:250–253.Google Scholar
  141. Sanger, F., Thompson, E. O., and Kitai, R. 1955. The amide groups of insulin. Biochem. J. 59:509–518.Google Scholar
  142. Schroder, R. R., Manstein, D. J., Jahn, W., Holden, H., Rayment, I., Holmes, K. C., and Spudich, J. A. 1993. Three-dimensional atomic model of F-actin decorated with Dictyostelium myosin S1. Nature 364:171–174.ADSGoogle Scholar
  143. Schueler-Furman, O., Wang, C., and Baker, D. 2005a. Progress in protein—protein docking: Atomic resolution predictions in the CAPRI experiment using RosettaDock with an improved treatment of side-chain flexibility. Proteins 60:187–194.Google Scholar
  144. Schueler-Furman, O., Wang, C., Bradley, P., Misura, K., and Baker, D. 2005b. Progress in modeling of protein structures and interactions. Science 310:638–642.ADSGoogle Scholar
  145. Scott, R. A., Vanderkooi, G., Tuttle, R. W., Shames, P. M., and Scheraga, H. A. 1967. Minimization of polypeptide energy, III. Application of a rapid energy minimization technique to the calculation of preliminary structures of gramicidins. Proc. Natl. Acad. Sci. USA 58:2204–2211.ADSGoogle Scholar
  146. Shi, J., Blundell, T. L., and Mizuguchi, K. 2001. FUGUE: Sequence—structure homology recognition using environment-specific substitution tables and structure-dependent gap penalties. J. Mol. Biol. 310:243–257.Google Scholar
  147. Siddiqui, A. S., and Barton, G. J. 1995. Continuous and discontinuous domains: An algorithm for the automatic generation of reliable protein domain definitions. Protein Sci. 4:872–884.Google Scholar
  148. Simons, K. T., Bonneau, R., Ruczinski, I., and Baker, D. 1999a. Ab initio protein structure prediction of CASP III targets using ROSETTA. Proteins 37(S3):171–176.Google Scholar
  149. Simons, K. T., Kooperberg, C., Huang, E., and Baker, D. 1997. Assembly of protein tertiary structures from fragments with similar local sequences using simulated annealing and Bayesian scoring functions. J. Mol. Biol. 268:209–225.Google Scholar
  150. Simons, K. T., Ruczinski, I., Kooperberg, C., Fox, B. A., Bystroff, C., and Baker, D. 1999b. Improved recognition of native-like protein structures using a combination of sequence-dependent and sequence-independent features of proteins. Proteins 34:82–95.Google Scholar
  151. Simons, K. T., Strauss, C., and Baker, D. 2001. Prospects for ab initio protein structural genomics. J. Mol. Biol. 306:1191–1199.Google Scholar
  152. Sippl, M. J. 1990. Calculation of conformational ensembles from potentials of mean force: An approach to the knowledge-based prediction of local structures in globular proteins. J. Mol. Biol. 213:859–883.Google Scholar
  153. Skolnick, J., Kolinski, A., Brooks, C. L., III, Godzik, A., and Rey, A. 1993. A method for predicting protein structure from sequence. Curr. Biol. 3:414–423.Google Scholar
  154. Sucha, S., Dubose, R. F., March, C. J., and Subhashini, S. 1995. Modeling protein loops using a {phi}(i+1), {psi}(i) dimer database. Protein Sci. 4:1412–1420.Google Scholar
  155. Sutcliffe, M. J., Haneef, I., Carney, D., and Blundell, T. L. 1987. Knowledge based modelling of homologous proteins, Part I: Three-dimensional frameworks derived from the simultaneous superposition of multiple structures. Protein Eng. 1:377–384.Google Scholar
  156. Swindells, M. B. 1995. A procedure for detecting structural domains in proteins. Protein Sci. 4:103–112.Google Scholar
  157. Tieleman, D. P., and Berendsen, H. J. 1998. A molecular dynamics study of the pores formed by Escherichia coli OmpF porin in a fully hydrated palmitoyloleoylphosphatidylcholine bilayer. Biophys. J. 74:2786–2801.ADSGoogle Scholar
  158. Topf, M., Baker, M. L., John, B., Chiu, W., and Sali, A. 2005. Structural characterization of components of protein assemblies by comparative modeling and electron cryo-microscopy. J. Struct. Biol. 149:191–203.Google Scholar
  159. Topf, M., and Sali, A. 2005. Combining electron microscopy and comparative protein structure modeling. Curr. Opin. Struct. Biol. 15:578–585.Google Scholar
  160. Tusnady, G. E., and Simon, I. 1998. Principles governing amino acid composition of integral membrane proteins: Application to topology prediction. J. Mol. Biol. 283:489–506.Google Scholar
  161. Ubbink, M., Ejdeback, M., Karlsson, B. G., and Bendall, D. S. 1998. The structure of the complex of plastocyanin and cytochrome f, determined by paramagnetic NMR and restrained rigid-body molecular dynamics. Structure 6:323–335.Google Scholar
  162. Vakser, I. A. 1995. Protein docking for low-resolution structures. Protein Eng. 8:371–377.Google Scholar
  163. van Dijk, A. D. J., Boelens, R., and Bonvin, A. M. J. J. 2005. Data-driven docking for the study of biomolecular complexes. FEBS J. 272:293–312.Google Scholar
  164. van Gunsteren, W. F., and Berendsen, H. J. C. 1990. Computer simulation of molecular dynamics: Methodology, applications and perspectives in chemistry. Angew. Chem. Int. Ed. Engl. 29:992–1023.Google Scholar
  165. van Vlijmen, H. W. T., and Karplus, M. 1997. PDB-based protein loop prediction: parameters for selection and methods for optimization. J. Mol. Biol. 267:975–1001.Google Scholar
  166. Vasquez, M. 1996. Modeling side-chain conformation. Curr. Opin. Struct. Biol. 6:217–221.Google Scholar
  167. Vitkup, D., Melamud, E., Moult, J., and Sander, C. 2001. Completeness in structural genomics. Nat. Struct. Biol. 8:559–566.Google Scholar
  168. von Heijne, G. 1992. Membrane protein structure prediction. Hydrophobicity analysis and the positive-inside rule. J. Mol. Biol. 225:487–494.Google Scholar
  169. Vonderviszt, F., and Simon, I. 1986. A possible way for prediction of domain boundaries in globular proteins from amino acid sequence. Biochem. Biophys. Res. Commun. 139:11–17.Google Scholar
  170. Warshel, A. 1976. Bicycle-pedal model for the first step in the vision process. Nature 260:679–683.ADSGoogle Scholar
  171. Warshel, A. 2002. Molecular dynamics simulations of biological reactions. Acc. Chem. Res. 35:385–395.Google Scholar
  172. Wetlaufer, D. B. 1973. Nucleation, rapid folding, and globular intrachain regions in proteins. Proc. Natl. Acad. Sci. USA 70:697–701.ADSGoogle Scholar
  173. Wheelan, S. J., Marchler-Bauer, A., and Bryant, S. H. 2000. Domain size distributions can predict domain boundaries. Bioinformatics 16:613–618.Google Scholar
  174. White, S. H. 2004. The progress of membrane protein structure determination. Protein Sci. 13:1948–1949.Google Scholar
  175. Wiehe, K., Pierce, B., Mintseris, J., Tong, W. W., Anderson, R., Chen, R., and Weng, Z. 2005. ZDOCK and RDOCK performance in CAPRI rounds 3, 4, and 5. Proteins 60:207–213.Google Scholar
  176. Wodak, S. J., and Janin, J. 1981. Location of structural domains in protein. Biochemistry 20:6544–6552.Google Scholar
  177. Wriggers, W., Milligan, R. A., and McCammon, J. A. 1999. Situs: A package for docking crystal structures into low-resolution maps from electron microscopy. J. Struct. Biol. 125:185–195.Google Scholar
  178. Wriggers, W., Milligan, R. A., Schulten, K., and McCammon, J. A. 1998. Self-organizing neural networks bridge the biomolecular resolution gap. J. Mol. Biol. 284:1247–1254.Google Scholar
  179. Xu, D., Baburaj, K., Peterson, C. B., and Xu, Y. 2001. Model for the three-dimensional structure of vitronectin: Predictions for the multi-domain protein from threading and docking. Proteins 44:312–320.Google Scholar
  180. Xu, J., Li, M., Kim, D., and Xu, Y. 2003. RAPTOR: Optimal protein threading by linear programming. J. Bioinform. Comput. Biol. 1:95–117.Google Scholar
  181. Xu, Y., and Xu, D. 2000. Protein threading using PROSPECT: Design and evaluation. Proteins 40:343–354.Google Scholar
  182. Ye, Y., Li, Z., and Godzik, A. 2006. Modeling and analyzing three-dimensional structures of human disease proteins. Pac. Symp. Biocomput. (Maui).Google Scholar
  183. Yip, Y. L., Scheib, H., Diemand, A. V., Gattiker, A., Famiglietti, L. M., Gasteiger, E., and Bairoch, A. 2004. The Swiss-Prot variant page and the ModSNP database: A resource for sequence and structure information on human protein variants. Hum. Mutat. 23:464–470.Google Scholar
  184. Yona, G., and Levitt, M. 2002. Within the twilight zone: A sensitive profile—profile comparison tool based on information theory. J. Mol. Biol. 315:1257–1275.Google Scholar
  185. Yuan, Z., Mattick, J. S., and Teasdale, R. D. 2004. SVMtm: Support vector machines to predict transmembrane segments. J. Comp. Chem. 25:632–636.Google Scholar
  186. Zhai, Y., and Saier, M. H. J. R. 2002. The β-barrel finder (BBF) program, allowing identification of outer membrane β-barrel proteins encoded within prokaryotic genomes. Protein Sci. 11:2196–2207.Google Scholar
  187. Zhang, Y., and Skolnick, J. 2004. Automated structure prediction of weakly homologous proteins on a genomic scale. Proc. Natl. Acad. Sci. USA 101:7594–7599.ADSGoogle Scholar
  188. Zheng, Q., and Kyle, D. J. 1996. Accuracy and reliability of the scaling-relaxation method for loop closure: An evaluation based on extensive and multiple copy conformational samplings. Proteins 24:209–217.Google Scholar
  189. Zhou, H., and Zhou, Y. 2005. Fold recognition by combining sequence profiles derived from evolution and from depth-dependent structural alignment of fragments. Proteins 58:321–328.Google Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • John C. Wooley
  • Yuzhen Ye

There are no affiliations available

Personalised recommendations