Measurement of Hardness and Young’s Modulus by Nanoindentation

  • Thomas Chudoba
Part of the Nanostructure Science and Technology book series (NST)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    ISO Central Secretariat, Metallic Materials—Instrumented Indentation Test for Hardness and Materials Parameters, ISO 14577 (ISO Central Secretariat, Geneva, Switzerland, 2002).Google Scholar
  2. 2.
    Determination of Hardness and Modulus of Thin Films and Coatings by Nanoindentation (INDICOAT), European project, Contract No. SMT4-CT98-2249, NPL Report MATC(A) 24, May 2001.Google Scholar
  3. 3.
    K. Herrmann, N. M. Jennett, S. R. J. Saunders, J. Meneve, and F. Pohlenz, Development of a standard on hardness and Young’s modulus testing of thin coatings by nanoindentation, in Proceedings of 2nd European Symposium on Nanomechanical Testing, Hückelhofen, 25–27 September, 2001, Z. Met.kd. 93(9), 879–885 (2002).Google Scholar
  4. 4.
    H. O’Neill, Hardness Measurement of Metals and Alloys (Chapman and Hall, London, 1967), p. 2.Google Scholar
  5. 5.
    F. Mohs, Grundriß der Mineralogie (Dresden, 1822).Google Scholar
  6. 6.
    J. B. Pethica, Microhardness test with penetration depth less than ion implanted layer thickness in ion implantation into metals, in Third International Conference on Modification of Surface Properties of Metals by Ion-Implantation, Manchester, England, 1981, June 23–26, edited by V. Ashworth, W. A. Grunt, und R. P. M. Procter (Pergamon Press, Oxford, 1982), pp. 147–157.Google Scholar
  7. 7.
    Universal Hardness Testing, DIN 50359 (DIN Deutsches Institut für Normung e.V., Berlin, 1997).Google Scholar
  8. 8.
    M. F. Doerner and W. D. Nix, A method for interpreting the data from depth sensing indentation instruments, J. Mater. Res. 1, 601–609 (1986).Google Scholar
  9. 9.
    W. C. Oliver and G. M. Pharr, An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments, J. Mater. Res. 7, 1564–1583 (1992).Google Scholar
  10. 10.
    I. N. Sneddon, Boussinesq’s problem for a rigid cone, Proc. Camb. Phil. Soc. 44, 492–507 (1948).CrossRefGoogle Scholar
  11. 11.
    L. D. Landau and F. M. Lifschitz, Lehrbuch der Theoretischen Physik. Bd. 7: Elastizitätstheorie, (Verlag Harri Deutsch, Frankfurt am Main, 1991).Google Scholar
  12. 12.
    A. K. Bhattacharya and W. D. Nix, Finite element analysis of cone indentation, Int. J. Solids Struct. 27, 1047–1058 (1991).CrossRefGoogle Scholar
  13. 13.
    G. M. Pharr, W. C. Oliver, and F. R. Brotzen, On the generality of the relationship between contact stiffness, contact area, and elastic modulus during indentation, J. Mater. Res. 7, 613–618 (1992).Google Scholar
  14. 14.
    H. Gao and T.-W. Wu, A note on the elastic contact stiffness of a layered medium, J. Mater. Res. 8, 3229–3233 (1993).Google Scholar
  15. 15.
    R. B. King, Elastic analysis of some punch problems for a layered medium, Int. J. Solids Struct. 23(12), 1657–1664 (1987).CrossRefGoogle Scholar
  16. 16.
    G. G. Bilodeau, Regular pyramid punch problem, J. Appl. Mech. 59, 519–523 (1992).Google Scholar
  17. 17.
    A. E. Giannakopoulos, P.-L. Larsson, and R. Vestergaard, Analysis of Vickers indentation, Int. J. Solids Struct. 31, 2679–2708 (1994).CrossRefGoogle Scholar
  18. 18.
    M. T. Hendrix, The use of shape correction factors for elastic indentation measurements, J. Mater. Res. 10, 255–258 (1995).Google Scholar
  19. 19.
    W. Weiler, Zur definition einer neuen Härteskala bei der Ermittlung des Härtewertes unter Prüflast, Materialprüfung 28, 217–220 (1986).Google Scholar
  20. 20.
    K. L. Johnson, Contact Mechanics (Cambridge University Press, Cambridge, 1985).Google Scholar
  21. 21.
    A. C. Fischer-Cripps, Introduction to contact mechanics, in Mechanical Engineering Series (Springer, Berlin, 2000).Google Scholar
  22. 22.
    T. Chudoba and K. Herrmann, Verfahren zur Ermittlung der realen Spitzenform von Vickers-und Berkovich-Eindringkörpern, HTM Härterei-Tech. Mitt. 56, 258–264 (2001).Google Scholar
  23. 23.
    J. Meneve, J. F. Smith, N. M. Jennett, and S. R. J. Saunders, Surface mechanical property testing by depth sensing indentation, Appl. Surf. Sci. 100–101, 64–68 (1996).CrossRefGoogle Scholar
  24. 24.
    W. C. Oliver and G. M. Pharr, Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology, J. Mater. Res. 19, 3–20 (2004).CrossRefGoogle Scholar
  25. 25.
    T. Chudoba, N. Schwarzer, and F. Richter, Determination of elastic properties of thin films by indentation measurements with a spherical indenter, Surf. Coat. Technol. 127, 9–17 (2000).CrossRefGoogle Scholar
  26. 26.
    Certified Reference Materials for Depth Sensing Indentation Instrumentation (DESIRED), European Project, Contract no. G6RD-CT2000-00418, funded by the European Community under the “Competitive and Sustainable Growth” Program, finished March 2004.Google Scholar
  27. 27.
    K. Herrmann, N. M. Jennett, W. Wegener, J. Meneve, K. Hasche, and R. Seemann, Progress in determination of the area function of indenters used for nanoindentation, Thin Solid Films 377–378, 394–400 (2000).CrossRefGoogle Scholar
  28. 28.
    H. Bückle, Mikrohärteprüfung und Ihre Anwendung (Berliner Union Verlag, Stuttgart, 1965).Google Scholar
  29. 29.
    P. J. Burnett and D. S. Rickerby, Assessment of coating hardness, Surf. Eng. 3(1), 69–75 (1987).Google Scholar
  30. 30.
    M. Wittling, A. Bendavid, P. J. Martin, and M. V. Swain, Influence of thickness and substrate on the hardness and deformation of TiN films, Thin Solid Films 270, 283–288 (1995).CrossRefGoogle Scholar
  31. 31.
    D. Chirac and J. Lesage, Absolute hardness of films and coatings, Thin Solid Films 254, 123–130 (1995).CrossRefGoogle Scholar
  32. 32.
    N. G. Chechenin, J. Bøttiger, and J. P. Krog, Nanoindentation of amorphous aluminum oxide films, I: The influence of the substrate on the plastic properties, Thin Solid Films 261, 219–227 (1995).CrossRefGoogle Scholar
  33. 33.
    T. Chudoba, N. Schwarzer, F. Richter, and U. Beck, Determination of mechanical film properties of a bilayer system due to elastic indentation measurements with a spherical indenter, Thin Solid Films 377–378, 366–372 (2000).CrossRefGoogle Scholar
  34. 34.
    A. K. Bhattacharya and W. D. Nix, Analysis of elastic and plastic deformation associated with indentation testing of thin film substrates, Int. J. Solids Struct. 24, 1287–1298 (1988).CrossRefGoogle Scholar
  35. 35.
    H. Gao, C.-H. Chiu, and J. Lee, Elastic contact versus indentation modeling of multi-layered materials, Int. J. Solids Struct. 29, 2471–2492 (1992).CrossRefGoogle Scholar
  36. 36.
    J. Menčik, D. Munz, E. Quandt, and E. R. Weppelmann, Determination of elastic modulus of thin layers using nanoindentation, J. Mater. Res. 12, 2475–2484 (1997).Google Scholar
  37. 37.
    A. Bolshakov and G. Pharr, Influences on pileup on the measurement of mechanical properties by load and depth sensing indentation techniques, J. Mater. Res. 13, 1049–1058 (1998).Google Scholar
  38. 38.
    T. J. Bell, J. S. Field, and M. V. Swain, Stress-strain behavior of thin films using a spherical tipped indenter, Mater. Res. Soc. Symp. Proc. 239, 331–336 (1992).Google Scholar
  39. 39.
    J. S. Field and M. V. Swain, A simple predictive model for spherical indentation, J. Mater. Res. 8(2), 297–307 (1993).Google Scholar
  40. 40.
    N. Schwarzer, F. Richter, and G. Hecht, The elastic field in a coated half-space under Hertzian pressure distribution, Surf. Coat. Technol. 114, 292–304 (1999).CrossRefGoogle Scholar
  41. 41.
    N. Schwarzer, Arbitrary load distribution on a layered half space, ASME J. Tribol. 122, 672–681 (2000).CrossRefGoogle Scholar
  42. 42.
    V. I. Fabrikant, Application of Potential Theory in Mechanics: A Selection of New Results (Kluwer Academic, Dordrecht, The Netherlands, 1989).Google Scholar
  43. 43.
    V. I. Fabrikant, Mixed Boundary Value Problems of Potential Theory and Their Applications in Engineering (Kluwer Academic, Dordrecht, The Netherlands, 1991).Google Scholar
  44. 44.
    T. Chudoba, M. Griepentrog, A. Dück, D. Schneider, and F. Richter, Young’s modulus measurements on ultra-thin coatings, J. Mater. Res. 19, 301–314 (2004).Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • Thomas Chudoba
    • 1
  1. 1.ASMEC Advanced Surface Mechanics GmbHRossendorfGermany

Personalised recommendations