Description of AFES 2: Improvements for High-Resolution and Coupled Simulations

  • Takeshi Enomoto
  • Akira Kuwano-Yoshida
  • Nobumasa Komori
  • Wataru Ohfuchi

Summary

This chapter describes the updated version of Atmospheric General Circulation Model for the Earth Simulator (AFES 2). Modifications are intended (1) to increase the accuracy and efficiency of the Legendre transform at high resolutions and (2) to improve the physical performance. In particular, the Emanuel scheme replaces a simplified version of the Arakawa-Schubert scheme for the parametrization of cumulus convection. The Emanuel scheme parametrizes O(100m) drafts within subgrid-scale cumuli and does not have explicit dependency upon the grid size. Therefore the cloud model of the Emanuel scheme allows us to use it at high resolutions of O(10km) where the validity of the ensemble cloud model of the Arakawa-Schubert scheme is questionable. Moreover, 10-year test runs indicate that the use of the Emanuel scheme improve the physical performance at a moderate resolution as well. Anomalies of the geopotential height and zonal winds in the middle to upper troposphere are reduced, although the improvements in terms of the distributions of precipitation and sea-level pressure are not significant. Improvements are attributable to a better vertical structure of temperature in the tropics due to more realistic estimation of mixing of the momentum, temperature, and moisture by the Emanuel scheme.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

 

  1. Arakawa, A. and Schubert, W.H. (1974) Interaction of cumulus cloud ensemble with the large-scale environment. Part I. J. Atmos. Sci., 31, 671-701.CrossRefGoogle Scholar
  2. Arakawa, A. and Suarez, M.J. (1983) Vertical differencing of the primitive equations in sigma coordinates. Mon. Wea. Rev., 111, 34-45.CrossRefGoogle Scholar
  3. Belousov, S.L. (1962) Tables of normalized associated Legendre polynomials. Brown D.E. (Trans.), Pergamon Press, Oxford.Google Scholar
  4. Bony, S. and Emanuel, K.A. (2001) A parameterization of the cloudiness associated with cumulus convection; evaluation using TOGA COARE data. J. Atmos. Sci., 58, 3158-3183.CrossRefGoogle Scholar
  5. Emanuel, K.A. (1991) A scheme for representing cumulus convection in large-scale models. J. Atmos. Sci., 48, 2313-2335.CrossRefGoogle Scholar
  6. Emanuel, K.A. and Z˘ ivkovi ć -Rothman M. (1999) Development and evaluation of a convection scheme for use in climate models. J. Atmos. Sci., 56, 1766-1782.CrossRefGoogle Scholar
  7. Enomoto, T., Fuchigami, H., Shingu, S. (2004) Accurate and robust Legendre transforms at large truncation wavenumbers with the Fourier method., Proc. the 2004 workshop on the solution of partial differential equations on the sphere, 20-23 July 2004, Yokohama, Japan, 17-19.Google Scholar
  8. ERBE Science Team (1986) First Data From the Earth Radiation Budget Experiment (ERBE). Bull. of the Amer. Meteor. Soc., 67, 818-824.CrossRefGoogle Scholar
  9. Gibson, J.K., K ållberg, P., Uppala, S., Hernandez, A., Nomura, A., Serrano, E. (1999) ERA-15 description (version 2 - January 1999), ECMWF Re-Analysis Project Report Series, European Centre for Mid-Range Weather Forecasts, Reading, United Kingdom.Google Scholar
  10. Hobson, E.W. (1931) The theory of spherical and ellipsoidal harmonics. Cambridge Univesity Press, Cambridge.Google Scholar
  11. Hoskins, B.J. and Simmons, A.J. (1975) A multi-layer spectral model and the semi-implicit method. Quart. J. Roy. Meteor. Soc., 101, 637-655.CrossRefGoogle Scholar
  12. Kistler, R., Kalnay, E., Collins, W., Saha, S., White, G. Woollen, J., Chelliah, M., Ebisuzaki, W., Kanamitsu, M., Kousky, V. van den Dool, H., Jenne, R. and Fiorino, M. (1999) The NCEP/NCAR 50-year reanalysis. Bull. Amer. Meteor. Soc., 82, 247-267.CrossRefGoogle Scholar
  13. Komori, N., Kuwano-Yoshida, A., Enomoto, T., Sasaki, H. and Ohfuchi, W. (2007) High-resolution simulation of the global coupled atmosphere-ocean system: description and preliminary outcomes of CFES (CGCM for the Earth Simulator). In High Resolution Numerical Modelling of the Atmosphere and Ocean. W. Ohfuchi and K. Hamilton (Eds.), Springer, New York.Google Scholar
  14. Le Treut, H. and Li, Z.-X. (1991) Sensitivity of an atmospheric general circulation model to prescribed SST changes: feedback effects associated with the simulation of cloud optical properties. Clim. Dynam., 5, 175-187.Google Scholar
  15. Mellor. G.L. (1977) The Gaussian cloud model relations. J. Atmos. Sci., 34, 356-358.CrossRefGoogle Scholar
  16. Nakajima, T., Tsukamoto, M., Tsushima, Y., Numaguti, A., and Kimura, T., 2000: Modeling of the radiative process in an atmospheric general circulation model. Appl. Opt., 39, 4869-4878.CrossRefGoogle Scholar
  17. Numaguti, A., Takahashi, M., Nakajima, T., and Sumi, A. (1997) Description of CCSR/NIES/ Atmospheric General Circulation Model. CGER’s Supercomputer Monograph Report, 3, National Institute of Environmental Sciences, Tsukuba, Japan, 1-48.Google Scholar
  18. Ohfuchi, W., Nakamura, H., Yoshioka, M.K., Enomoto, T., Takaya, K., Peng, X., Yamane, S., Nishimura, T., Kurihara, Y., and Ninomiya, K. (2004) 10-km mesh meso-scale resolving simulations of the global atmosphere on the Earth Simulator: preliminary outcomes of AFES (AGCM for the Earth Simulator). J. Earth Simulator, 1, 8-34.Google Scholar
  19. Peng, M.S., Ridout, J.A. and Hogan, T.F. (2004) Recent modification of the Emanuel convective scheme in the Navy operational global atmospheric prediction system. Mon. Wea. Rev., 132, 1254-1268.CrossRefGoogle Scholar
  20. Peng, X., Xiao, F., Ohfuchi, W., and Fuchigami, H. (2005) Conservative semi-Lagrangian transport on a sphere and the impact on vapor advection in an atmospheric general circulation model. Mon. Wea. Rev. 133, 504-520.CrossRefGoogle Scholar
  21. Reynolds, R.W., Rayner, N.A., Smith, T.M., Stokes, D.C. and Wang, W., 2002: An improved in situ and satellite SST analysis for climate. J. Climate, 15, 1609-1625.CrossRefGoogle Scholar
  22. Sekiguchi, M. (2004) A study on evaluation of the radiative flux and its computational optimization in the gaseous absorbing atmosphere. Science Doctoral Dissertation, Tokyo University, 121 (in Japanese).Google Scholar
  23. Sekiguchi, M., Nakajima, T., Suzuki, K., Kawano, K., Higurashi, A., Rosenfeld, D., Sano, I. and Mukai, S. (2003) A study of the direct and indirect effects of aerosols using global satellite data sets of aerosol and cloud parameters. J. Geophys. Res., 108, (10.1029), 2002JD003359.Google Scholar
  24. Shingu, S., Takahara, H., Fuchigami, H., Yamada, M., Tsuda, Y., Ohfuchi, W., Sasaki, Y., Kobayashi, K., Hagiwara, T., Habata, S., Yokokawa, M., Itoh, H., and Otsuka, K. (2002) A 26.58 Tflops global atmospheric simulation with the spectral transform method on the Earth Simulator. Proceedings of Supercomputing 2002, http://www.sc-2002.org/paperpdfs/pap.pap331.pdf.
  25. Shingu, S., Fuchigami, H., Yamada, M. (2003) Vector parallel programming and performance of a spectral atmospheric model on the Earth Simulator in Realizing Teracomputing: Proceedings of the Tenth ECMWF Workshop on the Use of High Performance Computing in Meteorology, W. Zwieflhofer and N. Kreitz (Eds.), World Scientific, 29-46.Google Scholar
  26. Sommeria, G. and Deardroff, J.W. (1977) Subgrid-scale condensation in models of nonprecipitation clouds. J. Atmos. Sci., 34, 344-355.CrossRefGoogle Scholar
  27. Swartztrauber, P.N. (1993) The vector harmonic transform method for solving partial differential equations in spherical geometry. Mon. Wea. Rev., 121, 3415-3437.CrossRefGoogle Scholar
  28. Swartztrauber, P.N. (2002) Computing the points and weights for Gauss-Legendre quadrature. SIAM Journal on Scientific Computing, 24, 945-954.CrossRefGoogle Scholar
  29. Takahashi, Y.O., Hamilton, K., and Ohfuchi, W. (2006) Explicit global simulation of the mesoscale spectrum of atmospheric motions, Geophys. Res. Lett., 33, L12812 doi:10.1029/ 2006GL026429.CrossRefGoogle Scholar
  30. Takata, K., Emori, S., Watanabe, T. (2003) Development of the minimal advanced treatments of interaction and runoff. Global Planet. Change, 38, 209-222.Google Scholar
  31. Teixeira. J. and Hogan, T.F. (2002) Boundary layer clouds in a global atmospheric model: simple cloud cover parameterizations. J. Climate, 15, 1261-1276.CrossRefGoogle Scholar
  32. Temperton, C. (1991) On scalar and vector transform methods for global spectral models. Mon. Wea. Rev., 119, 1303-1307.CrossRefGoogle Scholar
  33. Tsuboki, K. (2007) High-Resolution Simulations of High-Impact Weather Systems Using the Cloud-Resolving Model on the Earth Simulator. In High Resolution Numerical Modelling of the Atmosphere and Ocean. W. Ohfuchi and K. Hamilton (Eds.), Springer, New York. Chapter 9.Google Scholar
  34. Uppala, S.M., Kållberg, P.W., Simmons, A.J., Andrae, U., da Costa Bechtold, V., Fiorino, M., Gibson, J.K., Haseler, J., Hernandez, A., Kelly, G.A., Li, X., Onogi, K., Saarinen, S., Sokka, N., Allan, R.P., Andersson, E., Arpe, K., Balmaseda, M.A., Beljaars, A.C.M., van de Berg, L., Bidlot, J., Bormann, N., Caires, S., Chevallier, F., Dethof, A., Dragosavac, M., Fisher, M., Fuentes, M., Hagemann, S., Hólm, E., Hoskins, B.J., Isaksen, L., Janssen, P.A.E.M., Jenne, R., McNally, A.P., Mahfouf, J.-F., Morcrette, J.-J., Rayner, N.A., Saunders, R.W., Simon, P., Sterl, A., Trenberth, K.E., Untch, A., Vasiljevic, D., Viterbo, P., and Woollen, J. 2005: The ERA-40 re-analysis. Quart. J. Roy. Meteor. Soc., 131, 2961-3012.doi:10.1256/qj.04.176CrossRefGoogle Scholar
  35. Xie, P.-P. and Arkin, P.A. (1997) Global Precipitation: a 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Amer. Meteor. Soc., 78, 2539-2558.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Takeshi Enomoto
  • Akira Kuwano-Yoshida
  • Nobumasa Komori
  • Wataru Ohfuchi

There are no affiliations available

Personalised recommendations