Non-Oxide Semiconductor Nanostructures

  • Craig A. Grimes
  • Oomman K. Varghese
  • Sudhir Ranjan

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Fujishima A, Sugiyama E, Honda K (1971) Photosensitized electrolytic oxidation of iodide ion on cadmium sulfide single crystal electrode. Bull Chem Soc Jpn 44:304Google Scholar
  2. 2.
    Gerischer H (1975) Electrochemical photo and solar cells principles and some experiments. J Electroanal Chem Interfacial Electrochem 58:263–275Google Scholar
  3. 3.
    Williams R (1960) Becquerel photovoltaic effect in binary compound. J Chem Phys 32:1505Google Scholar
  4. 4.
    Ginley DS, Butler MA (1978) Flatband potential of cadmium sulfide (CdS) photoanodes and its dependence on surface ion effects. J Electrochem Soc 125:1968–1974Google Scholar
  5. 5.
    Gerischer H (1979) Solar photoelectrolysis with semiconductor electrodes. In: Seraphin BO, Aranovich JA (Eds.) Solar energy conversion: solid state physics aspects. Springer, Berlin, pp 114–172Google Scholar
  6. 6.
    Minoura H, Oki T, Tsuiki M (1976) CdS electrochemical photocell with S2 -ion-containing electrolyte. Chem Lett 1279–1282Google Scholar
  7. 7.
    Minoura H, Tsuiki M (1978) Anodic reaction of several reducing agents on illuminated cadmium sulfide electrode. Electrochim Acta 23:1377–1382Google Scholar
  8. 8.
    Inoue T, Watanabe T, Fujishima A, Honda K, Kohayakawa K (1977) Suppression of Surface Dissolution of CdS Photoanode by Reducing Agents. J Electrochem Soc 124:719–722Google Scholar
  9. 9.
    Wilson JR, Park SM (1982) Photoanodic dissolution of n-CdS studied by rotating ring-disk electrodes. J Electrochem Soc 129:149–154Google Scholar
  10. 10.
    Inoue T, Watanabe T, Fujishima A, Honda K (1979) Investigation of CdS photoanode reaction in the electrolyte solution containing S2- ion. Bull Chem Soc Jpn 52:1243–1250Google Scholar
  11. 11.
    Hodes G, Manassen, Cahen D (1976) Photoelectrochemical energy conversion and storage using polycrystalline chalcogenide electrodes. Nature 261:403–404Google Scholar
  12. 12.
    Ellis AB, Kaiser SW, Wrighton MS (1976) Optical to electrical energy conversion. Characterization of cadmium sulfide and cadmium selenide based photoelectrochemical cells. J Am Chem Soc 98:6855–6866Google Scholar
  13. 13.
    Ellis AB, Kaiser SW, Wrighton MS (1977) Study of n-type semiconducting cadmium chalcogenide based photoelectrochemical cells employing poly chalcogenide electrolytes. J Am Chem Soc 99:2839–2847Google Scholar
  14. 14.
    Frank AJ and Honda K (1982) Visible-light-induced water cleavage and stabilization of n-type CdS to photocorrosion with surface-attached polypyrrole-catalyst coating. J Phys Chem 86:1933–1935Google Scholar
  15. 15.
    Honda K and Frank AJ (1984) Polymer-catalyst modified cadmium sulfide photochemical diodes in the photolysis of water. J Phys Chem 88: 5587–5582Google Scholar
  16. 16.
    Frank AJ, Glenis S, Nelson AG (1989) Conductive polymer-semiconductor junction: Characterization of poly(3-methylthiophene): cadmium sulfide based photoelectrochemical and photovoltaic cells. J Phys Chem 93:3818–3825Google Scholar
  17. 17.
    Memming R (1978) The role of energy levels in semiconductor-electrolyte solar cells. J Electrochem Soc 125:117–123Google Scholar
  18. 18.
    Ellis AB, Bolts JM, Kaiser SW, Wrighton MS (1977) Study of n-type gallium arsenide- and gallium phosphide-based photoelectrochemical cells. Stabilization by kinetic control and conversion of optical energy into electricity.99:2948–2853Google Scholar
  19. 19.
    Ellis AB, Bolts JM, Wrighton MS (1977) Characterization of n-type semiconducting indium phosphide photoelectrodes stabilization to photoanodic dissolution in aqueous solutions of telluride and ditelluride ions. J Electrochem Soc 124:1603–1607Google Scholar
  20. 20.
    Tributsch H, Bennett JC (1977) Electrochemistry and photochemistry of MoS2 layer crystals I. J Electroanal Chem 81:97–111Google Scholar
  21. 21.
    Tributsch H (1978) Hole reactions from d-energy bands of layer type group VI transition metal dichalcogenides: New perspectives for electrochemical solar energy conversion. J Electrochem Soc 125:1086–1093Google Scholar
  22. 22.
    Candea RM, Kastner M, Goodman R, Hickok N (1976) Photoelectrolysis of water: Si in salt water. J Appl Phys 47:2724–2726Google Scholar
  23. 23.
    Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–38Google Scholar
  24. 24.
    Nozik AJ (1976) p-n photoelectrolysis cell. Appl Phys Lett 29:150–153Google Scholar
  25. 25.
    Yoneyama H, Sakamoto H, Tamura H (1975) A photo-electrochemical cell with production of hydrogen and oxygen by a cell reaction. Electrochim Acta 20:341–345Google Scholar
  26. 26.
    A. J. Nozik (1977) Photochemical diodes. Appl. Phys Lett 30:567–569Google Scholar
  27. 27.
    Heller A and Vadimsky RG (1981) Efficient solar to chemical conversion: 12% efficient photoassisted electrolysis in the [p-type InP(Ru)/HCl-KCl/Pt(Rh)] cell. Phys Rev Lett 46:1153–1156Google Scholar
  28. 28.
    Heller A, Aharon-Shalom E, Bonner WA, Miller B. (1982) Hydrogen-evolving semiconductor photocathodes. Nature of the junction and function of the platinum group metal catalyst. J Am Chem Soc 104:6942–6948Google Scholar
  29. 29.
    Szklarczyk M, Bockris JOM (1984) Photoelectrochemical evolution of hydrogen on p-indium phosphide. J Phys Chem 88:5241–5245Google Scholar
  30. 30.
    Chandra N, Wheeler BL, Bard AJ (1985) Semiconductor electrodes 59. Photocurrent effciences at p-InP electrodes in aqueous solutions. J Phys Chem 89:5037–5040Google Scholar
  31. 31.
    Kobayashi H, Mizuno F, Nakato Y (1994) Surface states in the band-gap for the Pt-InP photoelectrochemical cells. Appl Surf Sci 81:399–408Google Scholar
  32. 32.
    Bagdonoff P, Friebe P, Alonso-Vante N (1998) A new inlet system for differential electrochemical mass spectroscopy applied to the photocorrosion of p-InP (111) single crystals. J Electrochem Soc 145:576–582Google Scholar
  33. 33.
    Schulte KH, Lewerenz HJ (2002) Combined photoelectrochemical conditioning and photoelectron spectroscopy analysis of InP photocathode I. The modification procedures. Electrochim Acta 47:2633–2638Google Scholar
  34. 34.
    Darwent JR, Porter GJ (1981) Photochemical hydrogen production using cadmium sulfide suspensions in aerated water. J Chem Soc Chem Commun 145–146Google Scholar
  35. 35.
    Kalyanasundaram K, Borgarello E, Duonghong D, Grätzel M (1981) Cleavage of water by visible-light irradiation of colloidal CdS Solutions; inhibition of photocorrosion by RuO2. Angew Chem Int Ed 20:987–988Google Scholar
  36. 36.
    Kalyanasundaram K, Borgarello E, Duonghong D, Gr`tzel M (1981) Visible light induced water cleavage in CdS dispersion loaded with Pt and RuO2. Helv Chim Acta 64:362–366Google Scholar
  37. 37.
    J. R. Harbour, R. Wolkow and M. L. Hair. (1981) Effect of platinization on the photoproperties of cadmium sulfide pigments in dispersion. Determination by hydrogen evolution, oxygen uptake and electron spin resonance spectroscopy. J. Phys. Chem. 85, 4026–4029Google Scholar
  38. 38.
    Buhler N, Meier K, Reber JF (1984) Photochemical Hydrogen-Production with Cadmium-Sulfide Suspensions. J Phys Chem 88:3261–3268Google Scholar
  39. 39.
    Mau AWH, Huang CB, Kakuta N, Bard AJ, Campion A, Fox MA, White JM, Webber SE (1984) Hydrogen photoproduction by nafion/cadmium sulfide/ platinum in water/sulfide ion solutions. J Am Chem Soc 106:6537–6542Google Scholar
  40. 40.
    Tricot YM, Emeren A, Fendler JH (1985) In situ Generation of catalyst-coated CdS particles in polymerized and unpolymerized surfactant vesicles and their utilization for efficient visible-light-induced hydrogen-production. J Phys Chem 89:4721–4726Google Scholar
  41. 41.
    Tricot YM, Fendler JH (1984) Colloidal catalyst-coated semiconductor surfactant vesicles. In situ generation of Rh-coated CdS particles in dihexadecylphosphate vesicles and their utilization for photosensitized charge separation and hydrogen generation. J Am Chem Soc 106:7359–7366Google Scholar
  42. 42.
    Kudo A, Sekizawa M (1999) Photocatalytic H2 evolution under visible light irradiation on Zn1 - xCuxS solid solution. Catal Lett 58:241–243Google Scholar
  43. 43.
    Goldstein AN, Echer CM, Alivisatos AP (1992) Melting in semiconductor nanocrystals. Science 256:1425–1427Google Scholar
  44. 44.
    Tolbert SH, Alivisatos AP (1994) Size dependence of a first order solid-solid phase transition: the wurtzite to rock salt transformation in CdSe nanocrystals. Science 265:373–376Google Scholar
  45. 45.
    Hayashi S, Nakamori N, Kanamori H, Yodogawa Y, Yamamoto K (1979) Infrared study of surface phonon modes of ZnO, CdS and BeO small crystals. Surf Sci 86:665–671Google Scholar
  46. 46.
    Baral S, Fojtik A, Weller H, Henglein A Photochemistry and radiation chemistry of colloidal semiconductors 12: intermediates of the oxidation of extremely small particles CdS, ZnS, Cd3P2 and size quantization effects (a pulse radiolysis study). J Am Chem Soc 108:375–378Google Scholar
  47. 47.
    Katsikas L, Eychmuller A, Giersig M, Weller H (1990) Discrete excitonic transition in quatum-sized CdS particles. Chem Phys Lett 172:201–204Google Scholar
  48. 48.
    Wang Y, Herron N (1991) Nanometer-sized semiconductor cluster. Materials synthesis, quantum size effects and photophysical properties. J Phys Chem 99:525–532Google Scholar
  49. 49.
    Torimoto T, Naohiro T, Nakamura H, Kuwabata S, Sakata T, Mori H, Yoneyama H (2000) Photoelectrochemical properties of size-quantized semiconductor photoelectrodes prepared by two-dimensional cross-linking of monodisperse CdS nanoparticles Electrochim Acta 45:3269–3276Google Scholar
  50. 50.
    Muller BR, Majoni S, Memming R, Meissner D (1997) Particle size and surface chemistry in photoelectrochemical reactions at semiconductor particles. J Phys Chem B 101:2501–2507Google Scholar
  51. 51.
    Liu D, Kamat PV (1993) phtotelectrochemical behavior of thin CdSe and coupled TiO2/CdSe semiconductor films. J Phys Chem 97:10769–10773Google Scholar
  52. 52.
    Evans JE, Springer KW, Zhang JZ (1994) Femtosecond studies of interparticle electron transfer in coupled CdS-TiO2 colloidal system. J Chem. Phys 101:6222–6225Google Scholar
  53. 53.
    Stroyuk AL, Krykov AI, Kuchmii SY, Pokhodenko PD (2005) Quantum size effects in semiconductor photocatalysis. Theoretical and Experimental Chemistry 41:207–228Google Scholar
  54. 54.
    Yu ZG, Pryor CE, Lau WH, Berding MA, MacQueen DB (2005) Core-shell nanorods for efficient photoelectrochemical hydrogen production. J Phys Chem B 109: 22913–22919Google Scholar
  55. 55.
    Maeda K, Teramura K, Lu D, Takata T, Saito N, Inoue Y, Domen K (2006) Characterization of Rh-Cr mixed-oxide nanoparticles dispersed on (Ga1 - xZnx)(N1 - xOx) as a cocatalyst for visible-light-driven overall water splitting. J Phys Chem B 110:13753–13758Google Scholar
  56. 56.
    Wang Z, Medforth CJ, Shelnutt JA (2004) Self-metallization of photocatalytic porphyrin Nanotubes. J. Am. Chem. Soc. 126, 16720–16721Google Scholar
  57. 57.
    J. G. Brennan, T. Siegrist, P. J. Carroll, S. M. Stuczynski, P. Reynders, L. E. Brus, and M. L. Steigerwald (1990) Bulk and Nanostructure Group II-VI Compounds from Molecular Organometallic Precursors. Chem Mater 2:403–429Google Scholar
  58. 58.
    Stuczynski SM, Opila RL, Marsh P, Brennan JG, Steigerwald ML (1991) Formation of Indium Phosphide from In(CH3)3 and P(Si(CH3)3)3. Chem. Mater. 3, 379–381Google Scholar
  59. 59.
    Murray CB, Norris DJ, Bawendi MG (1993) Synthesis and characterization of nearly Monodisperse CdE (E = S, Se, Te) Semiconductor Nanocrystallites. J Am Chem Soc 115:8706–8715Google Scholar
  60. 60.
    M. A. Olshavsky, A. N. Goldstein and A. P. Alivisatos (1990) Organometallic synthesis of GaAs crystallites exhibiting quantum confinement. J Am Chem Soc 112:9438–9449Google Scholar
  61. 61.
    Guzelian AA, Katari JEB, Kadavanich AV, Banin U, Hamad K, Juban E Alivisatos AP, Wolters RH, Arnold CC, Heath JR (1996) Synthesis of size selected, surface passivated InP nanocrystals. J Phys Chem B, 100:7212–7219Google Scholar
  62. 62.
    Kher SS, Wells RL (1994) A straight forward, new method for the synthesis of nanocrystalline GaAs and GaP. Chem. Mater. 6, 2056–2662Google Scholar
  63. 63.
    BlackburnJL, Selmarten DC, Ellingson RJ, Jones M, Micic O, Nojik AJ (2005) Electron and hole transfer in Indium phosphide quantum dots. J Phys Chem B 109:2625–2631Google Scholar
  64. 64.
    Qian Y (1999) Solvothermal synthesis of III-V nanocrystalline semiconductors. Adv Mater 11:1101–1102Google Scholar
  65. 65.
    Gautam UK, Seshadri R, Rajamathi M, Meldrum F, Morgan P (2001) A solvothermal route to capped CdSe nanoparticles. Chem. Commun. 629–630Google Scholar
  66. 66.
    Chen X, Fan R (2001) Low temperature hydrothermal synthesis of transition metal dichalcogenides. Chem Mater 13:802–805Google Scholar
  67. 67.
    Peng Q, Dong Y, Deng Z, Sun X, Li Y (2001) Low temperature elemental-direct-reaction route to II-VI semiconductor nanocrystalline ZnSe and CdSe. Inorg Chem 40:3840–3841Google Scholar
  68. 68.
    Lei Z, You W, Liu M, Zhou G, Takata T, Hara M, Domen K, Li C (2003) Photocatalytic water reduction under visible light on a novel ZnIn2S4 catalyst synthesized by hydrothermal method. Chem Commun 2142–2143Google Scholar
  69. 69.
    Lu Q, Hu J, Tang K, Qian Y, Zhou G, Liu X (2000) Synthesis of nanocrystalline CuMS2 (M = In, Ga) through a solvothermal process. Inorg Chem 39:1606–1607Google Scholar
  70. 70.
    Xiao J, Xie Y, Xiong Y, Tang R, Qian Y (2001) A mild solvothermal route for chalcopyrite quarternary semiconductors CuInSexS1 - x nanocrystallites. J Mater Chem 11:1417–1421Google Scholar
  71. 71.
    Gorer S, Albu-Yaron A, Hodes G (1995) Quantum size effects in chemically deposited, nanocrystalline lead selenide thin film. J Phys Chem 99: 16442–16448Google Scholar
  72. 72.
    Arriaga LG, Fernàndez AM, Solorza O (1998) Preparation and characterization of (Zn,Cd)S photoelectrodes for hydrogen production, Int J Hydrogen Energy, 23:995–998Google Scholar
  73. 73.
    Rincon ME, Martinez MW, Harnandez MM (2003) Nanostructured vs polycrystalline CdS/ZnS thim films for photocatalytic application. Thin solid films 425:137–144Google Scholar
  74. 74.
    Yamada S, Nosaka AY, Nosaka Y (2005) Fabrication of CdS photoelectrodes coated with titania nanosheets for water splitting with visible light. J Electroanal Chem 585:105–112Google Scholar
  75. 75.
    Golan Y, Margulis L, Rubinstein I, Hodes G (1992) Epitaxial electrodeposition of cadmium selenide nanocrystals on gold. Langmuir 8:749–752Google Scholar
  76. 76.
    Hodes G, howel IDJ, Peter LM (1992) Nanocrystalline photoelectrochemical cells. J Electrochem Soc 139:3136–3140Google Scholar
  77. 77.
    Mastai Y, Hodes G (1997) size quantization in electrodeposited CdTe nanocrystalline films. J Phys Chem B 101:2685–2690Google Scholar
  78. 78.
    Leisch JE, Bhattacharya RN, Teeter G, Turner JA (2004) Preparation and characterization of Cu(In,Ga)(Se,S)(2) thin films from electrodeposited precursors for hydrogen production. Sol Energy Mat Sol Cells 81:249–259Google Scholar
  79. 79.
    Dabbousi BO, Murray CB, Rubner MF, Bawendi MG (1994) Langmuir-Blodgett of size selected CdSe nanocrystalites. Chem Mater 6:216–219Google Scholar
  80. 80.
    Tian Y, Fendler JH (1997) Langmuir-Blodgett film formation from fluorescence-activated, surfactant-capped size selected CdS nanoparticles spread on water surfaces. Chem Mater 8:969–974Google Scholar
  81. 81.
    Zhao XK, McCormick L, Fendler JH (1991) Electrical and photoelectrochemical characterization of CdS nanoparticulate films by scanning electrochemical microscopy, scanning tunneling microscopy, and scanning tunneling spectroscopy. Chem Mater 3: 922–935Google Scholar
  82. 82.
    Ogawa F, Fan FRF, Bard AJ (1995) Scanning tunneling microscopy, tunneling spectroscopy and photoelectrochemistry of Q-CdS particles incorporated in a self-assembled monolayer on a gold surface. J Phys Chem 99:11182–11189Google Scholar
  83. 83.
    Cassagneau T, Mallouk TE, Fendler JH (1998) Layer-by-layer assembly of thin film zener diodes from conducting polymer and CdSe nanoparticles. J Am Chem Soc 120:7848–7879Google Scholar
  84. 84.
    Miyake M, Torimoto T, Sakata T, Mori H, Yoneyama H (1999) Photoelectrochemical characterization of nearly monodispersed CdS nanoparticles-immobilized gold electrode. Langmuir 15:1503–1507Google Scholar
  85. 85.
    Torimoto T, Tsumura N, Miyake M, Nishizawa M, Sakata T, Mori H, Yoneyama H (1999) Preparation and photoelectrochemical properties two dimensionally organized CdS nanoparticle thin films. Langmuir 15:1853–1858Google Scholar
  86. 86.
    Ogawa S, Fu K, Fan FRF, Bard AJ (1997) Photoelectrochemistry of films of quantum sized lead sulfide particles incorporated in self-assembled monolayer of gold. J Phys Chem 101:5707–5711Google Scholar
  87. 87.
    Hickey SG, Riley DJ, Tull EZ (2000) Photoelectrochemical studies of CdS nanoparticle modified electrodes: Absorption and photocurrent investigations. J Phys Chem B 104:7623–7626Google Scholar
  88. 88.
    Hickey SG, Riley DJ (1999) Photoelectrochemical studies of CdS nanoparticle-modified electrodes. J Phys Chem B 103:4599–4602Google Scholar
  89. 89.
    Uosaki K, Okamura M, Ebina K (2004) Photophysical and photoelectrochemical characteristics of multilayers of CdS nanoclusters. Faraday Discuss 125:39–53Google Scholar
  90. 90.
    Ichia LAS, Basnar B, Willner I (2005) Efficient generation of photocurrents by using CdS/carbon nanotubes assemblies on electrodes. Angew Chem Int Ed 44:78–83Google Scholar
  91. 91.
    Contractor AQ, Bockris JOM (1984) Investigation of a protective conductive silica film on n-silicon. Electrochem Acta 29:1427–1434Google Scholar
  92. 92.
    Nakato Y, Tsumura A, Tsubomura H (1982) Efficient photoelectrochemical conversion of solar energy with n-type silicon semiconductor electrodes surface doped with IIIA elements. Chem Lett 1071–1074Google Scholar
  93. 93.
    Kainthala RC, Zelenay B, Bockris JOM (1986) Preparation of n-Si photoanode against photocorrosion in photoelectrochemical cell for water electrolysis. J Electrochem Soc 133:248–253Google Scholar
  94. 94.
    Abruna HD, Bard AJ (1981) Semiconductor electrodes. 40. Photoassisted hydrogen evolution at poly(benzyl viologen)-coated p-type silicon electrodes. J Am Chem Soc 103:6898–6901Google Scholar
  95. 95.
    Dominey RN, Lewis NS, Bruce JA, Bookbinder DC, Wrighton MS (1982) Improvement of photoelectrochemical hydrogen generation by surface modification of p-type silicon semiconductor photocathodes. J Am Chem Soc 104:467–482Google Scholar
  96. 96.
    Maier CU, Specht M, Bilger G (1996) Hydrogen evolution on platinum-coated p-silicon photocathodes. Int J Hydrogen Energy 21:859–864Google Scholar
  97. 97.
    Noda M (1982) Photo-assisted electrolysis of water by Si photoelectrodes. Int J Hydrogen Energy 7:311–320Google Scholar
  98. 98.
    Nakato Y, Ueda K, Yano H (1988) Effects of microscopic discontinuity of metal over layer on the photovoltages of metal-coated semiconductor-liquid junction photoelectrochemical cells for efficient hydrogen production. J Phys Chem 92:2316–2324Google Scholar
  99. 99.
    Wunsch F, Nakato Y, Tributsch (2002) Minority carrier accumulation and interfacial kinetics in nano-sized Pt-dotted silicon electrolyte interfaces studied by microwaves techniques. J Phys Chem B 106:11526–11530Google Scholar
  100. 100.
    Riley DJ, Tull EJ (2001) Potential modulated absorbance spectroscopy: an investigation of the potential distribution at a CdS nanoparticle modified electrode. J Electroanal Chem 504:45–51Google Scholar
  101. 101.
    Torimoto T, Nagakubo S, Nishizawa M, Yoneyama H (1998) Photoelectrochemical properties of size-quantized CdS thin films prepared by an electrochemical method Langmuir 14:7077–7081Google Scholar
  102. 102.
    Haram SK, Quinn BM, Bard AJ (2001) Electrochemistry of CdS nanoparticles: A correlation between optical and electrochemical bandgaps. J Am Chem Soc 123:8860–8861Google Scholar
  103. 103.
    Jia HM, Hu Y, Tang YW, Zhang LZ (2006) Synthesis and photoelectrochemical behavior of nanocrystalline CdS film electrodes. Electrochem Commun 8:1381–1385Google Scholar
  104. 104.
    Milczarek G, Kasuya A, Mamykin S, Arai T, Shinoda K, Tohji K (2003) Optimization of a two-compartment photoelectrochemical cell for solar hydrogen production. Int J Hydrogen Energy 28:919–926Google Scholar
  105. 105.
    Morales M, Sebastian PJ, Solorza O (1998) Characterization of screen printed Ti/CdS and Ti/CdSe photoelectrodes for photoelectrochemical hydrogen production. Solar Energy Mater Sol Cells 55:51–55Google Scholar
  106. 106.
    Bhattacharya RG, Mandal DP, Bera SC, Rohtagi-Mukherjee KK (1996) Photoelectrosynthesis of dihydrogen via water-splitting using Sx 2 - (x=1,2,3) as an anolyte: A first step for a viable solar rechargeable battery. Int J Hydrogen Energy 21:343–347Google Scholar
  107. 107.
    Bhattacharya C, Datta J (2005) Studies on anodic corrosion of the electroplated CdSe in aqueous and non-aqueous media for photoelectrochemical cells and characterization of the electrode/electrolyte interface. Mater Chem Phys 89:171–175Google Scholar
  108. 108.
    Zhang B, Mu J,Gao X, Wang D, Li, Z (2006) Sensitization of CdSe nanostructured electrodes by tetrasulfonated copper phthalocyanine. J Dispersion Sci Technol 27:55–57Google Scholar
  109. 109.
    Mathew X, Bansal A, Turner JA, Dhere R, Mathews NR, Sebastian PJ (2002) Photoelectrochemical characterization of surface modified CdTe for hydrogen production. J New Mater Electrochem Systems 5:149–157Google Scholar
  110. 110.
    Pearton J, Abernathy CR, Ren F, Lothian JR, Wisk PW, Katz A (1993) Dry and wet etching characteristics of InN, AlN, and GaN deposited by electron cyclotron resonance metalorganic molecular beam epitaxy. J Vac Sci Technol A 11:1772–1175Google Scholar
  111. 111.
    Kocha SS, Peterson MW, Arent DJ, Redwing JM, Tischler MA, Turner JA (1995) Electrochemical investigation of the gallium nitride-aqueous electrolyte interface. J Electrochem Soc 142:L238-L240Google Scholar
  112. 112.
    Youtsey C, Bulman G, Adesida I (1997) Photoelectrochemical etching of GaN. Mat Res Soc Proc 468:349–354Google Scholar
  113. 113.
    Huygens IM, Strubbe K, Gomes WP (2000) Electrochemistry and photoetching of n-GaN. J Electrochem Soc 147:1797–1802Google Scholar
  114. 114.
    Fujii K, Karasawa T, Ohkawa K (2005) Hydrogen gas generation by splitting aqueous water using n-type GaN photoelectrode with anodic oxidation. Jpn J Appl Phys 44:L543-L545Google Scholar
  115. 115.
    Beach JD, Collins RT, Turner JA (2003) Band-edge Potentials of n-type and p-type GaN. J Electrochem Soc 150:A899-A904Google Scholar
  116. 116.
    Kobayashi N, Narumi T, Morita R (2005) Hydrogen evolution from p-GaN cathode in water under UV light irradiation. Jpn J Appl Phys 44:L784-L786Google Scholar
  117. 117.
    Rajshwar K, Marz T (1983) The n-GaAs electrolyte interface: evidence for specificity in lattice-ion electrolyte interactions, dependence for potential drops on crystal plane orientation to the electrolyte and implications for solar energy conversion. J Phys Chem 87:742–744Google Scholar
  118. 118.
    Allongue P, Blonkowski S (1991) Corrosion of III-V compounds; a comparative study of GaAs and InP II. Reaction scheme and influence of surface properties. J Electroanal Chem 317:77–99Google Scholar
  119. 119.
    Frese Jr. KW, Madou MJ, Morrison SR (1980) Investigation of photoelectrochemical corrosion of semiconductor. J Phys Chem 84:3174–3178Google Scholar
  120. 120.
    Menezes S, Miller B (1982) Surface and redox reactions at GaAs in various electrolytes J Electrochem Soc 130:517–523Google Scholar
  121. 121.
    Khader MM (1996) Surface arsenic enrichment of n-GaAs photoanodes in concentrated acidic solution. Langmuir 12:1056–1060Google Scholar
  122. 122.
    Ginley DS, Baughman RJ, Butler MA (1983) BP-stabilized n-Si and n-GaAs photoanodes. 130:1999–2002Google Scholar
  123. 123.
    Allongue P, Cachet H (1988) Charge transfer and stabilization at illuminated n-GaAs/aqueous electrolyte junction. Electrochim Acta 33:79–87Google Scholar
  124. 124.
    Khader MM, Hannout MM, Eldessouki MS (1991) Photoelectrochemical dissociation of water at silicon doped n-GaAs Electrodes. Int J Hydrogen Energy 16:797–803Google Scholar
  125. 125.
    Miller EA, Richmond GL (1997) Photocorrosion of n-GaAs and passivation by Na2S (1997) 101:2669–2677Google Scholar
  126. 126.
    Cojucaru A, Simashkevich A, Sherban D, Tiginyahu I, Ursaki V, Tsiulyanu I, Usatyi (2005) Use of porous GaAs electrodes in photoelectrochemical cell. Phys Stat Sol A 202:1678–1682Google Scholar
  127. 127.
    Khader MM, Nasser SA, Hannout MM, El-Dessonki MS (1993) Photoelectrochemical dissociation of water at copper-doped p-GaAs electrodes. Int J Hydrogen Energy 18:921–924Google Scholar
  128. 128.
    Khader MM, Hannout MM, ElDessouki MS (1996) Catalytic effects for hydrogen photogeneration due to metallic deposition on p-GaAs. Int J Hydrogen Energy, 21:547–553Google Scholar
  129. 129.
    Yoon KH, Lee JW, Cho YS, Kang DH (1996) Photoeffects in WO3/GaAs electrode. J Appl Phys 80:6813–6818Google Scholar
  130. 130.
    Erne BH, Ozanam F, Chazalviel JN (1999) The mechanism of hydrogen gas evolution on GaAs cathodes elucidated by in situ infrared spectroscopy. J Phys Chem B 103:2948–2962Google Scholar
  131. 131.
    Khader MM, Saleh MM (1999) Comparative study between the photoelectrochemical behavior of metal loaded n- and p-GaAs. Thin Solid Films 349:165–170Google Scholar
  132. 132.
    Kobayasbi H, Mizuno F, Nakato Y, Tsubomura H (1991) Hydrogen evolution at a Pt-modified InP Photoelectrode: Improvement of current-voltage characterlstics by HCI etching. J Phys Chem 91:819–824Google Scholar
  133. 133.
    Barkschata A, Tributsch H, Dohrmann JK (2003) Imaging of catalytic activity of platinum on p-InP for photocathodical hydrogen evolution. Sol Energy Mater Sol Cells 80:391–403Google Scholar
  134. 134.
    Hassel AW, Aihara M, Seo M (2000) Formation and corrosion of InP:In contacts in hydrochloric acid. Electrochim Acta 45:4673–4682Google Scholar
  135. 135.
    Beach JD, Al-Thani H, McCray S, Collins RT, Turner JA (2002) Bandgap and lattice parameters of 0.9 μ m thick In1 - x GaxN of 0 0.140 J Appl Phys 91:5190–5194Google Scholar
  136. 136.
    Wetzel C, Takeuchi T, Yamaguchi S, Katoh H, Amano H, Akasaki I (1998) Optical bandgap in Ga1 - xInxN (0<x<0.2) on GaN by photoreflection spectroscopy. Appl Phys Lett 73:1994–1996Google Scholar
  137. 137.
    Parker CA, Roberts JC, Bedair SM, Reed MJ, Liu SX, Masry NA, Robbins LH (1999) Optical bandgap dependence on composition and thickness of InxGa1 - xN grown on GaN. Appl Phys Lett 75:2566–2568Google Scholar
  138. 138.
    Fujii K, Kusakabe K, Ohkawa K (2005) Photoelectrochemical properties of InGaN generation from aqueous water. Jpn J Apl Phys 44:7433–7435Google Scholar
  139. 139.
    Duetsch, TG, Koval CA, Turner JA (2006) III-V nitride epilayer of photoelectrochemical water splitting: GaPN and GaAsPN. J Phys Chem B 110:25297–25307Google Scholar
  140. 140.
    Kocha SS, Turner JA (1994) Study of the Schottky barriers and determination of the energetics of the band edges at the n- and p-type gallium indium phosphide electrode electrolyte interface. J electroanal Chem 367:27–30Google Scholar
  141. 141.
    Kocha SS, Turner JA (1996) Impedence analysis of surface modified Ga0.5In0.5P2-aqueous electrolyte interface. Electrochim Acta 41:1295–1304Google Scholar
  142. 142.
    Bansal A, Turner JA (2000) Supression of the band edge migration at the p-GaInP2/water under illumination via catalysis. J Phys Chem B, 65:6591–6592Google Scholar
  143. 143.
    Valderrama RC, Sebastian PJ, Enriquez JP, Gamboa SA (2005) Photoelectrochemical characterization of CIGS thin films for hydrogen production. Sol Energy Mat Sol Cells 88:145–155Google Scholar
  144. 144.
    Kohtani S, Kudo A, Sakata T (1993) Spectral sensitization of TiO2 semiconductor electrode by CdS microcrystals and its photoelectrochemical properties. Chem Phys Lett 206:166–170Google Scholar
  145. 145.
    Suleymanov AS (1991) On the possibility of the transformation of solar energy to chemical energy in the electrochemical cell with photoanode CdSe-TiO2. Int J Hydrogen Energy 16:741–743Google Scholar
  146. 146.
    Murphy OJ, Bockris JOM (1984) Photovoltaic electrolysis: hydrogen and electricity from water and light. Int J hydrogen Energy 9:557–561Google Scholar
  147. 147.
    Kainthala RC, Zelenay B, Bockris JOM (1987) Significant efficiency increase in self-driven photoelectrochemical cell for water photoelectrolysis. J Electrochem Soc 134:841–845Google Scholar
  148. 148.
    Kainthala RC, Khan SUM, Bockris JOM (1987) The theory of electrode matching in photoelectrochemical cell for the production of hydrogen. Int J Hydrogen Energy 12:381–392Google Scholar
  149. 149.
    Reber JF, Rusek M (1986) Photochemical hydrogen production with platinized suspension of Cadmium sulfide and cadmium zinc sulfide modified by silver sulfide. J Phys Chem 90:824–834Google Scholar
  150. 150.
    Matsumura M, Saho Y, Tsubomura H (1983) Photocatalytic hydrogen production from solutions of sulfite using platinized cadmium sulfide powder. J Phys Chem 87:3807–3808Google Scholar
  151. 151.
    Ashokkumar M, Maruthamuthu P (1991) Photocatalytic hydrogen production with semiconductor particulate systems - an effort to enhance the efficiency. Int J Hydrogen Energy 16:591–595Google Scholar
  152. 152.
    Arora MK, Sahu N, Upadhyay SN, Sinha ASK (1999) Activity of cadmium sulfide photocatalysts for hydrogen production from water: Role of support. Ind Eng Chem Res 38:2659–2665Google Scholar
  153. 153.
    Guan G, Kida T, Kusakabe K, Kimura K, Fang X, Ma T, Abe E, Yoshida A (2004) Photocatalytic H2 evolution under visible light irradiation on CdS/ETS-4 composite. Chem Phys Lett 385:319–322Google Scholar
  154. 154.
    Sathish M, Viswanathan B, Viswanath RP (2006) Alternate synthetic strategy for the preparation of CdS nanoparticles and its exploitation for water splitting. Int J Hydrogen Energy 31:891–898Google Scholar
  155. 155.
    Kudo A, Sekizawa M (2000) Photocatalytic H2 evolution under visible light irradiation on Ni-doped ZnS photocatalyst. Chem Commun 1371–1372Google Scholar
  156. 156.
    Tsuji I, Kudo A (2003) Hydrogen evolution from aqueous sulfite solution under visible light irradiation over Pb and halogen-codoped ZnS. J Photochem Photobiol A 156:249–252Google Scholar
  157. 157.
    Kakuta N, Park KH, Finlayson MF, Ueno A, Bard AJ, Campion A, Fox MA,Webber SE, White JM (1985) Photoassisted hydrogen production using visible light and coprecipitated ZnS-CdS without a noble metal. J Phys Chem 89:732–735Google Scholar
  158. 158.
    Ueno A, N. Kakuta N, Park KH, Finlayson MF, Bard AJ, Campion A, Fox MA, Webber SE, White JM (1985) Silica supported ZnS-CdS mixed semiconductor catalysts for photogeneration of hydrogen. J Phys Chem 89:3828–3833Google Scholar
  159. 159.
    Kobayashi J, Kitaguchi K, Tanaka H, Tsuiki H, Ueno A (1987) Photogeneration of hydrogen from water over alumina supported ZnS-CdS catalyst. J Chem Soc Faraday Trans 1 83:1395–1404Google Scholar
  160. 160.
    Tambwekar SV, Subrahmanyam M (1998) Enhanced photocatalytic H2 production over CdS-ZnS supported on super basic oxides. Int J Hydrogen energy 23:741–744Google Scholar
  161. 161.
    Roy AM, De GC (2003) Immobilisation of CdS, ZnS and mixed ZnS–CdS on filter paper: Effect of hydrogen production from alkaline Na2S/Na2S2O3 solution. J Photochem Photobiol A: Chem 157:87–92Google Scholar
  162. 162.
    De GC, Roy AM, Bhattacharya SS(1996) Effect of n-Si on the photocatalytic production of hydrogen by Pt loaded CdS and ZnS/CdS catalysts. Int J Hydrogen Energy 21:19–23Google Scholar
  163. 163.
    Koca A, Sahin M (2002) Photocatalytic hydrogen production by direct sun light from sulfide/sulfite solution. Int J Hydrogen Energy 27:363–367Google Scholar
  164. 164.
    Kudo A, Tsuji I, Kato H (2002) AgInZn7S9 solid solution photocatalyst for H2 evolution from aqueous solutions under visible light irradiation. Chem Commun 1958–1959Google Scholar
  165. 165.
    Tsuji I, Kato H, Kobayashi H, Kudo A (2004) Photocatalytic H2 evolution reaction from aqueous solutions over band structure-controlled (AgIn)xZn2(1 - x)S2 solid solution photocatalysts with visible-light response and their surface nanostructures. J Am Chem Soc 126:13406–13413Google Scholar
  166. 166.
    Tsuji I, Kato H, Kobayashi H, Kudo A (2005) Photocatalytic H2 evolution under visible-light irradiation over band-structure-controlled (CuIn)xZn2(1 - x)S2 solid solutions. J Phys Chem B 109:7323–7329Google Scholar
  167. 167.
    Tsuji I, Kato H, Kudo A (2005) Visible-light-induced H2 evolution from an aqueous solution containing sulfide and sulfite over a ZnS-CuInS2-AgInS2 solid-solution photocatalyst. Angew Chem Int Ed 44:3565–3568Google Scholar
  168. 168.
    Spanhel L, Weller H, Henglein A (1987) Photochemistry of semiconductor colloids 22.Electron injection from illuminated CdS into attached TiO2 and ZnO particles. J Am Chem Soc 109:6632–6635Google Scholar
  169. 169.
    Gopidas KR, Bohorquez M, Kamat PV (1990) Photophysical and photochemical aspects of coupled semiconductors. Charge-transfer processes in colloidal CdS-TiO2 and CdS-AgI systems. J Phys Chem 94:6435–6440Google Scholar
  170. 170.
    Kamat PV, Ebbesen TW, Dimitrijevic NM, Nojik AJ (1989) Primary photochemical events in CdS semiconductors colloids as probed by picosecond laser flash photolysis. Chem. Phys. Lett. 157:384–389Google Scholar
  171. 171.
    So WW, Kim KJ, Moon SJ (2004) Photo-production of hydrogen over the CdS-TiO2 nano-composite particulate films treated with TiCl4. Int J Hydrogen Energy 29:229–234Google Scholar
  172. 172.
    Sant PA, Kamat PV (2002) Interparticle electron between size-quantized CdS and TiO2 semiconductor nanoclusters. Phys Chem Chem Phys 4:198–203Google Scholar
  173. 173.
    Kida T, Guan GQ, Yoshida A (2003) LaMnO3/CdS nanocomposite: a new photocatalyst for hydrogen production from water under visible light irradiation. Chem Phys Lett 371:563–567Google Scholar
  174. 174.
    Hitoki G, Ishikawa A, Takata T, Kondo JN, Hara M, Domen K (2002) Ta3N5 as a novel visible light-driven photocatalyst (lambda < 600 nm) Chem Lett 736–737Google Scholar
  175. 175.
    Hitoki G, Ishikawa A, Takata T, Kondo JN, Hara M, Domen K (2002) An oxynitride, TaON, as an efficient water oxidation photocatalyst under visible light irradiation (λ < 500 nm) Chem Commun 1698–1699Google Scholar
  176. 176.
    Kasahara A, Nukumizu K, Hitoki G, Takata T, Kondo JN, Hara M, Domen K (2002) Photoreactions on LaTiO2N under visible light irradiation. J Phys Chem A 106:6750–6753Google Scholar
  177. 177.
    Chun WJ, Ishikawa A, Fujisawa H, Takata T, Kondo JN, Hara M, Kawai M, Matsumoto Y, Domen K (2003) Conduction and valence band positions of Ta2O5, TaON, and Ta3N5 by UPS and electrochemical methods. J Phys Chem B 107:1798–1803Google Scholar
  178. 178.
    Hara M, Nunoshige J, Takata T, Kondo JN, Domen K (2003) Unusual enhancement of H2 evolution by Ru on TaON photocatalyst under visible light irradiation Chem Commun 3000–3001Google Scholar
  179. 179.
    Sato J, Saito N, Yamada Y, Maeda K, Takata T, Kondo JN, Hara M, Kobayashi H, Domen K, Inoue Y (2005) RuO2-loaded beta-Ge3N4 as a non-oxide photocatalyst for overall water splitting. J Am Chem Soc 127:4150–4151Google Scholar
  180. 180.
    Maeda K, Takata T, Hara M, Saito N, Inoue Y, Kobayashi H, Domen K (2005) GaN-ZnO solid solution as a photocatalyst for visible light driven overall water splitting. J Am Chem Soc 127:8286–8287Google Scholar
  181. 181.
    Maeda K, Teramura K, Lu D, Takata T, Saito N, Inoue Y, Domen K (2006) Photocatalysts releasing hydrogen from water. Nature 440:295Google Scholar
  182. 182.
    Maeda K, Teramura K, Masuda H, Takata T, Saito N, Inuoe Y, Domen K (2006) Efficient overall water splitting under visible-light irradiation on (Ga1 - xZnx)(N1 - xOx) dispersed with Rh-Cr mixed-oxide nanoparticles: Effect of reaction condition on photocatalytic activity. J. Phys. Chem.B 110, 13107–13112Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Craig A. Grimes
    • 1
  • Oomman K. Varghese
    • 2
  • Sudhir Ranjan
    • 2
  1. 1.Department of Electrical Engineering Department of Materials Science & EngineeringPennsylvania State UniversityUniversity Park
  2. 2.Pennsylvania State University Materials Research InstituteUniversity Park

Personalised recommendations