Skip to main content

Drinking Water Disinfection by In-line Electrolysis: Product and Inorganic By-Product Formation

  • Chapter
  • First Online:
Electrochemistry for the Environment

Abstract

This section covers peculiarities of so-called in-line electrolysis when drinking water is electrolysed to produce disinfection species killing microorganisms. Mainly mixed oxide electrodes (MIO) based on IrO2 and/or RuO2 coatings and boron-doped diamond electrodes were used in the studies. Artificial and real drinking water systems were electrolysed in continuous and discontinuous operating mode, varying water composition, current density and electrode materials. Results show, besides the ability of producing active chlorine, risks of inorganic disinfection by-products (DBPs) such as chlorate, perchlorate, nitrite, ammonium, chloramines, hydrogen peroxide and others. DBPs are responsible for analysis errors using DPD method for active chlorine measurements. Geometry may influence by-product yield. As a conclusion, the necessity of developing test routines for practical cell applications must be underlined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adam, L.C. and Gordon, G. (1995) Direct and sequential potentiometric determination of hypochlorite, chlorite, and chlorate ions when hypochlorite ion is present in large excess. Anal. Chem. 67, 535–540.

    Article  CAS  Google Scholar 

  • Adam, L.C., Fabian, I., Suzuki, K. and Gordon, G. (1992) Hypochlorous acid decomposition in the pH 5–8 region. Inorg. Chem. 31, 3534–3541.

    Article  CAS  Google Scholar 

  • Adams, L. and Gordon, G. (1999) Hypochlorite ion decomposition: Effects of temperature, ionic strength, and chloride ion. Inorganic. Chem. 38, 1299–1304.

    Article  Google Scholar 

  • Arikawa, T., Murakami, Y. and Takasu, Y. (1998) Simultaneous determination of chlorine and oxygen evolving at RuO2 ∕ Ti and RuO2–TiO2 ∕ Ti anodes by different electrochemical mass spectroscopy. J. Appl. Electrochem. 28, 511–516.

    Article  CAS  Google Scholar 

  • Babak, A.A., Amadelli, R., De Battisti, A. and Fateev, V.N. (1994) Influence of anions on oxygen/ozone evolution on PbO2/spe and PbO2/Ti electrodes in neutral pH media. Electrochim. Acta 39, 1597–1602.

    Article  CAS  Google Scholar 

  • Barchiche, Ch., Deslouis, C., Festy, D., Gil, O., Refait, Ph., Touzain, S. and Tribollet, B. (2003) Characterization of calcareous deposits in artificial seawater by impedance techniques. 3-Deposit of CaCO3 in the presence of Mg(II). Electrochim. Acta 48, 1645–1654.

    CAS  Google Scholar 

  • Beach, M.W. and Margerum, D.W. (1990) Kinetics of oxidation of tetracyanonickelate(II) by chlorine monoxide, chlorine, and hypochlorous acid and kinetics of chlorine monoxide formation. Inorg. Chem. 29, 1225–1232.

    Article  CAS  Google Scholar 

  • Behar, D., Czapski, G. and Duchovny, I. (1970) Carbonate radical in flash photolysis and pulse radiolysis of aqueous carbonate solutions. J. Phys. Chem. 74, 2206–2210.

    Article  CAS  Google Scholar 

  • Bergmann, M.E.H. (2005a) About the chlorine dioxide formation during electrochemical drinking water disinfection (in German). GWF Wasser Abwasser 146, 126–133.

    CAS  Google Scholar 

  • Bergmann, H., Iourtchouk, T., Schoeps, K. and Ehrig, F. (2001) What is the so-called anodic oxidation and what can it do? (in German). GWF Wasser Abwasser 142, 856–869.

    CAS  Google Scholar 

  • Bergmann, H., Iourtchouk, T., Schoeps, K. and Bouzek, K. (2002) New UV irradiation and direct electrolysis-promising methods for water disinfection. J. Chem. Eng. 85, 111–117.

    Article  CAS  Google Scholar 

  • Bergmann, H. and Koparal, A.S. (2004) The flow-through technology of disinfecting drinking and technical waters (in German) part 2. Galvanotechnik 95, 3037–3043.

    CAS  Google Scholar 

  • Bergmann, M.E.H. (2005a) On the chlorine dioxide formation during electrochemical drinking water disinfection (in German). GWF Wasser Abwasser 146, 126–133.

    CAS  Google Scholar 

  • Bergmann, M.E.H. (2005b) The formation of H2O2 in drinking water electrolysis. 56th Annual Meeting of the International Society of Electrochemistry – Busan, Korea, September 26–30, Book of Abstracts, p. 892.

    Google Scholar 

  • Bergmann, H. and Koparal, A.S. (2005c) Problems of chlorine dioxide formation during electrochemical disinfection. Electrochim. Acta 50, 5218–5228.

    Article  CAS  Google Scholar 

  • Bergmann, M.E.H. and Koparal A.S. (2005d) Studies on electrochemical disinfectant production using anodes containing RuO2. J. Appl. Electrochem. 35, 1321–1329 and Erratum (2006) 36, 845–846.

    Google Scholar 

  • Bergmann,M.E.H. and Koparal, A.S. (2006a) Chlorine dioxide formation from chloride and chlorite solutions of very low concentrations. Industrial Water, Frankfurt, 6–8 February 2006, Book of Abstracts, pp. 181–185.

    Google Scholar 

  • Bergmann, M.E.H., Rollin, J., Koparal, A.S. and Kresse, K. (2006b) What is the ominous chlorine consumption in the disinfectant production from drinking water electrolysis? Proceedings 57th Annual Meeting of the International Society of Electrochemistry, 27 Aug. to 1 Sept., Edinburgh/UK, p. S5.O-4.

    Google Scholar 

  • Bergmann, H. and Rollin, J. (2006c) Product and by-product formation using doped diamond anodes in disinfection electrolysis of drinking water. 1. European Conference on Environmental Application of Advanced Oxidation Processes (EAAOP), Chania/Greece, Conference Materials Full text version P198, pp. 1–6 and Book of Abstracts, p. 218.

    Google Scholar 

  • Bergmann, M.E.H. (2006d) On DPD method application for drinking water disinfection analysis (in German). GWF Wasser Abwasser 147, 780–786.

    Google Scholar 

  • Bergmann, M.E.H. (2007a) On the electrochemical flow-through electrolysis for the production of waters with disinfecting ability (in German). In: Suchentrunk, R. (ed.) Jahrbuch fuer Oberflaechentechnik, Leuze, Saulgau, pp. 315–330.

    Google Scholar 

  • Bergmann, H., Rollin, J., Czichos, C. and Roemer, D. (2007b) Perchlorate analysis in drinking water electrolysis-a new application for Ion Chromatography (in German). Labo, 26–28.

    Google Scholar 

  • Bergmann, M.E.H., Koparal, A.T., Koparal, A.S., Schoeps, K., Iourtchouk, T. and Ehrig, F. (2008) The influence of products and by-products obtained by drinking water electrolysis on microorganisms. Microchem. Journ. 89, 98–107.

    Article  CAS  Google Scholar 

  • Bergmann, M.E.H., Rollin, J. and Iourtchouk, T. (2009) The occurrence of perchlorate during drinking water electrolysis using BDD electrodes. Electrochim. Acta 54, 2102–2107.

    Article  CAS  Google Scholar 

  • Bernarde, M.A., Snow, W.B. and Olivieri, P. (1967) Kinetics and mechanism of bacterial disinfection by chlorine dioxide. Appl. Microbiol. 15, 257–265.

    Google Scholar 

  • Blum, E. (1989) Studies on chemical disinfection reactions using hydrogen peroxide and chlorine in drinking water treatment, PhD Thesis, KfK 4619, Kernforschungszentrum Karlsruhe.

    Google Scholar 

  • Borutzky, U., Bergmann, H. and Junghannss, U. (2006) Disinfection ability of drinking water treated by electrolysis using doped diamond electrodes, Proceedings 1. European Conference on Environmental Application of Advanced Oxidation Processes (EAAOP), Chania/Crete (Greece), Book of Abstracts, p. 229 and CD full text version P207, pp. 1–6.

    Google Scholar 

  • Bouzek, K., Bergmann, H. and Paidar (2003) Nitrate removal from drinking and process water (in German). In ALPHA Informationsgesellschaft GmbH (ed.) Handbuch Umweltwissenschaften, Ausgabe 2003/2004, Lampertheim, pp. 81–89.

    Google Scholar 

  • Burke, M., Tenney, J., Indu, B., Hoq, M.F., Carr, S. and Ernst, W.R. (1993) Kinetics of hydrogen peroxide-chlorate reaction in the formation of chlorine dioxide. Ind. Eng. Chem. Res. 32, 1449–1456.

    Article  CAS  Google Scholar 

  • Carlson, S. (1991) Fundamentals of water disinfection, J. Water SRT-Aqua 40, 346–356.

    CAS  Google Scholar 

  • Cheng, C.Y. and Kelsall, G.H. (2007) Models of hypochlorite production in electrochemical reactors with plate and porous electrode. J. Appl. Electrochem. 37, 1203–1217.

    Article  CAS  Google Scholar 

  • Cho, J., Choi, H., Kim, I.S. and Amy, G. (2001) Chemical aspects and by-products of electrolyser. Water Sci. Technol. Water Supply 1, 159–167.

    CAS  Google Scholar 

  • Cho, E.-I., Kim, G.-S., Park, J.-E. and Park, S.-G. (2005) Ozone generation with boron-doped diamond electrodes and its application. In: Fushima, A. and co-ed. Diamond Electrochemistry, Elsevier, Amsterdam, pp. 502–524.

    Google Scholar 

  • Christensen, E. and Giese, A.C. (1954) Changes in absorption spectra of nucleic acids and derivatives following exposure to ozone and ultraviolet radiation. Arch. Biochem. Biophys. 51, 208–216.

    Article  CAS  Google Scholar 

  • Crayton, C., Camper, A. and Warwood, B. (1997) Evaluation of mixed oxidants for the disinfection and removal of biofilms from distribution systems, Proceedings of the American Water Eorks Association Water Quality Technology Conference, 3A6/1–3A6/17.

    Google Scholar 

  • Damjanovic, A. (1992) Progress in the studies of oxygen reduction during the last thirty years. In: Murphy, O.J., Srinivasan, S. and Conway, B.E. (eds.) Electrochemistry in Transition, Plenum, New York, NY, pp.107–146.

    Google Scholar 

  • D’Ans, J. and Freund, H.E. (1957) Kinetic studies 1. About the formation of chlorate from hypochlorite (in German). Zeitschrift fuer Elektrochemie 61, 10–18.

    Google Scholar 

  • Dasgupta, P.K., Martinelango, P.K., Jackson, W.A., Anderson, T.A., Tian, K., Tock, R.W. and Rajagopalan, S. (2005) The origin of naturally occurring perchlorate: The role of atmospheric processes. Environ. Sci. Technol. 39, 1569–1575.

    Article  CAS  Google Scholar 

  • Deslouis, C., Festy, D., Gil, O., Ruis, G., Touzain, S. and Tribollet, E. (1998) Characterization of calcereous deposits in artificial sea water by impedance techniques-I. Deposit of CaCO3 without Mg(OH)2. Electrochim. Acta 43, 1891–1901.

    CAS  Google Scholar 

  • Diao, H.F., Li, X.Y., Gu, J.D., Shi, H.C. and Xie, Z.M. (2004) Electron microscopic investigation of the bactericidal action of electrochemical disinfection in comparison with chlorine, ozonation and Fenton reaction. Process Biochem. 39, 1421–1426.

    Article  CAS  Google Scholar 

  • Drogui, P., Elmaleh, S., Rumeau, M., Bernard, C. and Rambaud, A. (2001) Hydrogen peroxide production by water electrolysis: Application to disinfection. J. Appl. Electrochem. 31, 877–882.

    Article  CAS  Google Scholar 

  • Duo, I. (2003) Control of electron transfer kinetics at boron-doped diamond electrodes by surface modification, PhD Thesis, Ecole Polytechnique Federale Lausanne.

    Google Scholar 

  • Duo, I., Michaud, P.A., Haenni, W., Perret, A. and Comninellis, Ch. (2000) Activation of boron-doped diamond with IrO2 clusters. Electrochem. Solid-State Lett. 3, 325–326.

    Article  CAS  Google Scholar 

  • Emmenegger, F. and Gordon, G. (1967) The rapid interaction between sodium chlorite and dissolved chlorine. Inorg. Chem. 6, 633–635.

    Article  CAS  Google Scholar 

  • Ferro, S., De Battisti, A., Duo, I., Comninellis, Ch., Haenni, W. and Perret, A. (2000) Chlorine evolution at highly boron-doped diamond electrodes. J. Electrochem. Soc. 147, 2614–2619.

    Article  CAS  Google Scholar 

  • Flanagan, J., Jones, D.P., Griffith, W.P., Skapski, A.C. and West, A.P. (1986) On the existence of peroxocarbonates in aqueous solution. J. Chem. Soc. Chem. Commun. 1, 20–21.

    Article  Google Scholar 

  • Foerster, H.J., Thiele, W., Fassler, D. and Guenter, K. (2002) Comparative investigation on hypochlorite formation on platinum and diamond electrodes. New Diam. Front. Carbon Technol. 12, 99–105.

    Google Scholar 

  • Foti, G., Gandini, D., Comninellis, Ch., Perret, A. and Haenni, W. (1999) Production of oxidants on diamond electrodes. Electrochem. Solid-State Lett. 2, 228.

    Article  CAS  Google Scholar 

  • Fryda, M., Matthee, T., Mulcahy, S., Hampel, A., Schaefer, L. and Troester, I. (2003) Fabrication and application of Diachem{ $Ⓡ$} electrodes. Diam. Relat. Mater. 12, 1950–1965.

    Article  CAS  Google Scholar 

  • Gabrielli, C., Maurin, G., Perrot, H., Poindessous, G. and Rosset, R. (2002) Investigation of electrochemical calcareous scaling potentiostatic current- and mass–time transients. J. Electroanal. Chem. 538/539, 133–143.

    Google Scholar 

  • Gainer, J.L., Kirwan, D.L. and Stoner, G.E. (1975) Enzymatic and electrochemical disinfection of pathogens in air and water. Technical Report, Nat Sci. Found. Res. Appl. Nat. Needs NSFR/RA (U.S.), pp. 48–54.

    Google Scholar 

  • Gates, D.J. (1998) The Chlorine Dioxide Handbook, American Water Works Association, Denver.

    Google Scholar 

  • Gordon, G. (2001) Is all chlorine dioxide created equal? J. AWWA 93, 163–174.

    CAS  Google Scholar 

  • Gordon, G. and Emmenegger, F. (1966) Complex ion formation between ClO2 and ClO2–. Inorg. Nucl. Chem. Lett. 2, 395–398.

    Article  CAS  Google Scholar 

  • Gordon, G. and Tachiyashiki, S. (1991) Kinetics and mechanism of formation of chlorate ion from the hypochlorous acid/chlorite ion reaction at pH 6–10. Environ. Sci. Technol. 25, 468–474.

    Article  CAS  Google Scholar 

  • Gordon, G., Gauw, R., Emmer, G. and Bubnis, B. (1998) The kinetics and mechanism of ClO3- formation following the electrolysis of salt brine: What role do ClO2 and/or O3 play? ACH-Models Chem. 135, 799–809.

    CAS  Google Scholar 

  • Gordon, G., Bolden, R. and Emmert, G. (2002) Measuring oxidant species in electrolysed salt brine solutions. J. AWWA 94, 111–120.

    CAS  Google Scholar 

  • Gottschalk, C., Libra, J.A. and Saupe, A. (2000) Ozonation of water and waste water, Wiley-VCH, Weinheim.

    Google Scholar 

  • Grebenjuk, V.D., Korchak, G.I., Sobolevskaja, T.T., Konovalova, I.D., Aksilenko, H.D. and Atamanov, M.Yu. (1990) Electrochemical detoxification (in Russian). Khim. Technol. Vody 12, 78–80.

    Google Scholar 

  • Gu, B., Coates, J. D. (Eds.), Perchlorate, Environmental Occurrence, Interactions and Treatment. Springer, Berlin 2006.

    Google Scholar 

  • Gutknecht, J., Hartmann, F., Kirmaier, N., Reis, A. and Schoeberl, M. (1981) Anodic Oxidation as a water disinfecting process in food plants and breweries (in German). GIT Fachz. Lab. 25, 472–481.

    CAS  Google Scholar 

  • Gyürek, B.L. and Finch, G.R. (1998) Modeling water treatment chemical disinfection kinetics. J. Environ. Eng. 124, 783–793.

    Article  Google Scholar 

  • Haas, C.N. (1990) Disinfection. In: Pontius FA (ed.), Water Quality and Treatment, A Handbook of Community Water Supplies, 4th ed., Chapter 14, Technical editor, American Water Works Association, New York, NY.

    Google Scholar 

  • Haenni, W., Gobet, J., Perret, A., Pupunat, L., Rychen, P., Comninellis, C. and Corea, B. (2002) Loop-controlled production of chlorine for disinfection of pool water using boron-doped diamond electrodes. New Diam. Front. Carbon Technol. 12, 83–88.

    CAS  Google Scholar 

  • Hamelin, C. and Chung, Y.S. (1978) Role of the pol, rec, and dna gene products in the repair of lesions produced Escherichia coli DNA by ozone. Stud. Biophys. 68, 229–235.

    CAS  Google Scholar 

  • Hamelin, C. and Chung, Y.S. (1989) Repair of ozone-induced DNA lesions in Escherichia coli B cells. Water Res. 214, 253–255.

    CAS  Google Scholar 

  • Hamm, B. (2002) Disinfection by-product reduction using on-site generated mixed oxidants in groundwater treatment. Water Cond. Purif. 44, 24–27.

    Google Scholar 

  • Held, A.M., Halko, D.J. and Hurst, J.K. (1978) Mechanisms of chlorine oxidation of hydrogen peroxide. J. Am. Chem. Soc. 100, 5732–5740.

    Article  CAS  Google Scholar 

  • Hernlem, B.J. and Tsai, L.-S. (2000) Chlorine generation and disinfection by electroflotation. J. Food Sci. 65, 834–837.

    Article  CAS  Google Scholar 

  • Hickling, A. (1947) Some anomalies in the concept of electrode potential as the determining factor in the occurrence of anodic reactions. Disc. Faraday Soc. 1, 227–229.

    Google Scholar 

  • Hoell, K.(ed.) (2002) Wasser, Walter de Gruyter, Berlin, p. 610.

    Google Scholar 

  • Hoigne, J. and Bader, H. (1977) Influence of Carbonate on the oxidation ability of ozone and OH radicals (in Germ). Vom Wasser 48, 283–304.

    CAS  Google Scholar 

  • Hong, C.C. and Rapson, W.H. (1968) Analysis of chlorine dioxide, chlorous acid, chlorite, chlorate, and chloride in composite mixtures. Can. J. Chem. 46, 2061–2064.

    Article  CAS  Google Scholar 

  • Hsu, S.-Y. and Kao, H.-Y. (2004) Effects of storage conditions on chemical and physical properties of electrolysed oxidizing water. J. Food Eng. 65, 465–471.

    Article  Google Scholar 

  • Huie, R.E., Poskrebyshev, G.A. and Neta, P. (2005) Reactions of monochloramine with *OH and e-aqu and subsequent reactions of *NH2 and *NHCl with O2. Proceedings Annual Meeting of the ACS, Division of Environmental Chemistry, Washington, pp. 472–474.

    Google Scholar 

  • Hupert, M., Muck, A., Wang, J., Stotter, J., Cvackova, Z., Haymond, S., Show, Y. and Swain, G.M. (2003) Conductive diamond thin-films in electrochemistry. Diam. Relat. Mater. 12, 1940–1949.

    Article  CAS  Google Scholar 

  • Internet presentation (2005) Advanced systems for substrate sterilization. http://www.substrate-tech.com/producers.html (access 21. Feb. 2005).

  • Ishizaki, K., Sawadaishi, K., Miura, K. and Shinriki, N. (1987) Effect of ozone on plasmid DNA of Eschericha coli in situ. Water Res. 21, 823–827.

    Article  CAS  Google Scholar 

  • Izumi, H. (1999) Electrolysed water as a disinfectant for fresh-cut vegetables. J. Food Sci. 64, 536–539.

    Article  CAS  Google Scholar 

  • Jackson, A., Arunagiri, S., Tock, R., Anderson, T. and Rainwater, K. (2004) Technical note: Electrochemical generation of perchlorate in municipal drinking water systems. J. AWWA 96, 103–108.

    Google Scholar 

  • Jeong, J., Kim, C. and Yoon, J. (2009) The effect of electrode material on the generation of oxidants and microbial inactivation in the electrochemical disinfection processes. Wat. Res. 43, 895–901.

    Article  CAS  Google Scholar 

  • Junli, H., Li., Nanqi, R. and Fang, M.A. (1997) Disinfection effect of chlorine dioxide on bacteria in water. Water. Res. 31, 607–613.

    Google Scholar 

  • Kadyk, T. (2005) Diploma thesis: Comparative analysis of measuring techniques to investigate the scaling of the cathode indirect water disinfection electrolysis, Department 6, Anhalt University, Koethen/Germany.

    Google Scholar 

  • Kadyk, T., Bergmann, M.E.H. and Bouzek, K. (2006) Comparative analysis of measuring techniques to investigate the scaling of the cathode in direct water disinfection electrolysis, Proceedings 57th Annual Meeting of the International Society of Electrochemistry, 27 Aug. to 1 Sept., Edinburgh, UK.

    Google Scholar 

  • Katsuki, N., Takahashi, E., Toyoda, M., Kurosu, T., Iida, M., Wakita, S., Nishiki, Y. and Shimamumune (1998) Water electrolysis using diamond thin-film electrodes. J. Electrochem. Soc. 145, 2358–3262.

    Google Scholar 

  • Kerwick, M.I., Reddy, S.M., Chamberlain, A.H.L. and Holt, D.M. (2005) Electrochemical disinfection, an environmentaly acceptable method of drinking water disinfection? Electrochim. Acta 50, 5270–5277.

    CAS  Google Scholar 

  • Kim, K.-W., Lee, E.-E., Kim, J.-S., Shin, K.-H. and Jung, B.-I. (2002) Material and organic destruction characteristics of high temperature-sintered RuO2 and IrO2 electrodes. J. Electrochem. Soc. 149, D187–D192.

    Article  CAS  Google Scholar 

  • Kim, K.-W., Kim, Y.-J., Kim, I.-T., Park, G.-I. and Lee, E.-H. (2005) The electrolytic decomposition mechanism of ammonia to nitrogen at an IrO2 anode. Electrochim. Acta 50, 4356–4364.

    Article  CAS  Google Scholar 

  • Kirk-Othmer (1979) Encyclopedia of Chemical Technology, 3.ed., vol. 5, Wiley, New York, NY.

    Google Scholar 

  • Kirmaier, N. and Schoberl, M. (1980) The anodic oxidation a new practical method for water disinfection (in German). GIT Fachz. Lab. 24, 443–455.

    CAS  Google Scholar 

  • Kirmaier, N., Hose, G.H. and Reis, A. (1984) Theory, process engineering and practical results of anodic oxidation, Neue Deliwa-Zeitschrift 35, 260–266.

    CAS  Google Scholar 

  • Klaening, U.K. and Wolff, T. (1985) Laser flash photolysis of HOCl, ClO-, HBrO and BrO- in aqueous solution. Reaction of Cl- and Br- ions. Ber. Bunsenges. Phys. Chem. 89, 243–245.

    CAS  Google Scholar 

  • Kodym, R., Bergmann M.E.H. and Bouzek, K. (2005) First results of modelling geometry factors in electrolysis cells for direct drinking water disinfection. Proceedings 56th Annual Meeting of the International Society of Electrochemistry, September 26–30, Busan/Korea, p. 896.

    Google Scholar 

  • Kodym, R., Bergmann, H. and Bouzek, K. (2006) Results of modelling electrodes and reactors for the direct electrochemical drinking water electrolysis. Proceedings 57th Annual Meeting of the International Society of Electrochemistry, 27 Aug. to 1 Sept., Edinburgh/UK, p. S5-P16.

    Google Scholar 

  • Kraft, A., Stadelmann, M., Blaschke, M., Kreysig, D., Sandt, B. and Schroeder, F. (1999a) Electrochemical water disinfection, part I: Hypochlorite production from very dilute chloride solutions. J. Appl. Electrochem. 29, 861–868.

    CAS  Google Scholar 

  • Kraft, A., Blaschke, M., Kreysig, D., Sandt, B., Schroeder, F. and Rennau, J. (1999b) Electrochemical water disinfection. Part II: Hypochlorite production from potable water, chlorine consumption and the problem of calcareous deposits. J. Appl. Electrochem. 29, 895–902.

    Article  CAS  Google Scholar 

  • Kraft, A., Wuensche, M., Stadelmann, M. and Blaschke, M. (2003) Electrochemical water disinfection. Recent Res. Dev. Electrochem. (India) 6, 27–55.

    CAS  Google Scholar 

  • Krasner, S.W., McGuire, M.J., Jacangelo, J.G. and Patania, N.L. (1989) The occurrence of disinfection by-products in U.S. drinking water. J. AWWA 81, 41–53.

    CAS  Google Scholar 

  • Krstajic, N., Nakic, V. and Spasojevic, M. (1987) Hypochlorite production. I. A model of the cathodic reactions. J. Appl. Electrochem. 17, 77–81.

    CAS  Google Scholar 

  • Kuhn, A.T. (1971) Industrial Electrochemical Processes, Elsevier, Amsterdam.

    Google Scholar 

  • Kuhn, A.T., Hamzah, H. and Collins, G.C.S. (1980) The inhibition of the cathodic reduction of hypochlorite by films deposited at the cathode surface. J. Chem. Technol. Biotechnol. 30, 423–428.

    Article  CAS  Google Scholar 

  • Langlais, B., Reckhow, D.A. and Brink, D.R. (1991) Ozone in Water Treatment-Application and Engineering, Lewis Publishers, Boca Raton, FL.

    Google Scholar 

  • Lehmann, T. (2002) DE-OS 102 58 652 A1 (German Patent Application).

    Google Scholar 

  • Le Truong, G., De Laat, J. and Legube, B. (2004) Effect of chloride and sulfate on the rate of oxidation of ferrous ion by H2O2. Water Res. 38, 2384–2394.

    Article  CAS  Google Scholar 

  • Leyer, G.J. and Johnson, E.A. (1997) Acid adaptation sensitizes Salmonella typhimurium to hypochlorous acid. Appl. Environ. Microbiol. 63, 461–467.

    CAS  Google Scholar 

  • Markitanova, L.I. and Zenin, G.S. (1990) Mechanism of inactivation of coliform bacteria during electrochemical treatment of water (in Russ.). Khim. Technol. Vody (Leningrad) 12, 658–661.

    Google Scholar 

  • Marselli, B., Garcia-Gomez, J., Michaud, P.-A., Rodrigo, M.A. and Comninellis, Ch. (2003) Electrogeneration of hydroxyl radicals on boron doped diamond electrodes. J. Electrochem. Soc. 150, D79–D83.

    Article  CAS  Google Scholar 

  • Matsunaga, T., Namba, Y. and Nakajima, T. (1984) Electrochemical sterilization of microbial cells. Bioelectrochem. Bioenerg. 13, 393–400.

    Article  Google Scholar 

  • Matsunaga, T., Nakasono, S., Takamura, T., Burgess, J.G., Nakamura, N. and Sode, K. (1992a) Disinfection of drinking water by using a novel electrochemical reactor employing carbon-cloth electrodes. Appl. Environ. Microbiol. 58, 686–689.

    CAS  Google Scholar 

  • Matsunaga, T., Nakasono, S. and Masuda, S. (1992b) Electrochemical sterilization of bacteria adsorbed on granular activated carbon. FEMS Microbiol. Lett. 93, 255–260.

    Article  CAS  Google Scholar 

  • Matsunaga, T., Nakasono, S., Kitajima, Y. and Horiguchi, K. (1994) Electrochemical disinfection of bacteria in drinking water using activated carbon fibers. Biotechnol. Bioeng. 43, 429–433.

    Article  CAS  Google Scholar 

  • Matsunaga, T., Okochi, M., Takahashi, M., Nakayama, T., Wake, H. and Nakamura, N. (2000) TiN electrode reactor for disinfection of drinking water Water Res. 34, 3117–3122.

    CAS  Google Scholar 

  • Michaud, P.-A., Mahe, E., Haenni, W., Perret, A. and Comninellis, Ch. (2000) Preparation of peroxodisulfuric acid using boron-doped diamond thin film electrodes. Electrochem. Solid-State Lett. 3, 77–79.

    Article  CAS  Google Scholar 

  • Michaud, P.-A., Panniza, M., Quattara, L., Diaco, T., Foti, G. and Comninellis, Ch. (2003) Electrochemical oxidation of water on boron-doped diamond thin film electrodes. J. Appl. Electrochem. 33, 151–154.

    Article  CAS  Google Scholar 

  • Natishan, P.M. (1984) The use of composite electrodes for the electrochemical disinfection of recirculating fluids. PhD thesis, Faculty of the School of Engineering and Applied Science, University of Virginia.

    Google Scholar 

  • Oloman, C. (1996) Electrochemical Processing for the Pulp and Paper Industry, The Electrochemical Consultancy, Underhill.

    Google Scholar 

  • Palacios, M., Pampillon, J.F. and Rodriguez, M.E. (2000) Organohalogenated compounds levels in chlorinated drinking water and current compliance with quality standards throughout the European Union. Water Res. 34, 1002–1016.

    Article  CAS  Google Scholar 

  • Pareilleux, A. and Sicard, N. (1970) Lethal effects of electric current on Echerichia coli. Appl. Environ. Microbiol. 19, 421–424.

    CAS  Google Scholar 

  • Patermarakis, G. and Fountoukides, E. (1990) Disinfection of water by electrochemical treatment, Water Res. 24, 1491–1496.

    Article  CAS  Google Scholar 

  • Peintler, G., Nagypal, I. and Epstein, I.R. (1990) Kinetics and mechanism of the reaction between chlorite ion and hypochlorous acid. J. Phys. Chem. 94, 2954–2958.

    Article  CAS  Google Scholar 

  • Pillai, K.C., Kwon, T.O., Park, B.B. and Moon, I.S. (2009) Studies on process parameters for chlorine dioxide production using IrO2 anode in an un-divided electrochemical cell. J. Haz. Mat. 164, 812–819.

    Article  CAS  Google Scholar 

  • Pleskov, Y.V. (2003) The electrochemistry of diamond. In: Alkire, R.C. and Kolb, D.M. (eds.) Advances in Electrochemical Science and Engineering, vol. 8, Wiley-VCH, Weilheim, pp. 209–269.

    Google Scholar 

  • Polcaro, A.M., Vacca, A., Maskia, M., Palmas, S., Pompej, R. and Laconi, S. (2007) Characterization of a stirred tank electrochemical cell for water disinfection processes. Electrochim. Acta 52, 2595–2602.

    Article  CAS  Google Scholar 

  • Porta, A. and Kulhanek, A. (1986) Process for the electrochemical decontamination of water polluted by pathogenic germs with peroxide formed in situ. US Patent No. 4.619.745.

    Google Scholar 

  • Reis, A. (1951) The anodic oxidation as an inactivator of pathogenic substances and processes (in German). Klin. Wschr. 29, 484–485.

    Article  CAS  Google Scholar 

  • Reis, A. (1976) Sterilization and decomposition of noxious organic substances by anodic oxidation (in German) GIT Fachz. Lab. 20, 197–204.

    CAS  Google Scholar 

  • Reis, A. (Editor) (1981) Anodische Oxidation in der Wasser- und Lufthygiene, GIT Verlag, Darmstadt.

    Google Scholar 

  • Reis, A. and Henninger, T. (1953) Destruction of malignant growth energy by anodic oxidation (in German). Klin. Wschr. 31, 39–40.

    Article  CAS  Google Scholar 

  • Rosenberg, B., van Camp, L. and Krigas, T. (1965) Inhibition of cell division in Escherichia coli by electrolysis products from a platinum electrode. Nature 209, 698–699.

    Article  Google Scholar 

  • Rovan E. and Simonsberger P. (1974) The mini-agar-tube method for electronmicroscopic preparation of cell suspensions and small tissue samples (in German). Mikroskopie 30, 129–134.

    CAS  Google Scholar 

  • Saha, M.S., Furutu, T. and Nishiki Y. (2004) Conversion of carbon dioxide to peroxycarbonate at boron-doped diamond electrode. Electrochem. Commun. 6, 201–204.

    Article  CAS  Google Scholar 

  • Schmidt, W., Boehme, U., Sacher, F. and Brauch, H.-J. (1999) Formation of chlorate by disinfection of drinking water (in German). Vom Wasser 93, 109–126.

    CAS  Google Scholar 

  • Schultze, J.W., Khan, W., Woolfaardt, G.M., Rohns, H.-P., Irmscher, R. and Schoening, J. (2003) High resolution gravimetric, optical and electrochemical investigations of microbial biofilm formation in aqueous systems. Electrochim. Acta 48, 3363–3372.

    Article  CAS  Google Scholar 

  • Scott, D.B.M. and Lesher, E.C. (1963) Effect of ozone on survival and permeability of Escherichia coli. J. Bacteriol. 85, 567–576.

    Article  CAS  Google Scholar 

  • Serrano, K., Michaud, P.A., Comninellis, Ch. and Savall, A. (2002) Electrochemical preparation of peroxodisulfuric acid using boron doped diamond thin film electrodes. Electrochim. Acta 48, 431–436.

    Article  CAS  Google Scholar 

  • Sharma, A.K. and Venkobachar, C. (1979) Effect of prechlorination on coagulation of algae. J. Environ. Health 21, 16–22.

    CAS  Google Scholar 

  • Shimizu, Y. and Sugawara, H. (1996) Virucidal and bactericidal effects of electrolyzed oxidizing water and hypochlorous acid. Jpn. J. Oral Biol. 38, 564–571.

    CAS  Google Scholar 

  • Shimmura, S., Matsumoto, K., Yaguchi, H., Okuda, T., Miyajima, S., Negi, A., Shimazaki, J. and Tsubota, K. (2000) Acidic electrolyse water in the disinfection of the ocular surface. Exp. Eye Res. 70, 1–6.

    Article  CAS  Google Scholar 

  • Siddiqui, M.S. (1996) Chlorine-ozone interactions: Formation of chlorate. Wat. Res. 30, 2160–2170.

    Article  CAS  Google Scholar 

  • Son, H., Cho, M., Kim, J., Oh, B., Chung, H. and Yoon, J. (2005) Enhanced disinfection efficiency of mechanically mixed oxidants with free chlorine. Water Res. 39, 721–727.

    Article  CAS  Google Scholar 

  • Stoner, G.E., Cahen, G.L., Sachyani, M. and Gileadi, E. (1982) The mechanism of low frequency AC electrochemical disinfection. Bioelectrochem. Bioenerg. 9, 229–243.

    Article  CAS  Google Scholar 

  • Tasaka, A. and Tojo T. (1985) Anodic oxidation mechanism of hypochlorite ion on platinum electrode in alkaline solution. J. Electrochem. Soc. 132, 1855–1859.

    Article  CAS  Google Scholar 

  • Thiele, W. and Foerster, H.-J. (2006) Progress in electrochemical ozone generation and disinfection of ultra-pure water using new electrochemical cell with polymer membrane separators (in German). Proceedings of the Annual GDCh Meeting, Bayreuth 2006.

    Google Scholar 

  • Trasatti, S. (ed.) (1981) Studies in Physical and Theoretical Chemistry 11-Electrodes of Conductive Metallic Oxides, Part B, Elsevier, Amsterdam.

    Google Scholar 

  • Trasatti, S. (2000) Electrocatalysis: Understanding the success of DSA. Electrochim. Acta 45, 2377–2385.

    Article  CAS  Google Scholar 

  • Tsai, L.S., Hernlem, B. and Huxsoll, C.C. (2002) Disinfection and solids removal of poultry chiller water by electroflotation. J. Food Sci. 67, 2160–2164.

    Article  CAS  Google Scholar 

  • Urbansky, E.T. and Schock, M.R. (1999) Issues in managing the risks associated with perchlorate in drinking water. J. Environ. Manage. 56, 79–95.

    Article  Google Scholar 

  • Von Gunten, U. (2003) Ozonation of drinking water: Part II. Disinfection and by-product formation in presence of bromide, iodide or chlorine. Water Res. 37, 1469–1487.

    Article  CAS  Google Scholar 

  • Von Sonntag, C. (1987) The Chemical Basis of Radiation Biology, Taylor and Francis, London.

    Google Scholar 

  • Wardman, P. (1989) Reduction potentials of one-electron couples involving free radicals in aqueous solution. J. Phys. Chem. Ref. Data 18, 1637–1755.

    Article  CAS  Google Scholar 

  • White, G.C. (1999) Handbook of Chlorination and Alternative Disinfectants, 4.ed., Wiley, New York, NY.

    Google Scholar 

  • Zhang, J. and Oloman, C.W. (2005) Electro-oxidation of carbonate in aqueous solution on a platinum rotating disk electrode. J. Appl. Electrochem. 35, 945–953.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author wishes to thank all colleagues and co-workers, which were involved in experiments and discussions. In particular, these thanks are directed to Prof. Johanna Rollin, Dr. Andreas Rittel, Dr. Tatiana Iourtchouk, Dr. Kristin Schoeps, Christine Hummel, Karsten Kresse, Thomas Kadyk, Christian Czichos, Uta M. Borutzky and Renate Zinke (all from Anhalt University Koethen), Prof. Ü. Öütveren, Dr. A. Savas Koparal, Dr. A. Tansu Koparal and Özge Tümöz (Anadolu University Eskisehir), Prof. Karel Bouzek, and Roman Kodym (Institute of Chemical Technology Prague), Dr. F. Ehrig (BAFZ Quedlinburg), to DAAD and Anhalt University for financial support and to German BMBF/AIF Cologne for project organisation – FKZ 1721X04.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. E. Henry Bergmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Bergmann, M.E.H. (2010). Drinking Water Disinfection by In-line Electrolysis: Product and Inorganic By-Product Formation. In: Comninellis, C., Chen, G. (eds) Electrochemistry for the Environment. Springer, New York, NY. https://doi.org/10.1007/978-0-387-68318-8_7

Download citation

Publish with us

Policies and ethics