Advertisement

Solving an Advection-Diffusion Equation by a Finite Element Method

Abstract

In this project we seek a numerical approximation of the solution u : [0, 1] → ℝ of the following problem:
$$ \left\{ \begin{gathered} - \varepsilon u''\left( x \right) + \lambda u'\left( x \right) = f\left( x \right), x \in \left] {0,1} \right[, \hfill \\ u\left( 0 \right) = 0, \hfill \\ u\left( 1 \right) = 0. \hfill \\ \end{gathered} \right. $$
(4.1)
The function f and the real numbers ε > 0 and λ are given in such a way that there exists a unique continuous solution of this problem. Our aim is to approximate the solution with a continuous piecewise polynomial function.

Keywords

Convection-diffusion equation finite element method stabilization of a numerical scheme 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Chapter References

  1. K. Atkinson and W. Han, Theoretical Numerical Analysis, Springer, New York, 2001.zbMATHGoogle Scholar
  2. C. Bernardi, Y. Maday and F. Rapetti, Discrétisations variationnelles de problémes aux limites elliptiques, collection S.M.A.I. Mathématiques et Applications, vol. 45, Springer, Paris, 2004.Google Scholar
  3. F. Brezzi and A. Russo, Choosing bubbles for advection-diffusion problems, Math. Models and Meth. in Appl. Sci., vol. 4, no. 4, 1994.Google Scholar
  4. I. Danaila, F. Hecht and O. Pironneau, Simulation numérique en C++, Dunod, Paris, 2003.Google Scholar
  5. P. Joly, Mise en ∄uvre de la méthode des éléments finis, collection S.M.A.I. Mathématiques et Applications, Ellipses, Paris, 1990.Google Scholar
  6. B. Lucquin and O. Pironneau, Introduction to Scientific Computing, Willey, Chichester, 1998.zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Personalised recommendations