Actin-Based Motility and Cell-to-Cell Spread of Listeria monocytogenes

  • Matthew D. Welch

Listeria monocytogenes has evolved the ability to exploit its host’s actin cytoskeleton to power movement within and between cells without exiting from the cell, enabling it to evade the immune response. This remarkable adaptation requires the expression of a single bacterial surface protein, called ActA, that performs two key functions. It activates the host Arp2/3 complex, which promotes the nucleation of actin filaments at the bacterial surface and the organization of filaments into branched networks. Moreover, it recruits host Ena/VASP proteins and profilin, which stimulate actin filament elongation. Together these cellular factors promote the assembly of actin comet tails that recruit additional host cytoskeletal proteins that control filament bundling, terminate polymerization, and promote depolymerization. The assembly of the comet tail is essential for coupling actin polymerization to the force that drives bacterial propulsion. The process of bacterial motility can be reconstituted in vitro, facilitating a relatively complete understanding of the biochemical and biophysical mechanisms of actin polymerization and force generation. This chapter presents a review of the experiments that have led to our current understanding of the molecular mechanisms of L. monocytogenes’ motility and spread.


Actin Filament Listeria Monocytogenes Actin Polymerization Bacterial Surface Comet Tail 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alberts JB, Odell GM (2004). In silico reconstitution of Listeria propulsion exhibits nano-saltation. PLoS Biol 2:e412.PubMedCrossRefGoogle Scholar
  2. Auerbuch V, Lenz LL, Portnoy DA (2001). Development of a competitive index assay to evaluate the virulence of Listeria monocytogenes actA mutants during primary and secondary infection of mice. Infect Immun 69:5953–5957.PubMedCrossRefGoogle Scholar
  3. Auerbuch V, Loureiro JJ, Gertler FB, Theriot JA, Portnoy DA (2003). Ena/VASP proteins contribute to Listeria monocytogenes pathogenesis by controlling temporal and spatial persistence of bacterial actin-based motility. Mol Microbiol 49:1361–1375.PubMedCrossRefGoogle Scholar
  4. Bachmann C, Fischer L, Walter U, Reinhard M (1999). The EVH2 domain of the vasodilator-stimulated phosphoprotein mediates tetramerization, F-actin binding, and actin bundle formation. J Biol Chem 274:23549–23557.PubMedCrossRefGoogle Scholar
  5. Barzik M, Kotova TI, Higgs HN, Hazelwood L, Hanein D, Gertler FB, Schafer DA (2005). Ena/VASP proteins enhance actin polymerization in the presence of barbed end capping proteins. J Biol Chem 280:28653–28662.PubMedCrossRefGoogle Scholar
  6. Bear JE, Loureiro JJ, Libova I, Fassler R, Wehland J, Gertler FB (2000). Negative regulation of fibroblast motility by Ena/VASP proteins. Cell 101:717–728.PubMedCrossRefGoogle Scholar
  7. Bear JE, Svitkina TM, Krause M, Schafer DA, Loureiro JJ, Strasser GA, Maly IV, Chaga OY, Cooper JA, Borisy GG, Gertler FB (2002). Antagonism between Ena/VASP proteins and actin filament capping regulates fibroblast motility. Cell 109:509–521.PubMedCrossRefGoogle Scholar
  8. Bernardini ML, Mounier J, d’Hauteville H, Coquis-Rondon M, Sansonetti PJ (1989). Identification of icsA, a plasmid locus of Shigella flexneri that governs bacterial intra- and intercellular spread through interaction with F-actin. Proc Natl Acad Sci USA 86:3867–3871.PubMedCrossRefGoogle Scholar
  9. Bernheim-Groswasser A, Prost J, Sykes C (2005). Mechanism of actin-based motility: a dynamic state diagram. Biophys J 89:1411–1419.PubMedCrossRefGoogle Scholar
  10. Bi E, Zigmond SH (1999). Actin polymerization: where the WASP stings. Curr Biol 9:R161–R163.CrossRefGoogle Scholar
  11. Bohne J, Sokolovic Z, Goebel W (1994). Transcriptional regulation of prfA and PrfA-regulated virulence genes in Listeria monocytogenes. Mol Microbiol 11:1141–1150.PubMedCrossRefGoogle Scholar
  12. Boujemaa-Paterski R, Gouin E, Hansen G, Samarin S, Le Clainche C, Didry D, Dehoux P, Cossart P, Kocks C, Carlier MF, Pantaloni D (2001). Listeria protein ActA mimics WASp family proteins: it activates filament barbed end branching by Arp2/3 complex. Biochemistry 40:11390–11404..PubMedCrossRefGoogle Scholar
  13. Brieher WM, Coughlin M, Mitchison TJ (2004). Fascin-mediated propulsion of Listeria monocytogenes independent of frequent nucleation by the Arp2/3 complex. J Cell Biol 165:233–242.PubMedCrossRefGoogle Scholar
  14. Brundage RA, Smith GA, Camilli A, Theriot JA, Portnoy DA (1993). Expression and phosphorylation of the Listeria monocytogenes ActA protein in mammalian cells. Proc Natl Acad Sci USA 90:11890–11894.PubMedCrossRefGoogle Scholar
  15. Cameron LA, Footer MJ, van Oudenaarden A, Theriot JA (1999). Motility of ActA protein-coated microspheres driven by actin polymerization. Proc Nat Acad Sci USA 96:4906–4913.CrossRefGoogle Scholar
  16. Cameron LA, Svitkina TM, Vignjevic D, Theriot JA, Borisy GG (2001). Dendritic organization of actin comet tails. Curr Biol 11:130–135.PubMedCrossRefGoogle Scholar
  17. Carlier MF, Laurent V, Santolini J, Melki R, Didry D, Xia GX, Hong Y, Chua NH, Pantaloni D (1997). Actin depolymerizing factor (ADF/cofilin) enhances the rate of filament turnover: implication in actin-based motility. J Cell Biol 136:1307–1322.PubMedCrossRefGoogle Scholar
  18. Chakraborty T, Ebel F, Domann E, Niebuhr K, Gerstel B, Pistor S, Temm-Grove CJ, Jockusch BM, Reinhard M, Walter U, Wehland J (1995). A focal adhesion factor directly linking intracellularly motile Listeria monocytogenes and Listeria ivanovii to the actin-based cytoskeleton of mammalian cells. EMBO J 14:1314–1321.PubMedGoogle Scholar
  19. Cicchetti G, Maurer P, Wagener P, Kocks C (1999). Actin and phosphoinositide binding by the ActA protein of the bacterial pathogen Listeria monocytogenes. J Biol Chem 274:33616–33626.PubMedCrossRefGoogle Scholar
  20. Cramer LP (1999). Role of actin-filament disassembly in lamellipodium protrusion in motile cells revealed using the drug jasplakinolide. Curr Biol 9:1095–1105.PubMedCrossRefGoogle Scholar
  21. Dabiri GA, Sanger JM, Portnoy DA, Southwick FS (1990). Listeria monocytogenes moves rapidly through the host-cell cytoplasm by inducing directional actin assembly. Proc Natl Acad Sci USA 87:6068–6072.PubMedCrossRefGoogle Scholar
  22. David V, Gouin E, Troys MV, Grogan A, Segal AW, Ampe C, Cossart P (1998). Identification of cofilin, coronin, Rac and capZ in actin tails using a Listeria affinity approach. J Cell Sci 111:2877–2884.PubMedGoogle Scholar
  23. Dickinson RB, Caro L, Purich DL (2004). Force generation by cytoskeletal filament end-tracking proteins. Biophys J 87:2838–2854.PubMedCrossRefGoogle Scholar
  24. Dickinson RB, Purich DL (2002). Clamped-filament elongation model for actin-based motors. Biophys J 82:605–617.PubMedGoogle Scholar
  25. Dold FG, Sanger JM, Sanger JW (1994). Intact alpha-actinin molecules are needed for both the assembly of actin into the tails and the locomotion of Listeria monocytogenes inside infected cells. Cell Motil Cytoskeleton 28:97–107.PubMedCrossRefGoogle Scholar
  26. Domann E, Wehland J, Rohde M, Pistor S, Hartl M, Goebel W, Leimeister-Wachter M, Wuenscher M, Chakraborty T (1992). A novel bacterial virulence gene in Listeria monocytogenes required for host cell microfilament interaction with homology to the proline-rich region of vinculin. EMBO J 11:1981–1990.PubMedGoogle Scholar
  27. Ebel F, Rohde M, von Eichel-Streiber C, Wehland J, Chakraborty T (1999). The actin-based motility of intracellular Listeria monocytogenes is not controlled by small GTP-binding proteins of the Rho- and Ras-subfamilies. FEMS Microbiol Lett 176:117–124.PubMedCrossRefGoogle Scholar
  28. Freitag NE, Jacobs KE (1999). Examination of Listeria monocytogenes intracellular gene expression by using the green fluorescent protein of Aequorea Victoria. Infect Immun 67:1844–1852.PubMedGoogle Scholar
  29. Friederich E, Gouin E, Hellio R, Kocks C, Cossart P, Louvard D (1995). Targeting of Listeria monocytogenes ActA protein to the plasma membrane as a tool to dissect both actin-based cell morphogenesis and ActA function. EMBO J 14:2731–2744.PubMedGoogle Scholar
  30. Frischknecht F, Cudmore S, Moreau V, Reckmann I, Rottger S, Way M (1999). Tyrosine phosphorylation is required for actin-based motility of vaccinia but not Listeria or Shigella. Curr Biol 9:89–92.PubMedCrossRefGoogle Scholar
  31. Geese M, Loureiro JJ, Bear JE, Wehland J, Gertler FB, Sechi AS (2002). Contribution of Ena/VASP proteins to intracellular motility of Listeria requires phosphorylation and proline-rich core but not F-actin binding or multimerization. Mol Biol Cell 13:2383–2396.PubMedCrossRefGoogle Scholar
  32. Geese M, Schluter K, Rothkegel M, Jockusch BM, Wehland J, Sechi AS (2000). Accumulation of profilin II at the surface of Listeria is concomitant with the onset of motility and correlates with bacterial speed. J Cell Sci 113 (Pt 8):1415–1426.Google Scholar
  33. Gerbal F, Chaikin P, Rabin Y, Prost J (2000). An elastic analysis of Listeria monocytogenes propulsion. Biophys J 79:2259–2275.PubMedGoogle Scholar
  34. Gerstel B, Grobe L, Pistor S, Chakraborty T, Wehland J (1996). The ActA polypeptides of Listeria ivanovii and Listeria monocytogenes harbor related binding sites for host microfilament proteins. Infect Immun 64:1929–1936.PubMedGoogle Scholar
  35. Giardini PA, Fletcher DA, Theriot JA (2003). Compression forces generated by actin comet tails on lipid vesicles. Proc Natl Acad Sci USA 100:6493–6498.PubMedCrossRefGoogle Scholar
  36. Gouin E, Dehoux P, Mengaud J, Kocks C, Cossart P (1995). iactA of Listeria ivanovii, although distantly related to Listeria monocytogenes actA, restores actin tail formation in an L. monocytogenes actA mutant. Infect Immun 63:2729–2737.PubMedGoogle Scholar
  37. Gouin E, Welch MD, Cossart P (2005). Actin-based motility of intracellular pathogens. Curr Opin Microbiol 8:35–45.PubMedCrossRefGoogle Scholar
  38. Grenklo S, Geese M, Lindberg U, Wehland J, Karlsson R, Sechi AS (2003). A crucial role for profilin-actin in the intracellular motility of Listeria monocytogenes. EMBO Rep 4:523–529.PubMedCrossRefGoogle Scholar
  39. Haffner C, Jarchau T, Reinhard M, Hoppe J, Lohmann SM, Walter U (1995). Molecular cloning, structural analysis and functional expression of the proline-rich focal adhesion and microfilament-associated protein VASP. EMBO J 14:19–27.PubMedGoogle Scholar
  40. Heinzen RA, Hayes SF, Peacock MG, Hackstadt T (1993). Directional actin polymerization associated with spotted fever group Rickettsia infection of vero cells. Infect Immun 61:1926–1935.PubMedGoogle Scholar
  41. Hochmuth FM, Shao JY, Dai J, Sheetz MP (1996). Deformation and flow of membrane into tethers extracted from neuronal growth cones. Biophys J 70:358–369.PubMedGoogle Scholar
  42. Inaba T, Ishijima A, Honda M, Nomura F, Takiguchi K, Hotani H (2005). Formation and maintenance of tubular membrane projections require mechanical force, but their elongation and shortening do not require additional force. J Mol Biol 348:325–333.PubMedCrossRefGoogle Scholar
  43. Kang F, Laine RO, Bubb MR, Southwick FS, Purich DL (1997). Profilin interacts with the Gly-Pro-Pro-Pro-Pro-Pro sequences of vasodilator-stimulated phosphoprotein (VASP): implications for actin-based Listeria motility. Biochemistry 36:8384–8392.PubMedCrossRefGoogle Scholar
  44. Kang F, Purich DL, Southwick FS (1999). Profilin promotes barbed-end actin filament assembly without lowering the critical concentration. J Biol Chem 274:36963–36972.PubMedCrossRefGoogle Scholar
  45. Karunasagar I, Krohne G, Goebel W (1993). Listeria ivanovii is capable of cell-to-cell spread involving actin polymerization. Infect Immun 61:162–169.PubMedGoogle Scholar
  46. Kespichayawattana W, Rattanachetkul S, Wanun T, Utaisincharoen P, Sirisinha S (2000). Burkholderia pseudomallei induces cell fusion and actin-associated membrane protrusion: a possible mechanism for cell-to-cell spreading. Infect Immun 68:5377–5384.PubMedCrossRefGoogle Scholar
  47. Kidd T, Brose K, Mitchell KJ, Fetter RD, Tessier-Lavigne M, Goodman CS, Tear G (1998). Roundabout controls axon crossing of the CNS midline and defines a novel subfamily of evolutionarily conserved guidance receptors. Cell 92:205–215.PubMedCrossRefGoogle Scholar
  48. Kocks C, Cossart P (1993). Directional actin assembly by Listeria monocytogenes at the site of polar surface expression of the actA gene product involving the actin-bundling protein plastin (fimbrin). Infect Agents Dis 2:207–209.PubMedGoogle Scholar
  49. Kocks C, Gouin E, Tabouret M, Berche P, Ohayon H, Cossart P (1992). L. monocytogenes-induced actin assembly requires the actA gene product, a surface protein. Cell 68:521–531.PubMedCrossRefGoogle Scholar
  50. Kocks C, Hellio R, Gounon P, Ohayon H, Cossart P (1993). Polarized distribution of Listeria monocytogenes surface protein ActA at the site of directional actin assembly. J Cell Sci 105:699–710.PubMedGoogle Scholar
  51. Kocks C, Marchand JB, Gouin E, d’Hauteville H, Sansonetti PJ, Carlier MF, Cossart P (1995). The unrelated surface proteins ActA of Listeria monocytogenes and IcsA of Shigella flexneri are sufficient to confer actin-based motility on Listeria innocua and Escherichia coli respectively. Mol Microbiol 18:413–423.PubMedCrossRefGoogle Scholar
  52. Krause M, Dent EW, Bear JE, Loureiro JJ, Gertler FB (2003). Ena/VASP proteins: regulators of the actin cytoskeleton and cell migration. Annu Rev Cell Dev Biol 19:541–564.PubMedCrossRefGoogle Scholar
  53. Kreft J, Dumbsky M, Theiss S (1995). The actin-polymerization protein from Listeria ivanovii is a large repeat protein which shows only limited amino acid sequence homology to ActA from Listeria monocytogenes. FEMS Microbiol Lett 132:181–182.PubMedGoogle Scholar
  54. Kreft J, Vazquez-Boland JA (2001). Regulation of virulence genes in Listeria. Int J Med Microbiol 291:145–157.PubMedCrossRefGoogle Scholar
  55. Kuo SC, McGrath JL (2000). Steps and fluctuations of Listeria monocytogenes during actin-based motility. Nature 407:1026–1029.PubMedCrossRefGoogle Scholar
  56. Laine RO, Phaneuf KL, Cunningham CC, Kwiatkowski D, Azuma T, Southwick FS (1998). Gelsolin, a protein that caps the barbed ends and severs actin filaments, enhances the actin-based motility of Listeria monocytogenes in host cells. Infect Immun 66:3775–3782.PubMedGoogle Scholar
  57. Larson L, Arnaudeau S, Gibson B, Li W, Krause R, Hao B, Bamburg JR, Lew DP, Demaurex N, Southwick F (2005). Gelsolin mediates calcium-dependent disassembly of Listeria actin tails. Proc Natl Acad Sci USA 102:1921–1926.PubMedCrossRefGoogle Scholar
  58. Lasa I, Gouin E, Goethals M, Vancompernolle K, David V, Vandekerckhove J, Cossart P (1997). Identification of two regions in the N-terminal domain of ActA involved in the actin comet tail formation by Listeria monocytogenes. EMBO J 16:1531–1540.PubMedCrossRefGoogle Scholar
  59. Lasa I, Violaine D, Gouin E, Marchand J, Cossart P (1995). The amino-terminal part of ActA is critical for the actin-based motility of Listeria monocytogenes; the central proline-rich region acts as a stimulator. Mol Microbiol 18:425–436.PubMedCrossRefGoogle Scholar
  60. Lauer P, Theriot JA, Skoble J, Welch MD, Portnoy DA (2001). Systematic mutational analysis of the amino-terminal domain of the Listeria monocytogenes ActA protein reveals novel functions in actin-based motility. Mol Microbiol 42:1163–1177.PubMedCrossRefGoogle Scholar
  61. Leimeister-Wachter M, Chakraborty T (1989). Detection of listeriolysin, the thiol-dependent hemolysin in Listeria monocytogenes, Listeria ivanovii, and Listeria seeligeri. Infect Immun 57:2350–2357.PubMedGoogle Scholar
  62. Loisel TP, Boujemaa R, Pantaloni D, Carlier MF (1999). Reconstitution of actin-based motility of Listeria and Shigella using pure proteins. Nature 401:613–616.PubMedCrossRefGoogle Scholar
  63. Machesky LM, Atkinson SJ, Ampe C, Vandekerckhove J, Pollard TD (1994). Purification of a cortical complex containing two unconventional actins from Acanthamoeba by affinity chromatography on profilin-agarose. J Cell Biol 127:107–115.PubMedCrossRefGoogle Scholar
  64. Marchand JB, Moreau P, Paoletti A, Cossart P, Carlier MF, Pantaloni D (1995). Actin-based movement of Listeria monocytogenes: actin assembly results from the local maintenance of uncapped filament barbed ends at the bacterium surface. J Cell Biol 130:331–343.PubMedCrossRefGoogle Scholar
  65. Marcy Y, Prost J, Carlier MF, Sykes C (2004). Forces generated during actin-based propulsion: a direct measurement by micromanipulation. Proc Natl Acad Sci USA 101:5992–5997.PubMedCrossRefGoogle Scholar
  66. May RC, Hall ME, Higgs HN, Pollard TD, Chakraborty T, Wehland J, Machesky LM, Sechi AS (1999). The Arp2/3 complex is essential for the actin-based motility of Listeria monocytogenes. Curr Biol 9:759–762.PubMedCrossRefGoogle Scholar
  67. McGrath JL, Eungdamrong NJ, Fisher CI, Peng F, Mahadevan L, Mitchison TJ, Kuo SC (2003). The force-velocity relationship for the actin-based motility of Listeria monocytogenes. Curr Biol 13:329–332.PubMedCrossRefGoogle Scholar
  68. Mogilner A (2006). On the edge: modeling protrusion. Curr Opin Cell Biol 18:32–39.PubMedCrossRefGoogle Scholar
  69. Mogilner A, Oster G (1996). Cell motility driven by actin polymerization. Biophys J 71:3030–3045.PubMedGoogle Scholar
  70. Mogilner A, Oster G (2003a) Force generation by actin polymerization II: the elastic ratchet and tethered filaments. Biophys J 84:1591–1605.CrossRefGoogle Scholar
  71. Mogilner A, Oster G (2003b) Polymer motors: pushing out the front and pulling up the back. Curr Biol 13:R721–733.CrossRefGoogle Scholar
  72. Moors MA, Auerbuch V, Portnoy DA (1999a) Stability of the Listeria monocytogenes ActA protein in mammalian cells is regulated by the N-end rule pathway. Cell Microbiol 1:249–257.CrossRefGoogle Scholar
  73. Moors MA, Levitt B, Youngman P, Portnoy DA (1999b) Expression of listeriolysin O and ActA by intracellular and extracellular Listeria monocytogenes. Infect Immun 67:131–139.Google Scholar
  74. Mounier J, Ryter A, Coquis-Rondon M, Sansonetti PJ (1990). Intracellular and cell-to-cell spread of Listeria monocytogenes involves interaction with F-actin in the enterocytelike cell line Caco-2. Infect Immun 58:1048–1058.PubMedGoogle Scholar
  75. Mourrain P, Lasa I, Gautreau A, Gouin E, Pugsley A, Cossart P (1997). ActA is a dimer. Proc Natl Acad Sci USA 94:10034–10039.PubMedCrossRefGoogle Scholar
  76. Nanavati D, Ashton FT, Sanger JM, Sanger JW (1994). Dynamics of actin and alpha-actinin in the tails of Listeria monocytogenes in infected PtK2 cells. Cell Motil Cytoskeleton 28:346–358.PubMedCrossRefGoogle Scholar
  77. Niebuhr K, Chakraborty T, Rohde M, Gazlig T, Jansen B, Kollner P, Wehland J (1993). Localization of the ActA polypeptide of Listeria monocytogenes in infected tissue culture cell lines: ActA is not associated with actin "comets". Infect Immun 61:2793–2802.PubMedGoogle Scholar
  78. Niebuhr K, Ebel F, Frank R, Reinhard M, Domann E, Carl UD, Walter U, Gertler FB, Wehland J, Chakraborty T (1997). A novel proline-rich motif present in ActA of Listeria monocytogenes and cytoskeletal proteins is the ligand for the EVH1 domain, a protein module present in the Ena/VASP family. EMBO J 16:5433–5444.PubMedCrossRefGoogle Scholar
  79. Pantaloni D, Carlier MF (1993). How profilin promotes actin filament assembly in the presence of thymosin beta 4. Cell 75:1007–1014.PubMedCrossRefGoogle Scholar
  80. Parekh SH, Chaudhuri O, Theriot JA, Fletcher DA (2005). Loading history determines the velocity of actin-network growth. Nat Cell Biol 7:1119–1123.CrossRefGoogle Scholar
  81. Pistor S, Chakraborty T, Niebuhr K, Domann E, Wehland J (1994). The ActA protein of Listeria monocytogenes acts as a nucleator inducing reorganization of the actin cytoskeleton. EMBO J 13:758–763.PubMedGoogle Scholar
  82. Pistor S, Chakraborty T, Walter U, Wehland J (1995). The bacterial actin nucleator protein ActA of Listeria monocytogenes contains multiple binding sites for host microfilament proteins. Curr Biol 5:517–525.PubMedCrossRefGoogle Scholar
  83. Pistor S, Grobe L, Sechi AS, Domann E, Gerstel B, Machesky LM, Chakraborty T, Wehland J (2000). Mutations of arginine residues within the 146-KKRRK-150 motif of the ActA protein of Listeria monocytogenes abolish intracellular motility by interfering with the recruitment of the Arp2/3 complex. J Cell Sci 113:3277–3287.PubMedGoogle Scholar
  84. Plastino J, Olivier S, Sykes C (2004). Actin filaments align into hollow comets for rapid VASP-mediated propulsion. Curr Biol 14:1766–1771.PubMedCrossRefGoogle Scholar
  85. Plastino J, Sykes C (2005). The actin slingshot. Curr Opin Cell Biol 17:62–66.PubMedCrossRefGoogle Scholar
  86. Pollard TD, Blanchoin L, Mullins RD (2000). Molecular mechanisms controlling actin filament dynamics in nonmuscle cells. Annu Rev Biophys Biomol Struct 29:545–576.PubMedCrossRefGoogle Scholar
  87. Pollard TD, Borisy GG (2003). Cellular motility driven by assembly and disassembly of actin filaments. Cell 112:453–465.PubMedCrossRefGoogle Scholar
  88. Prehoda KE, Lee DJ, Lim WA (1999). Structure of the enabled/VASP homology 1 domain-peptide complex: a key component in the spatial control of actin assembly. Cell 97:471–480.PubMedCrossRefGoogle Scholar
  89. Pust S, Morrison H, Wehland J, Sechi AS, Herrlich P (2005). Listeria monocytogenes exploits ERM protein functions to efficiently spread from cell to cell. EMBO J 24:1287–1300.PubMedCrossRefGoogle Scholar
  90. Racz P, Tenner K, Mero E (1972). Experimental Listeria enteritis. I. An electron microscopic study of the epithelial phase in experimental Listeria infection. Lab Invest 26:694–700.PubMedGoogle Scholar
  91. Racz P, Tenner K, Szivessy K (1970). Electron microscopic studies in experimental keratoconjunctivitis listeriosa. I. Penetration of Listeria monocytogenes into corneal epithelial cells. Acta Microbiol Acad Sci Hung 17:221–236.PubMedGoogle Scholar
  92. Rafelski SM, Theriot JA (2005). Bacterial shape and ActA distribution affect initiation of Listeria monocytogenes actin-based motility. Biophys J 89:2146–2158.PubMedCrossRefGoogle Scholar
  93. Rafelski SM, Theriot JA (2006). Mechanism of polarization of Listeria monocytogenes surface protein ActA. Mol Microbiol 59:1262–1279.PubMedCrossRefGoogle Scholar
  94. Reinhard M, Giehl K, Abel K, Haffner C, Jarchau T, Hoppe V, Jockusch BM, Walter U (1995). The proline-rich focal adhesion and microfilament protein VASP is a ligand for profilins. EMBO J 14:1583–1589.PubMedGoogle Scholar
  95. Robbins JR, Barth AI, Marquis H, de Hostos EL, Nelson WJ, Theriot JA (1999). Listeria monocytogenes exploits normal host cell processes to spread from cell to cell. J Cell Biol 146:1333–1350.PubMedCrossRefGoogle Scholar
  96. Rosenblatt J, Agnew BJ, Abe H, Bamburg JR, Mitchison TJ (1997). Xenopus actin depolymerizing factor/cofilin (XAC) is responsible for the turnover of actin filaments in Listeria monocytogenes tails. J Cell Biol 136:1323–1332.PubMedCrossRefGoogle Scholar
  97. Samarin S, Romero S, Kocks C, Didry D, Pantaloni D, Carlier MF (2003). How VASP enhances actin-based motility. J Cell Biol 163:131–142.PubMedCrossRefGoogle Scholar
  98. Sanger JM, Mittal B, Southwick FS, Sanger JW (1995). Listeria monocytogenes intracellular migration: inhibition by profilin, vitamin D-binding protein and DNase I. Cell Motil Cytoskeleton 30:38–49.PubMedCrossRefGoogle Scholar
  99. Sanger JM, Sanger JW, Southwick FS (1992). Host cell actin assembly is necessary and likely to provide the propulsive force for intracellular movement of Listeria monocytogenes. Infect Immun 60:3609–3619.PubMedGoogle Scholar
  100. Sechi AS, Wehland J, Small JV (1997). The isolated comet tail pseudopodium of Listeria monocytogenes: a tail of two actin filament populations, long and axial and short and random. J Cell Biol 137:155–167.PubMedCrossRefGoogle Scholar
  101. Skoble J, Auerbuch V, Goley ED, Welch MD, Portnoy DA (2001). Pivotal role of VASP in Arp2/3 complex-mediated actin nucleation, actin branch-formation, and Listeria monocytogenes motility. J Cell Biol 155:89–100.PubMedCrossRefGoogle Scholar
  102. Skoble J, Portnoy DA, Welch MD (2000). Three regions within ActA promote Arp2/3 complex-mediated actin nucleation and Listeria monocytogenes motility. J Cell Biol 150:527–538.PubMedCrossRefGoogle Scholar
  103. Smith GA, Portnoy DA, Theriot JA (1995). Asymetric distribution of the Listeria monocytogenes ActA protein is required and sufficient to direct actin-based motility. Mol Microbiol 17:945–951.PubMedCrossRefGoogle Scholar
  104. Smith GA, Theriot JA, Portnoy DA (1996). The tandem repeat domain in the Listeria monocytogenes ActA protein controls the rate of actin based motility, the percentage of moving bacteria, and the localization of vasodilator-stimulated phosphoprotein and profilin. J Cell Biol 135:647–660.PubMedCrossRefGoogle Scholar
  105. Southwick FS, Purich DL (1995). Inhibition of Listeria locomotion by mosquito oostatic factor, a natural oligoproline peptide uncoupler of profilin action. Infect Immun 63:182–190.PubMedGoogle Scholar
  106. Stamm LM, Morisaki JH, Gao LY, Jeng RL, McDonald KL, Roth R, Takeshita S, Heuser J, Welch MD, Brown EJ (2003). Mycobacterium marinum escapes from phagosomes and is propelled by actin-based motility. J Exp Med 198:1361–1368.PubMedCrossRefGoogle Scholar
  107. Steffen P, Schafer DA, David V, Gouin E, Cooper JA, Cossart P (2000). Listeria monocytogenes ActA protein interacts with phosphatidylinositol 4,5-bisphosphate in vitro. Cell Motil Cytoskeleton 45:58–66.PubMedCrossRefGoogle Scholar
  108. Taunton J (2001). Actin filament nucleation by endosomes, lysosomes and secretory vesicles. Curr Opin Cell Biol 13:85–91.PubMedCrossRefGoogle Scholar
  109. Temm-Grove CJ, Jockusch BM, Rohde M, Niebuhr K, Chakraborty T, Wehland J (1994). Exploitation of microfilament proteins by Listeria monocytogenes: microvillus-like composition of the comet tails and vectorial spreading in polarized epithelial sheets. J Cell Sci 107:2951–2960.PubMedGoogle Scholar
  110. Theriot JA, Mitchison TJ (1991). Actin microfilament dynamics in locomoting cells. Nature 352:126–131.PubMedCrossRefGoogle Scholar
  111. Theriot JA, Mitchison TJ (1992). Comparison of actin and cell surface dynamics in motile fibroblasts. J Cell Biol 118:367–377.CrossRefGoogle Scholar
  112. Theriot JA, Mitchison TJ, Tilney LG, Portnoy DA (1992). The rate of actin-based motility of intracellular Listeria monocytogenes equals the rate of actin polymerization. Nature 357:257–260.PubMedCrossRefGoogle Scholar
  113. Theriot JA, Rosenblatt J, Portnoy DA, Goldschmidt CP, Mitchison TJ (1994). Involvement of profilin in the actin-based motility of L. monocytogenes in cells and in cell-free extracts. Cell 76:505–517.PubMedCrossRefGoogle Scholar
  114. Tilney LG, Connelly PS, Portnoy DA (1990). Actin filament nucleation by the bacterial pathogen, Listeria monocytogenes. J Cell Biol 111:2979–2988.PubMedCrossRefGoogle Scholar
  115. Tilney LG, DeRosier DJ, Tilney MS (1992a) How Listeria exploits host cell actin to form its own cytoskeleton. I. Formation of a tail and how that tail might be involved in movement. J Cell Biol 118:71–81.CrossRefGoogle Scholar
  116. Tilney LG, DeRosier DJ, Weber A, Tilney MS (1992b) How Listeria exploits host cell actin to form its own cytoskeleton. II. Nucleation, actin filament polarity, filament assembly, and evidence for a pointed end capper. J Cell Biol 118:83–93.CrossRefGoogle Scholar
  117. Tilney LG, Portnoy DA (1989). Actin filaments and the growth, movement, and spread of the intracellular bacterial parasite, Listeria monocytogenes. J Cell Biol 109:1597–1608.PubMedCrossRefGoogle Scholar
  118. Upadhyaya A, Chabot JR, Andreeva A, Samadani A, van Oudenaarden A (2003). Probing polymerization forces by using actin-propelled lipid vesicles. Proc Natl Acad Sci USA 100:4521–4526.PubMedCrossRefGoogle Scholar
  119. Van Kirk LS, Hayes SF, Heinzen RA (2000). Ultrastructure of Rickettsia rickettsii actin tails and localization of cytoskeletal proteins. Infect Immun 68:4706–4713.PubMedCrossRefGoogle Scholar
  120. Vazquez-Boland JA, Kocks C, Dramsi S, Ohayon H, Geoffroy C, Mengaud J, Cossart P (1992). Nucleotide sequence of the lecithinase operon of Listeria monocytogenes and possible role of lecithinase in cell-to-cell spread. Infect Immun 60:219–230.PubMedGoogle Scholar
  121. Wear MA, Cooper JA (2004). Capping protein: new insights into mechanism and regulation. Trends Biochem Sci 29:418–428.PubMedCrossRefGoogle Scholar
  122. Welch MD, DePace AH, Verma S, Iwamatsu A, Mitchison TJ (1997a) The human Arp2/3 complex is composed of evolutionarily conserved subunits and is localized to cellular regions of dynamic actin filament assembly. J Cell Biol 138:375–384.CrossRefGoogle Scholar
  123. Welch MD, Iwamatsu A, Mitchison TJ (1997b) Actin polymerization is induced by the Arp2/3 protein complex at the surface of Listeria monocytogenes. Nature 385:265–269.CrossRefGoogle Scholar
  124. Welch MD, Mullins RD (2002). Cellular control of actin nucleation. Annu Rev Cell Dev Biol 18:247–288.PubMedCrossRefGoogle Scholar
  125. Welch MD, Rosenblatt J, Skoble J, Portnoy D, Mitchison TJ (1998). Interaction of human Arp2/3 complex and the Listeria monocytogenes ActA protein in actin filament nucleation. Science 281:105–108.PubMedCrossRefGoogle Scholar
  126. Wiedmann M, Bruce JL, Keating C, Johnson AE, McDonough PL, Batt CA (1997). Ribotypes and virulence gene polymorphisms suggest three distinct Listeria monocytogenes lineages with differences in pathogenic potential. Infect Immun 65:2707–2716.PubMedGoogle Scholar
  127. Wong KK, Bouwer HG, Freitag NE (2004). Evidence implicating the 5’ untranslated region of Listeria monocytogenes ActA in the regulation of bacterial actin-based motility. Cell Microbiol 6:155–166.PubMedCrossRefGoogle Scholar
  128. Yarar D, D’Alessio JA, Jeng RL, Welch MD (2002). Motility determinants in WASP family proteins. Mol Biol Cell 13:4045–4059.PubMedCrossRefGoogle Scholar
  129. Zalevsky J, Grigorova I, Mullins RD (2001). Activation of the Arp2/3 complex by the Listeria ActA protein. ActA binds two actin monomers and three subunits of the Arp2/3 complex. J Biol Chem 276:3468–3475.PubMedCrossRefGoogle Scholar
  130. Zallen JA, Yi BA, Bargmann CI (1998). The conserved immunoglobulin superfamily member SAX-3/Robo directs multiple aspects of axon guidance in C. elegans. Cell 92:217–227.PubMedCrossRefGoogle Scholar
  131. Zhukarev V, Ashton FT, Sanger JM, Sanger JW, Shuman H (1995). Steady state fluorescence polarization study of actin filament bundles in Listeria-infected cells. Cell Motil Cytoskeleton 30:229–246.PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Matthew D. Welch
    • 1
  1. 1.Department of Molecular & Cell BiologyUniversity of California, Berkeley, 301 Life Sciences AdditionBerkeleyUSA

Personalised recommendations